101
|
Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, Hariprasad G, Hasan GM, Hassan MI. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165878. [PMID: 32544429 PMCID: PMC7293463 DOI: 10.1016/j.bbadis.2020.165878] [Citation(s) in RCA: 653] [Impact Index Per Article: 130.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective. The recent exposure to SARS-CoV-2 has affected entire world, resulted >0.4 million deaths. Potential drug targets of SARS-CoV-2 are highly conserved. A slight structural difference makes available drugs ineffective against SARS-CoV-2. Cytokine storm during SARS-CoV-2 infection may be targeted to handle COVID-19 patients. Many FDA approved drugs are showing positive effects in clinical trials but further validation in large subject groups is required.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Urooj Fatima
- Department of Botany, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Indrakant K Singh
- Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110 019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | | | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
102
|
Cantore I, Valente P. Convalescent plasma from COVID 19 patients enhances intensive care unit survival rate. A preliminary report. Transfus Apher Sci 2020; 59:102848. [PMID: 32888822 PMCID: PMC7283069 DOI: 10.1016/j.transci.2020.102848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Italo Cantore
- San Carlo Regional Hospital, Via Potito Petrone, 85100, Potenza, Italy.
| | | |
Collapse
|
103
|
The immune system and COVID-19: Friend or foe? Life Sci 2020; 256:117900. [PMID: 32502542 PMCID: PMC7266583 DOI: 10.1016/j.lfs.2020.117900] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/21/2022]
Abstract
AIM Coronavirus disease 2019 (COVID-19) is a novel highly contagious infection caused by SARS-CoV-2, which has been became a global public health challenge. The pathogenesis of this virus is not yet clearly understood, but there is evidence of a hyper-inflammatory immune response in critically ill patients, which leads to acute respiratory distress syndrome (ARDS) and multi-organ failure. MATERIAL AND METHODS A literature review was performed to identify relevant articles on COVID-19 published up to April 30, 2020. The search resulted in 361 total articles. After reviewing the titles and abstracts for inclusion, some irrelevant papers were excluded. Additional relevant articles were identified from a review of citations referenced. KEY FINDINGS SARS-CoV-2, directly and indirectly, affects the immune system and avoids being eliminated in early stages. On the other hand, the secretion of inflammatory cytokines creates critical conditions that lead to multi-organ failure. SIGNIFICANCE The immune system which is affected by the virus tries to respond via a cytokine storm and hyperinflammation, which itself leads to further multi-organ damage and even death.
Collapse
|
104
|
Türsen Ü, Türsen B, Lotti T. Cutaneous sıde-effects of the potential COVID-19 drugs. Dermatol Ther 2020; 33:e13476. [PMID: 32358890 PMCID: PMC7262017 DOI: 10.1111/dth.13476] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022]
Abstract
COVID‐19 disease is a highly contagious and particularly popular problem in all countries. A variety of repurposed drugs and investigational drugs such as remdesivir, chloroquine, hydroxychloroquine, ritonavir, lopinavir, interferon‐beta, and other potential drugs have been studied for COVID19 treatment. We reviewed the potential dermatological side‐effects of these drugs.
Collapse
Affiliation(s)
- Ümit Türsen
- Department of Dermatology, School of Medicine, Mersin University, Mersin, Turkey
| | - Belma Türsen
- Department of Health Science, Toros University, Mersin, Turkey
| | - Torello Lotti
- Department of Dermatology, School of Medicine, Marconi University, Rome, Italy
| |
Collapse
|
105
|
Valk SJ, Piechotta V, Chai KL, Doree C, Monsef I, Wood EM, Lamikanra A, Kimber C, McQuilten Z, So-Osman C, Estcourt LJ, Skoetz N. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review. Cochrane Database Syst Rev 2020; 5:CD013600. [PMID: 32406927 PMCID: PMC7271896 DOI: 10.1002/14651858.cd013600] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with respiratory virus diseases, and are currently being investigated in trials as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required. OBJECTIVES: To assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19. SEARCH METHODS The protocol was pre-published with the Center for Open Science and can be accessed here: osf.io/dwf53 We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trials registries to identify ongoing studies and results of completed studies on 23 April 2020 for case-series, cohort, prospectively planned, and randomised controlled trials (RCTs). SELECTION CRITERIA We followed standard Cochrane methodology and performed all steps regarding study selection in duplicate by two independent review authors (in contrast to the recommendations of the Cochrane Rapid Reviews Methods