101
|
Kapourani A, Vardaka E, Katopodis K, Kachrimanis K, Barmpalexis P. Rivaroxaban polymeric amorphous solid dispersions: Moisture-induced thermodynamic phase behavior and intermolecular interactions. Eur J Pharm Biopharm 2019; 145:98-112. [PMID: 31698042 DOI: 10.1016/j.ejpb.2019.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
The present study evaluates the physical stability and intermolecular interactions of Rivaroxaban (RXB) amorphous solid dispersions (ASDs) in polymeric carriers via thermodynamic modelling and molecular simulations. Specifically, the Flory-Huggins (FH) lattice solution theory was used to construct thermodynamic phase diagrams of RXB ASDs in four commonly used polymeric carriers (i.e. copovidone, coPVP, povidone, PVP, Soluplus, SOL and hypromellose acetate succinate, HPMCAS), which were stored under 0%, 60% and 75% relative humidity (RH) conditions. In order to verify the phase boundaries predicted by FH modelling (i.e. truly amorphous zone, amorphous-amorphous demixing zones and amorphous-API recrystallization zones), samples of ASDs were examined via polarized light microscopy after storage for up to six months at various RH conditions. Results showed a good agreement between the theoretical and the experimental approaches (i.e. coPVP and PVP resulted in less physically-stable ASDs compared to SOL and HPMCAS) indicating that the proposed FH-based modelling may be a useful tool in predicting long-term physical stability in high humidity conditions. In addition, molecular dynamics (MD) simulations were employed in order to interpret the observed differences in physical stability. Results, which were verified via differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), suggested the formation of similar intermolecular interactions in all cases, indicating that the interaction with moisture water plays a more crucial role in ASD physical stability compared to the formation of intermolecular interactions between ASD components.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Elisavet Vardaka
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos Katopodis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
102
|
Maji R, Omolo CA, Agrawal N, Maduray K, Hassan D, Mokhtar C, Mackhraj I, Govender T. pH-Responsive Lipid–Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens. Mol Pharm 2019; 16:4594-4609. [DOI: 10.1021/acs.molpharmaceut.9b00713] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ruma Maji
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kaminee Maduray
- Department of Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Hassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mokhtar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackhraj
- Department of Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
103
|
Yang Y, Zhu T, Liu Z, Luo M, Yu DG, Annie Bligh S. The key role of straight fluid jet in predicting the drug dissolution from electrospun nanofibers. Int J Pharm 2019; 569:118634. [DOI: 10.1016/j.ijpharm.2019.118634] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
|
104
|
Preparation of submicron drug particles via spray drying from organic solvents. Int J Pharm 2019; 567:118501. [PMID: 31288055 DOI: 10.1016/j.ijpharm.2019.118501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/23/2022]
Abstract
Manufacturing poorly water-soluble active pharmaceutical ingredients (API) with sufficient bioavailability is a significant challenge in pharmaceutical research. A higher bioavailability can reduce both the applied dosage and the side effects for the patient. One method of increasing the bioavailability is to reduce the particle size of the drug down to the nanoscale. An innovative procedure for the preparation of particles in the submicron size range is spray drying with aerosol conditioning, followed by subsequent separation of the particles in an electrostatic precipitator (ESP). This process has been tested before in an earlier work with aqueous model substances at high production rates (1 g/h) and narrow particle-size distributions (mannitol: d50,0 = 455 nm, span = 0,8) in the submicron range. Spray drying from an aqueous solution with low drug concentrations (<1 wt-%) leads to particles in the lower nanosize range, but the low concentrations make this process inefficient. A custom-made plant was modified in order to handle the organic spray-drying process. In addition, explosion protection had to be considered. This work focuses on the spray drying of submicron particles from organic solvents for the purpose of increasing the dissolution rate of the API griseofulvin. API particles were successfully produced in the submicron size-range, characterized and the dissolution behavior was investigated. The dissolution time to dissolve 80% of the drug, t80, was reduced from 21.5 min for the micronized grade API to 8.5 min for the submicron product.