Group). We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulins. DATA COLLECTION AND ANALYSIS We followed recommendations of the Cochrane Rapid Reviews Methods Group regarding data extraction and assessment. To assess bias in included studies, we used the assessment criteria tool for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events, and serious adverse events. MAIN RESULTS: We included eight studies (seven case-series, one prospectively planned, single-arm intervention study) with 32 participants, and identified a further 48 ongoing studies evaluating convalescent plasma (47 studies) or hyperimmune immunoglobulin (one study), of which 22 are randomised. Overall risk of bias of the eight included studies was high, due to: study design; small number of participants; poor reporting within studies; and varied type of participants with different severities of disease, comorbidities, and types of previous or concurrent treatments, including antivirals, antifungals or antibiotics, corticosteroids, hydroxychloroquine and respiratory support. We rated all outcomes as very low certainty, and we were unable to summarise numerical data in any meaningful way. As we identified case-series studies only, we reported results narratively. Effectiveness of convalescent plasma for people with COVID-19 The following reported outcomes could all be related to the underlying natural history of the disease or other concomitant treatment, rather than convalescent plasma. All-cause mortality at hospital discharge All studies reported mortality. All participants were alive at the end of the reporting period, but not all participants had been discharged from hospital by the end of the study (15 participants discharged, 6 still hospitalised, 11 unclear). Follow-up ranged from 3 days to 37 days post-transfusion. We do not know whether convalescent plasma therapy affects mortality (very low-certainty evidence). Improvement of clinical symptoms (assessed by respiratory support) Six studies, including 28 participants, reported the level of respiratory support required; most participants required respiratory support at baseline. All studies reported improvement in clinical symptoms in at least some participants. We do not know whether convalescent plasma improves clinical symptoms (very low-certainty evidence). Time to discharge from hospital Six studies reported time to discharge from hospital for at least some participants, which ranged from four to 35 days after convalescent plasma therapy. Admission on the intensive care unit (ICU) Six studies included patients who were critically ill. At final follow-up the majority of these patients were no longer on the ICU or no longer required mechanical ventilation. Length of stay on the ICU Only one study (1 participant) reported length of stay on the ICU. The individual was discharged from the ICU 11 days after plasma transfusion. Safety of convalescent plasma for people with COVID-19 Grade 3 or 4 adverse events The studies did not report the grade of adverse events after convalescent plasma transfusion. Two studies reported data relating to participants who had experienced adverse events, that were presumably grade 3 or 4. One case study reported a participant who had moderate fever (38.9 °C). Another study (3 participants) reported a case of severe anaphylactic shock. Four studies reported the absence of moderate or severe adverse events (19 participants). We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events One study (3 participants) reported one serious adverse event. As described above, this individual had severe anaphylactic shock after receiving convalescent plasma. Six studies reported that no serious adverse events occurred. We are very uncertain whether or not convalescent plasma therapy affects the risk of serious adverse events (very low-certainty evidence). AUTHORS' CONCLUSIONS: We identified eight studies (seven case-series and one prospectively planned single-arm intervention study) with a total of 32 participants (range 1 to 10). Most studies assessed the risks of the intervention; reporting two adverse events (potentially grade 3 or 4), one of which was a serious adverse event. We are very uncertain whether convalescent plasma is effective for people admitted to hospital with COVID-19 as studies reported results inconsistently, making it difficult to compare results and to draw conclusions. We identified very low-certainty evidence on the effectiveness and safety of convalescent plasma therapy for people with COVID-19; all studies were at high risk of bias and reporting quality was low. No RCTs or controlled non-randomised studies evaluating benefits and harms of convalescent plasma have been completed. There are 47 ongoing studies evaluating convalescent plasma, of which 22 are RCTs, and one trial evaluating hyperimmune immunoglobulin. We will update this review as a living systematic review, based on monthly searches in the above mentioned databases and registries. These updates are likely to show different results to those reported here.