Collapse
|
105
|
Rahim H, Sadiq A, Khan S, Amin F, Ullah R, Shahat AA, Mahmood HM. Fabrication and characterization of glimepiride nanosuspension by ultrasonication-assisted precipitation for improvement of oral bioavailability and in vitro α-glucosidase inhibition. Int J Nanomedicine 2019; 14:6287-6296. [PMID: 31496686 PMCID: PMC6689535 DOI: 10.2147/ijn.s210548] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/12/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose We aimed to enhance the solubility, dissolution rate, oral bioavailability, and α-glucosidase inhibition of glimepiride (Glm) by fabricating its nanosuspension using a precipitation-ultrasonication approach. Methods Glm nanosuspensions were fabricated using optimized processing conditions. Characterization of Glm was performed using Malvern Zetasizer, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry, and powder X-ray diffraction. Minimum particle size and polydispersity index (PDI) values were found to be 152.4±2.42 nm and 0.23±0.01, respectively, using hydroxypropyl methylcellulose: 6 cPs, 1% w/v, polyvinylpyrrolidone K30 1% w/v, and sodium lauryl sulfate 0.12% w/v, keeping ultrasonication power input at 400 W, with 15 minutes' processing at 3-second pauses. In vivo oral bioavailability was assessed using rabbits as a model. Results The saturation solubility of the Glm nanosuspensions was substantially enhanced 3.14-fold and 5.77-fold compared to unprocessed drug in stabilizer solution and unprocessed active pharmaceutical ingredient. Also, the dissolution rate of the nanosuspensions ws substantially boosted when compared to the marketed formulation and unprocessed drug candidate. The results showed that >85% of Glm nanosuspensions dissolved in the first 10 minutes compared to 10.17% of unprocessed Glm), 42.19% of microsuspensions, and 19.94% of marketed tablets. In-vivo studies conducted in animals, i.e. rabbits, demonstrated that maximum concentration and AUC0-24 with oral dosing were twofold (5 mg/kg) and 1.74-fold (2.5 mg/kg) and 1.80-fold (5 mg/kg) and 1.63-fold (2.5 mg/kg), respectively, and compared with the unprocessed drug formulation. In-vitro α-glucosidase inhibition results showed that fabricated nanosuspensions had a pronounced effect compared to unprocessed drug. Conclusion The optimized batch fabricated by ultrasonication-assisted precipitation can be useful in boosting oral bioavailability, which may be accredited to enhanced solubility and dissolution rate of Glm, ultimately resulting in its faster rate of absorption due to nanonization.
Collapse
Affiliation(s)
- Haroon Rahim
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa, 18800, Pakistan.,Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Fazli Amin
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Phytochemistry Department, National Research Centre, Giza, Egypt
| | - Hafiz Majid Mahmood
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
106
|
Kevadiya BD, Chen L, Zhang L, Thomas MB, Davé RN. Fenofibrate Nanocrystal Composite Microparticles for Intestine-Specific Oral Drug Delivery System. Pharmaceuticals (Basel) 2019; 12:E109. [PMID: 31315263 PMCID: PMC6789785 DOI: 10.3390/ph12030109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022] Open
Abstract
Hydrophobic drug nanocrystals (NCs) manufactured by particle engineering have been extensively investigated for enhanced oral bioavailability and therapeutic effectiveness. However, there are significant drawbacks, including fast dissolution of the nanocrystals in the gastric environment, leading to physicochemical instability. To solves this issue, we developed an innovative technique that involves the encapsulation of nanocrystals in composite spherical microparticles (NCSMs). Fenofibrate (FNB) NCs (FNB-NCs) manufactured by a wet stirred media milling (WSMM) technique and an ionotropic crosslinking method were used for FNB-NC encapsulation within gastroresistant NCSMs. Various solid-state methods were used for characterizing NCSMs. The pH-sensitive NCSMs showed a site-specific release pattern at alkaline pH and nearly 0% release at low pH (gastric environment). This phenomenon was confirmed by a real-time in situ UV-imaging system known as the surface dissolution imager (SDI), which was used to monitor drug release events by measuring the color intensity and concentration gradient formation. All these results proved that our NCSM approach is an innovative idea in oral drug delivery systems, as it resolves significant challenges in the intestine-specific release of hydrophobic drugs while avoiding fast dissolution or burst release.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Warren Street, Newark, NJ 07102, USA.