Collapse
Affiliation(s)
- Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Carolyn Doree
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Abigail Lamikanra
- Clinical, Research and Development, NHS Blood and Transplant, Oxford, UK
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
106
|
Gasparyan AY, Misra DP, Yessirkepov M, Zimba O. Perspectives of Immune Therapy in Coronavirus Disease 2019. J Korean Med Sci 2020; 35:e176. [PMID: 32383371 PMCID: PMC7211516 DOI: 10.3346/jkms.2020.35.e176] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
The global fight against coronavirus disease 2019 (COVID-19) is largely based on strategies to boost immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent its severe course and complications. The human defence may include antibodies which interact with SARS-CoV-2 and neutralize its aggressive actions on multiple organ systems. Protective cross-reactivity of antibodies against measles and other known viral infections has been postulated, primarily as a result of the initial observations of asymptomatic and mild COVID-19 in children. Uncontrolled case series have demonstrated virus-neutralizing effect of convalescent plasma, supporting its efficiency at early stages of contracting SARS-CoV-2. Given the variability of the virus structure, the utility of convalescent plasma is limited to the geographic area of its preparation, and for a short period of time. Intravenous immunoglobulin may also be protective in view of its nonspecific antiviral and immunomodulatory effects. Finally, human monoclonal antibodies may interact with some SARS-CoV-2 proteins, inhibiting the virus-receptor interaction and prevent tissue injury. The improved understanding of the host antiviral responses may help develop safe and effective immunotherapeutic strategies against COVID-19 in the foreseeable future.
Collapse
Affiliation(s)
- Armen Yuri Gasparyan
- Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, West Midlands, UK.
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Marlen Yessirkepov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Olena Zimba
- Department of Internal Medicine No. 2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
107
|
Paul S, Rausch CR, Jain N, Kadia T, Ravandi F, DiNardo CD, Welch MA, Dabaja BS, Daver N, Garcia-Manero G, Wierda W, Pemmaraju N, Montalban Bravo G, Thompson P, Verstovsek S, Konopleva M, Kantarjian H, Jabbour E. Treating Leukemia in the Time of COVID-19. Acta Haematol 2020; 144:132-145. [PMID: 32392559 PMCID: PMC7270066 DOI: 10.1159/000508199] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic poses several challenges to the management of patients with leukemia. The biology of each leukemia and its corresponding treatment with conventional intensive chemotherapy, with or without targeted therapies (venetoclax, FLT3 inhibitors, IDH1/2 inhibitors, Bruton's tyrosine kinase inhibitors), introduce additional layers of complexity during COVID-19 high-risk periods. The knowledge about COVID-19 is accumulating rapidly. An important distinction is the prevalence of "exposure" versus "clinical infectivity," which determine the risk versus benefit of modifying potentially highly curative therapies in leukemia. At present, the rate of clinical infection is <1-2% worldwide. With a mortality rate of 1-5% in CO-VID-19 patients in the general population and potentially of >30% in patients with cancer, careful consideration should be given to the risk of COVID-19 in leukemia. Instead of reducing patient access to specialized cancer centers and modifying therapies to ones with unproven curative benefit, there is more rationale for less intensive, yet effective therapies that may require fewer clinic visits or hospitalizations. Here, we offer recommendations on the optimization of leukemia management during high-risk COVID-19 periods.
Collapse
Affiliation(s)
- Shilpa Paul
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caitlin R Rausch
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nitin Jain
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan Kadia
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary Alma Welch
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bouthaina S Dabaja
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - William Wierda
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Philip Thompson
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA,
| |
Collapse
|
108
|
SARS-CoV-2 Inflammatory Syndrome. Clinical Features and Rationale for Immunological Treatment. Int J Mol Sci 2020. [PMID: 32397684 DOI: 10.3390/ijms21093377.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The current pandemic coronavirus, SARS-CoV-2, is a global health emergency because of its highly contagious nature, the great number of patients requiring intensive care therapy, and the high fatality rate. In the absence of specific antiviral drugs, passive prophylaxis, or a vaccine, the treatment aim in these patients is to prevent the potent virus-induced inflammatory stimuli from leading to the acute respiratory distress syndrome (ARDS), which has a severe prognosis. Here, the mechanism of action and the rationale for employing immunological strategies, which range from traditional chemically synthesized drugs, anti-cytokine antibodies, human immunoglobulin for intravenous use, to vaccines, are reviewed.
Collapse
|
109
|
Prete M, Favoino E, Catacchio G, Racanelli V, Perosa F. SARS-CoV-2 Inflammatory Syndrome. Clinical Features and Rationale for Immunological Treatment. Int J Mol Sci 2020; 21:ijms21093377. [PMID: 32397684 PMCID: PMC7247005 DOI: 10.3390/ijms21093377] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The current pandemic coronavirus, SARS-CoV-2, is a global health emergency because of its highly contagious nature, the great number of patients requiring intensive care therapy, and the high fatality rate. In the absence of specific antiviral drugs, passive prophylaxis, or a vaccine, the treatment aim in these patients is to prevent the potent virus-induced inflammatory stimuli from leading to the acute respiratory distress syndrome (ARDS), which has a severe prognosis. Here, the mechanism of action and the rationale for employing immunological strategies, which range from traditional chemically synthesized drugs, anti-cytokine antibodies, human immunoglobulin for intravenous use, to vaccines, are reviewed.
Collapse
Affiliation(s)
- Marcella Prete
- Systemic Rheumatic and Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy; (M.P.); (E.F.); (G.C.)
| | - Elvira Favoino
- Systemic Rheumatic and Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy; (M.P.); (E.F.); (G.C.)
| | - Giacomo Catacchio
- Systemic Rheumatic and Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy; (M.P.); (E.F.); (G.C.)
| | - Vito Racanelli
- Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy;
| | - Federico Perosa
- Systemic Rheumatic and Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy; (M.P.); (E.F.); (G.C.)
- Correspondence: ; Tel.: +39-80-547-88-91; Fax: +39-80-547-88-20
| |
Collapse
|
110
|
Abstract
Purpose of Review The outbreak of the novel coronavirus disease 2019 (COVID-19) has emerged to be the biggest global health threat worldwide, which has now infected over 1.7 million people and claimed more than 100,000 lives around the world. Under these unprecedented circumstances, there are no well-established guidelines for cancer patients. Recent Findings The risk for serious disease and death in COVID-19 cases increases with advancing age and presence of comorbid health conditions. Since the emergence of the first case in Wuhan, China, in December 2019, tremendous research efforts have been underway to understand the mechanisms of infectivity and transmissibility of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a fatal virus responsible for abysmal survival outcomes. To minimize the mortality rate, it becomes prudent to identify symptoms promptly and employ treatments appropriately. Even though no cure has been established, multiple clinical trials are underway to determine the most optimal strategy. Managing cancer patients under these circumstances is rather challenging, given their vulnerable status and the aggressive nature of their underlying disease. Summary In this comprehensive review, we discuss the impact of COVID-19 on health and the immune system of those affected, reviewing the latest treatment approaches and ongoing clinical trials. Additionally, we discuss challenges faced while treating cancer patients and propose potential approaches to manage this vulnerable population during this pandemic.
Collapse
|
111
|
Joly E. Confronting Covid-19 by exploring the possibility of vaccinating with live SARS-CoV-2 virus itself, via a route that would reduce the incidence of pulmonary complications. F1000Res 2020; 9:309. [PMID: 34035902 PMCID: PMC8108705 DOI: 10.12688/f1000research.23480.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
This article proposes that one should explore whether the pulmonary complications of Covid-19 can be reduced or avoided by bypassing the airway entry of the SARS-CoV-2 virus. This could possibly be achieved by injecting live SARS-CoV-2 virus intradermal (ID), subcutaneous, intra-muscular (IM) or intra-peritoneal (IP), or by targeting the virus to the digestive tract. The effectiveness and innocuity of using those various routes could be tested very rapidly in animal models, such as Macaques, Hamsters, Ferrets or Cats. The hope is that these experiments will reveal a route of inoculation that can reliably lead to bona-fide infections, resulting in strong immune responses, with both cellular and serological components, but with much less viral replication in the lungs. This would not only hopefully reduce the incidence of pulmonary complications in the infected subjects, but would also probably reduce the amount of virus released by them via aerosols, and thus reduce the vector of contagiosity that is hardest to control, and that probably leads most effectively to viral replication in the lungs. If those experiments in animal models reveal that one or several routes can be used effectively to reduce pulmonary pathology, a clinical trial could be conducted in human volunteers with very low risk profiles. The ID route should probably be considered as a priority, since it could double-up as a skin test to reveal the immune status of the recipients towards the SARS-CoV-2 virus. The course of action proposed here may possibly provide a way of taking a step ahead of the virus, and if it works as hoped, could help to end the need for confinement within a matter of months, if not weeks.