| | - Liang Chen
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Warren Street, Newark, NJ 07102, USA
| | - Lu Zhang
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Warren Street, Newark, NJ 07102, USA
| | - Midhun B Thomas
- Pandorum Technologies Pvt Ltd, Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City Phase 1, Bangalore, Karnataka 560100, India
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
107
|
Rashid M, Malik MY, Singh SK, Chaturvedi S, Gayen JR, Wahajuddin M. Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry. Curr Pharm Des 2019; 25:987-1020. [DOI: 10.2174/1381612825666190130110653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Bioavailability, one of the prime pharmacokinetic properties of a drug, is defined as the
fraction of an administered dose of unchanged drug that reaches the systemic circulation and is used to describe
the systemic availability of a drug. Bioavailability assessment is imperative in order to demonstrate whether the
drug attains the desirable systemic exposure for effective therapy. In recent years, bioavailability has become
the subject of importance in drug discovery and development studies.
Methods:
A systematic literature review in the field of bioavailability and the approaches towards its enhancement
have been comprehensively done, purely focusing upon recent papers. The data mining was performed
using databases like PubMed, Science Direct and general Google searches and the collected data was exhaustively
studied and summarized in a generalized manner.
Results:
The main prospect of this review was to generate a comprehensive one-stop summary of the numerous
available approaches and their pharmaceutical applications in improving the stability concerns, physicochemical
and mechanical properties of the poorly water-soluble drugs which directly or indirectly augment their bioavailability.
Conclusion:
The use of novel methods, including but not limited to, nano-based formulations, bio-enhancers,
solid dispersions, lipid-and polymer-based formulations which provide a wide range of applications not only
increases the solubility and permeability of the poorly bioavailable drugs but also improves their stability, and
targeting efficacy. Although, these methods have drastically changed the pharmaceutical industry demand for the
newer potential methods with better outcomes in the field of pharmaceutical science to formulate various dosage
forms with adequate systemic availability and improved patient compliance, further research is required.
Collapse
Affiliation(s)
- Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Mohd Yaseen Malik
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Sandeep K. Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Swati Chaturvedi
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | | |
Collapse
|
108
|
Dobrowolski A, Pieloth D, Wiggers H, Thommes M. Electrostatic Precipitation of Submicron Particles in a Molten Carrier. Pharmaceutics 2019; 11:pharmaceutics11060276. [PMID: 31200460 PMCID: PMC6631889 DOI: 10.3390/pharmaceutics11060276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 11/23/2022] Open
Abstract
Recently, submicron particles have been discussed as a means to increase the bioavailability of poorly water-soluble drugs. Separation of these small particles is done with both fibre and membrane filters, as well as electrostatic precipitators. A major disadvantage of an electrostatic precipitator (ESP) is the agglomerate formation on the precipitation electrode. These agglomerates frequently show low bioavailability, due to the decreased specific surface area and poor wettability. In this work, a new melt electrostatic precipitator was developed and tested to convert submicron particles into a solid dispersion in order to increase the bioavailability of active pharmaceutical ingredients. The submicron particles were generated by spray drying and transferred to the ESP, where the collection electrode is covered with a melt, which served as matrix after solidification. The newly developed melt electrostatic precipitator was able to collect isolated naproxen particles in a molten carrier. A solid naproxen xylitol dispersion was prepared, which showed a reduction of the dissolution time by 82%, and a release of 80% of the total drug, compared to the physical mixture.
Collapse
Affiliation(s)
- Adrian Dobrowolski
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany.
| | - Damian Pieloth
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany.
| | - Helmut Wiggers
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany.
| | - Markus Thommes
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany.