Collapse
Affiliation(s)
- Etienne Joly
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, 31000, France
| |
Collapse
|
112
|
Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. J Clin Med 2020; 9:E1225. [PMID: 32344679 PMCID: PMC7230578 DOI: 10.3390/jcm9041225] [Citation(s) in RCA: 381] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
A pneumonia outbreak with unknown etiology was reported in Wuhan, Hubei province, China, in December 2019, associated with the Huanan Seafood Wholesale Market. The causative agent of the outbreak was identified by the WHO as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), producing the disease named coronavirus disease-2019 (COVID-19). The virus is closely related (96.3%) to bat coronavirus RaTG13, based on phylogenetic analysis. Human-to-human transmission has been confirmed even from asymptomatic carriers. The virus has spread to at least 200 countries, and more than 1,700,000 confirmed cases and 111,600 deaths have been recorded, with massive global increases in the number of cases daily. Therefore, the WHO has declared COVID-19 a pandemic. The disease is characterized by fever, dry cough, and chest pain with pneumonia in severe cases. In the beginning, the world public health authorities tried to eradicate the disease in China through quarantine but are now transitioning to prevention strategies worldwide to delay its spread. To date, there are no available vaccines or specific therapeutic drugs to treat the virus. There are many knowledge gaps about the newly emerged SARS-CoV-2, leading to misinformation. Therefore, in this review, we provide recent information about the COVID-19 pandemic. This review also provides insights for the control of pathogenic infections in humans such as SARS-CoV-2 infection and future spillovers.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA;
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Elaswad
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Ahmed Sobieh
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Scott P. Kenney
- Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA;
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Sadat City University, Sadat 32897, Egypt;
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
| |
Collapse
|
113
|
Gutiérrez-Ortiz C, Méndez-Guerrero A, Rodrigo-Rey S, San Pedro-Murillo E, Bermejo-Guerrero L, Gordo-Mañas R, de Aragón-Gómez F, Benito-León J. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 2020; 95:e601-e605. [PMID: 32303650 DOI: 10.1212/wnl.0000000000009619] [Citation(s) in RCA: 525] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To report 2 patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who presented acutely with Miller Fisher syndrome and polyneuritis cranialis, respectively. METHODS Patient data were obtained from medical records from the University Hospital "Príncipe de Asturias," Alcalá de Henares, and the University Hospital "12 de Octubre," Madrid, Spain. RESULTS A 50-year-old man presented with anosmia, ageusia, right internuclear ophthalmoparesis, right fascicular oculomotor palsy, ataxia, areflexia, albuminocytologic dissociation, and positive testing for anti-GD1b-immunoglobulin G antibody. Five days previously, he had developed a cough, malaise, headache, low back pain, and fever. A 39-year-old man presented with ageusia, bilateral abducens palsy, areflexia, and albuminocytologic dissociation. Three days previously, he had developed diarrhea, a low-grade fever, and poor general condition. Oropharyngeal swab test for SARS-CoV-2 by qualitative real-time reverse transcriptase PCR assay was positive in both patients and negative in the CSF. The first patient was treated with IV immunoglobulin and the second with acetaminophen. Two weeks later, both patients made a complete neurologic recovery, except for residual anosmia and ageusia in the first case. CONCLUSIONS Our 2 cases highlight the rare occurrence of Miller Fisher syndrome and polyneuritis cranialis during the coronavirus disease 2019 (COVID-19) pandemic. These neurologic manifestations may occur because of an aberrant immune response to COVID-19. The full clinical spectrum of neurologic symptoms in patients with COVID-19 remains to be characterized.
Collapse
Affiliation(s)
- Consuelo Gutiérrez-Ortiz
- From the Departments of Glaucoma and Neuro-Ophthalmology (C.G.-O., S.R.-R., F.d.A.-G.) and Neurology (R.G.-M.), University Hospital "Príncipe de Asturias," Alcalá de Henares; Department of Glaucoma (C.G.-O.), "Martínez de Carneros" Clinic; Department of Neurology (A.M.-G., E.S.P.-M., L.B.-G., J.B.-L.), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); and the Department of Medicine (J.B.-L.), Universidad Complutense, Madrid, Spain
| | - Antonio Méndez-Guerrero
- From the Departments of Glaucoma and Neuro-Ophthalmology (C.G.-O., S.R.-R., F.d.A.-G.) and Neurology (R.G.-M.), University Hospital "Príncipe de Asturias," Alcalá de Henares; Department of Glaucoma (C.G.-O.), "Martínez de Carneros" Clinic; Department of Neurology (A.M.-G., E.S.P.-M., L.B.-G., J.B.-L.), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); and the Department of Medicine (J.B.-L.), Universidad Complutense, Madrid, Spain
| | - Sara Rodrigo-Rey
- From the Departments of Glaucoma and Neuro-Ophthalmology (C.G.-O., S.R.-R., F.d.A.-G.) and Neurology (R.G.-M.), University Hospital "Príncipe de Asturias," Alcalá de Henares; Department of Glaucoma (C.G.-O.), "Martínez de Carneros" Clinic; Department of Neurology (A.M.-G., E.S.P.-M., L.B.-G., J.B.-L.), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); and the Department of Medicine (J.B.-L.), Universidad Complutense, Madrid, Spain
| | - Eduardo San Pedro-Murillo
- From the Departments of Glaucoma and Neuro-Ophthalmology (C.G.-O., S.R.-R., F.d.A.-G.) and Neurology (R.G.-M.), University Hospital "Príncipe de Asturias," Alcalá de Henares; Department of Glaucoma (C.G.-O.), "Martínez de Carneros" Clinic; Department of Neurology (A.M.-G., E.S.P.-M., L.B.-G., J.B.-L.), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); and the Department of Medicine (J.B.-L.), Universidad Complutense, Madrid, Spain
| | - Laura Bermejo-Guerrero
- From the Departments of Glaucoma and Neuro-Ophthalmology (C.G.-O., S.R.-R., F.d.A.-G.) and Neurology (R.G.-M.), University Hospital "Príncipe de Asturias," Alcalá de Henares; Department of Glaucoma (C.G.-O.), "Martínez de Carneros" Clinic; Department of Neurology (A.M.-G., E.S.P.-M., L.B.-G., J.B.-L.), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); and the Department of Medicine (J.B.-L.), Universidad Complutense, Madrid, Spain
| | - Ricardo Gordo-Mañas
- From the Departments of Glaucoma and Neuro-Ophthalmology (C.G.-O., S.R.-R., F.d.A.-G.) and Neurology (R.G.-M.), University Hospital "Príncipe de Asturias," Alcalá de Henares; Department of Glaucoma (C.G.-O.), "Martínez de Carneros" Clinic; Department of Neurology (A.M.-G., E.S.P.-M., L.B.-G., J.B.-L.), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); and the Department of Medicine (J.B.-L.), Universidad Complutense, Madrid, Spain
| | - Fernando de Aragón-Gómez
- From the Departments of Glaucoma and Neuro-Ophthalmology (C.G.-O., S.R.-R., F.d.A.-G.) and Neurology (R.G.-M.), University Hospital "Príncipe de Asturias," Alcalá de Henares; Department of Glaucoma (C.G.-O.), "Martínez de Carneros" Clinic; Department of Neurology (A.M.-G., E.S.P.-M., L.B.-G., J.B.-L.), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); and the Department of Medicine (J.B.-L.), Universidad Complutense, Madrid, Spain
| | - Julián Benito-León
- From the Departments of Glaucoma and Neuro-Ophthalmology (C.G.-O., S.R.-R., F.d.A.-G.) and Neurology (R.G.-M.), University Hospital "Príncipe de Asturias," Alcalá de Henares; Department of Glaucoma (C.G.-O.), "Martínez de Carneros" Clinic; Department of Neurology (A.M.-G., E.S.P.-M., L.B.-G., J.B.-L.), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); and the Department of Medicine (J.B.-L.), Universidad Complutense, Madrid, Spain.
| |
Collapse
|
114
|
Golonka RM, Saha P, Yeoh BS, Chattopadhyay S, Gewirtz AT, Joe B, Vijay-Kumar M. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics 2020; 52:217-221. [PMID: 32275178 DOI: 10.1152/physiolgenomics.00033.2020] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Rachel M Golonka
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piu Saha
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beng San Yeoh
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
115
|
Mohammadi Barzelighi H, Daraei B, Dastan F. Approaches for the Treatment of SARS-CoV-2 Infection: A Pharmacologic View and Literature Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:258-281. [PMID: 33680028 PMCID: PMC7757982 DOI: 10.22037/ijpr.2020.113821.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of a novel Coronavirus disease (COVID-19) inducing acute respiratory distress syndrome (ARDS) was identified in Hubei province of China in December 2019 and rapidly spread worldwide as pandemic and became a public health concern. COVID-19 disease is caused by a new virus known as SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), which has recently offered many challenges and efforts to identify effective drugs for its prevention and treatment. Currently, there is no proven effective approach and medication against this virus. Quickly expanding clinical trials and studies on Coronavirus disease 2019 increase our knowledge regarding SARS-CoV-2 virus and introduce several potential drugs targeting virus moiety or host cell elements. Overall, 3 stages were suggested for SARS-CoV-2 infection according to the disease severity, clinical manifestations, and treatment outcomes, including mild, moderate, and severe. This review aimed to classify and summarize several medications and potential therapies according to the disease 3 stages; however, it is worth noting that no medication and therapy has been effective so far.
Collapse
Affiliation(s)
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farzaneh Dastan
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|