| |
Collapse
|
109
|
Huang W, Hou Y, Lu X, Gong Z, Yang Y, Lu XJ, Liu XL, Yu DG. The Process⁻Property⁻Performance Relationship of Medicated Nanoparticles Prepared by Modified Coaxial Electrospraying. Pharmaceutics 2019; 11:E226. [PMID: 31083358 PMCID: PMC6572474 DOI: 10.3390/pharmaceutics11050226] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/25/2022] Open
Abstract
In pharmaceutical nanotechnology, the intentional manipulation of working processes to fabricate nanoproducts with suitable properties for achieving the desired functional performances is highly sought after. The following paper aims to detail how a modified coaxial electrospraying has been developed to create ibuprofen-loaded hydroxypropyl methylcellulose nanoparticles for improving the drug dissolution rate. During the working processes, a key parameter, i.e., the spreading angle of atomization region (θ, °), could provide a linkage among the working process, the property of generated nanoparticles and their functional performance. Compared with the applied voltage (V, kV; D = 2713 - 82V with RθV2 = 0.9623), θ could provide a better correlation with the diameter of resultant nanoparticles (D, nm; D = 1096 - 5θ with RDθ2 = 0.9905), suggesting a usefulness of accurately predicting the nanoparticle diameter. The drug released from the electrosprayed nanoparticles involved both erosion and diffusion mechanisms. A univariate quadratic equation between the time of releasing 95% of the loaded drug (t, min) and D (t = 38.7 + 0.097D - 4.838 × 105D2 with a R2 value of 0.9976) suggests that the nanoparticle diameter has a profound influence on the drug release performance. The clear process-property-performance relationship should be useful for optimizing the electrospraying process, and in turn for achieving the desired medicated nanoparticles.
Collapse
Affiliation(s)
- Weidong Huang
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China.
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China.
| | - Yuan Hou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xinyi Lu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ziyun Gong
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yaoyao Yang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiao-Ju Lu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China.
| | - Xian-Li Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
110
|
Heidari Khoee M, Khoee S, Lotfi M. Synthesis of titanium dioxide nanotubes with liposomal covers for carrying and extended release of 5-FU as anticancer drug in the treatment of HeLa cells. Anal Biochem 2019; 572:16-24. [PMID: 30831100 DOI: 10.1016/j.ab.2019.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/03/2023]
Abstract
Nano-titanium dioxide (nano-TiO2) is an important material used in commerce today. In this study, titanium dioxide nanotubes (TNTs) were synthesized through the electrochemical anodizing method. Subsequently, 5-fluorouracil (5-FU), an anticancer drug, was loaded into the nanotubes by the drop-wise method. The liposome solution was prepared from soy lecithin, cholesterol, and polyethylene glycol at room temperature, and then drug-loaded and drug-free TNTs were covered with a liposomal cap. In this research, DLS, zeta potential, TEM, SEM, UV-Vis, and optical microscopy were employed in different stages to characterize liposomal nanocarrier. The release profile of 5-FU from TiO2 nanotubes with different liposomal layers was investigated. In vitro studies of the toxic effects of drug-free and drug-loaded TNTs nanotubes on HeLa cell line (cervical cancer origin) were performed at various concentrations. Then, the clonogenic potential in HeLa cells after TNTs exposure was evaluated. The cell viability of HeLa cells was determined in the presence of TNTs with different concentrations (3, 30, 100, 200, 300, 1500, and 3000 μg/mL). It revealed that low concentrations of TNTs (under 300 μg/mL) can be considered non-toxic for HeLa cells during 48 h incubation.
Collapse
Affiliation(s)
- Minoo Heidari Khoee
- Polymer Laboratory, School of Chemistry, Alborz Campus, University of Tehran, P.O.Box: 14155 6455, Tehran, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, P.O.Box: 14155 6455, Tehran, Iran.
| | - Mohsen Lotfi
- Quality Control Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
111
|
Poozesh S, Bilgili E. Scale-up of pharmaceutical spray drying using scale-up rules: A review. Int J Pharm 2019; 562:271-292. [PMID: 30910632 DOI: 10.1016/j.ijpharm.2019.03.047] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/31/2022]
Abstract
Spray drying is one of the widely used manufacturing processes in pharmaceutical industry. While there are voluminous experimental studies pertaining to the impact of various process-formulation parameters on the quality attributes of spray dried powders such as particle size, morphology, density, and crystallinity, there is scant information available in the literature regarding process scale-up. Here, we first analyze salient features of scale-up attempts in literature. Then, spray drying process is analyzed considering the fundamental physical transformations involved, i.e., atomization, drying, and gas-solid separation. Each transformation is scrutinized from a scale-up perspective with non-dimensional parameters & multi-scale analysis, and comprehensively discussed in engineering context. Successful scale-up entails similar key response variables from each transformation across various scales. These variables are identified as droplet size distribution, outlet temperature, relative humidity, separator pressure loss coefficient, and collection efficiency. Instead of trial-and-error-based approaches, this review paper advocates the use of mechanistic models and scale-up rules for establishing design spaces for the process variables involved in each transformation of spray drying. While presenting a roadmap for process development and scale-up, the paper demonstrates how to bridge the current gap in spray drying scale-up via a rational understanding of the fundamental transformations.
Collapse
Affiliation(s)
- Sadegh Poozesh
- Mechanical Engineering Department, Tuskegee University, Tuskegee, AL 36088, United States.
| | - Ecevit Bilgili
- Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
112
|
Adapalene-loaded poly(ε-caprolactone) microparticles: Physicochemical characterization and in vitro penetration by photoacoustic spectroscopy. PLoS One 2019; 14:e0213625. [PMID: 30897170 PMCID: PMC6428289 DOI: 10.1371/journal.pone.0213625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Adapalene (ADAP) is an important drug widely used in the topical treatment of acne. It is a third-generation retinoid and provides keratolytic, anti-inflammatory, and antiseborrhoic action. However, some topical adverse effects such as erythema, dryness, and scaling have been reported with its commercial formula. In this sense, the microencapsulation of this drug using polyesters can circumvent its topical side effects and can lead to the enhancement of drug delivery into sebaceous glands. The goal of this work was to obtain ADAP-loaded poly(ε-caprolactone) (PCL) microparticles prepared by a simple emulsion/solvent evaporation method. Formulations containing 10 and 20% of ADAP were successfully obtained and characterized by morphological, spectroscopic, and thermal studies. Microparticles presented encapsulation efficiency of ADAP above 98% and showed a smooth surface and spherical shape. Fourier transform infrared spectroscopy (FTIR) results presented no drug-polymer chemical bond, and a differential scanning calorimetry (DSC) technique showed a partial amorphization of the drug. ADAP permeation in the Strat-M membrane for transdermal diffusion testing was evaluated by photoacoustic spectroscopy (PAS) in the spectral region between 225 and 400 nm after 15 min and 3 h from the application of ADAP-loaded PCL formulations. PAS was successfully used for investigating the penetration of polymeric microparticles. In addition, microencapsulation decreased the in vitro transmembrane diffusion of ADAP.
Collapse
|
113
|
Gupta N, Rai DB, Jangid AK, Kulhari H. Use of nanotechnology in antimicrobial therapy. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
114
|
Effect of Particle Size and Polymer Loading on Dissolution Behavior of Amorphous Griseofulvin Powder. J Pharm Sci 2019; 108:234-242. [DOI: 10.1016/j.xphs.2018.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 11/23/2022]
|
115
|
Impact of polymers on the aggregation of wet-milled itraconazole particles and their dissolution from spray-dried nanocomposites. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.09.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
116
|
Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Pharmaceutics 2018; 10:pharmaceutics10030134. [PMID: 30134537 PMCID: PMC6161002 DOI: 10.3390/pharmaceutics10030134] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 11/16/2022] Open
Abstract
Many approaches have been developed over time to overcome the bioavailability limitations of poorly soluble drugs. With the advances in nanotechnology in recent decades, science and industry have been approaching this issue through the formulation of drugs as nanocrystals, which consist of “pure drugs and a minimum of surface active agents required for stabilization”. They are defined as “carrier-free submicron colloidal drug delivery systems with a mean particle size in the nanometer range, typically between 10–800 nm”. The primary importance of these nanoparticles was the reduction of particle size to nanoscale dimensions, with an increase in the particle surface area in contact with the dissolution medium, and thus in bioavailability. This approach has been proven successful, as demonstrated by the number of such drug products on the market. Nonetheless, despite the definition that indicates nanocrystals as a “carrier-free” system, surface active agents are necessary to prevent colloidal particles aggregation and thus improve stability. In addition, in more recent years, nanocrystal properties and technologies have attracted the interest of researchers as a means to obtain colloidal particles with modified biological properties, and thus their interest is now also addressed to modify the drug delivery and targeting. The present work provides an overview of the achievements in improving the bioavailability of poorly soluble drugs according to their administration route, describes the methods developed to overcome physicochemical and stability-related problems, and in particular reviews different stabilizers and surface agents that are able to modify the drug delivery and targeting.
Collapse
|