101
|
Bellotti D, D’Accolti M, Pula W, Huang N, Simeliere F, Caselli E, Esposito E, Remelli M. Calcitermin-Loaded Smart Gels Activity against Candida albicans: A Preliminary In Vitro Study. Gels 2023; 9:gels9020165. [PMID: 36826335 PMCID: PMC9957098 DOI: 10.3390/gels9020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Calcitermin is an antimicrobial peptide of 15 amino acids found in human nasal fluid characterized by antifungal and antibacterial properties. Candida albicans is the most common human fungal pathogen affecting many tissues, such as vaginal mucosa. In this study a formulation suitable for calcitermin administration on vaginal mucosa was developed for the treatment of fungal infections. To favor topical application, mucosal adhesion, and permanence, gels based on poloxamer 407 and xanthan gum were designed and compared with regard to their rheological behavior, erosion, and leakage. The selected gel was loaded with calcitermin, whose release kinetic was evaluated in vitro by Franz cells. An antifungal activity assay was conducted to assess the calcitermin anticandidal potential and the effect of its inclusion in the selected gel. The rheological study revealed the elastic and viscous moduli behavior as a function of poloxamer 407 and xanthan gum concentration. Xanthan gum presence decreased the transition temperature of the gel, while prolonging its erosion and leakage. Particularly, poloxamer 407, 18% and xanthan gum 0.4% were chosen. The calcitermin loading in the selected gel resulted in a transparent and homogeneous formulation and in a 4-fold decrease of the release rate with respect to the calcitermin solution, as evidenced by Franz cell study. The anticandidal activity tests demonstrated that calcitermin-loaded gel was more active against Candida albicans with respect to the peptide solution.
Collapse
Affiliation(s)
- Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Maria D’Accolti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Nicolas Huang
- Institut Galien Paris-Saclay (CNRS UMR 8612), Faculté de Pharmacie, Bâtiment Henri Moissan, Université Paris-Saclay, 91400 Orsay, France
| | - Fanny Simeliere
- Institut Galien Paris-Saclay (CNRS UMR 8612), Faculté de Pharmacie, Bâtiment Henri Moissan, Université Paris-Saclay, 91400 Orsay, France
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence: (E.C.); (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence: (E.C.); (E.E.)
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
102
|
Ethosomal Gel for Topical Administration of Dimethyl Fumarate in the Treatment of HSV-1 Infections. Int J Mol Sci 2023; 24:ijms24044133. [PMID: 36835541 PMCID: PMC9967198 DOI: 10.3390/ijms24044133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The infections caused by the HSV-1 virus induce lesions on the lips, mouth, face, and eye. In this study, an ethosome gel loaded with dimethyl fumarate was investigated as a possible approach to treat HSV-1 infections. A formulative study was conducted, evaluating the effect of drug concentration on size distribution and dimensional stability of ethosomes by photon correlation spectroscopy. Ethosome morphology was investigated by cryogenic transmission electron microscopy, while the interaction between dimethyl fumarate and vesicles, and the drug entrapment capacity were respectively evaluated by FTIR and HPLC. To favor the topical application of ethosomes on mucosa and skin, different semisolid forms, based on xanthan gum or poloxamer 407, were designed and compared for spreadability and leakage. Dimethyl fumarate release and diffusion kinetics were evaluated in vitro by Franz cells. The antiviral activity against HSV-1 was tested by plaque reduction assay in Vero and HRPE monolayer cells, while skin irritation effect was evaluated by patch test on 20 healthy volunteers. The lower drug concentration was selected, resulting in smaller and longer stable vesicles, mainly characterized by a multilamellar organization. Dimethyl fumarate entrapment in ethosome was 91% w/w, suggesting an almost total recovery of the drug in the lipid phase. Xanthan gum 0.5%, selected to thicken the ethosome dispersion, allowed to control drug release and diffusion. The antiviral effect of dimethyl fumarate loaded in ethosome gel was demonstrated by a reduction in viral growth both 1 h and 4 h post-infection. Moreover, the patch test demonstrated the safety of the ethosomal gel applied on the skin.
Collapse
|
103
|
The Controlled Release and Prevention of Abdominal Adhesion of Tannic Acid and Mitomycin C-Loaded Thermosensitive Gel. Polymers (Basel) 2023; 15:polym15040975. [PMID: 36850258 PMCID: PMC9966773 DOI: 10.3390/polym15040975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Postoperative abdominal adhesion is one of the most common complications after abdominal surgery. A single drug or physical barrier treatment does not achieve the ideal anti-adhesion effect. We developed a thermosensitive hydrogel (PPH hydrogel) consisting of poloxamer 407 (P407), poloxamer (P188), and hydroxypropyl methylcellulose (HPMC) co-blended. An injectable thermosensitive TA/MMC-PPH hydrogel was obtained by loading tannic acid (TA) with an anti-inflammatory effect and mitomycin C (MMC), which inhibits fibroblast migration or proliferation. The optimal prescriptions of PPH hydrogels with a suitable gelling time (63 s) at 37 °C was 20% (w/v) P407, 18% (w/v) P188, and 0.5% (w/v) HPMC. The scanning electron microscopy (SEM) revealed that the PPH hydrogel had a three-dimensional mesh structure, which was favorable for drug encapsulation. The PPH hydrogel had a suitable gelation temperature of 33 °C, a high gel strength, and complicated viscosity at 37 °C, according to the rheological analysis. In vitro release studies have shown that the PPH hydrogel could delay the release of TA and MMC and conform to the first-order release rate. Anti-adhesion tests performed on rats in vivo revealed that TA/MMC-PPH hydrogel significantly reduced the risk of postoperative adhesion. In conclusion, the TA/MMC-PPH hydrogel prepared in this study showed an excellent performance in both controlled drug release and anti-adhesive effects. It can be used as a protocol to prevent or reduce postoperative abdominal adhesion.
Collapse
|
104
|
Volkova T, Simonova O, Perlovich G. Revisiting the Solubility-Permeability Relationship with Hydrophobic Drug Umifenovir in Pluronic Solutions: Impact of pH and Co-Solvent. Pharmaceutics 2023; 15:pharmaceutics15020422. [PMID: 36839743 PMCID: PMC9959244 DOI: 10.3390/pharmaceutics15020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
This study describes the influence of pluronic F-127 (F-127) and ethanol (EtOH) on the solubility of umifenovir (UMF) in buffer solutions of pH 2.0 and pH 7.4, and its permeability through cellulose membranes. A 44.4-fold greater UMF solubility in acidic medium as compared to an alkaline one was estimated at 310.15 K. The concentration of UMF in the saturated solution was enhanced by the interaction with F-127 micelles. The combined positive effect of EtOH and F-127 on the solubility was estimated. The aggregation number of F-127 micelles in the presence of 10% and 20% ethanol appeared to be reduced by 2.1-fold and 4.1-fold, respectively, as compared to buffer pH 7.4. The presence of ethanol in buffer pH 7.4 solution provided better solvent conditions but inhibited the formation of F-127 micelles. The impact of UMF on the aggregation number of F-127 was not pronounced and was expressed only by a slight increase of 1 and 3 units in 10% and 20% EtOH, respectively. According to the values of zeta potential, addition of EtOH reduced the stability of the system. The permeation of UMF in buffer pH 7.4 measured through the cellulose membrane MWCO 12-14 kDa was increased 1.4-fold by 10% EtOH. An increase in EtOH content to 20% reduced this effect to 1.2-fold. Decreasing effect of 1.5% F-127 on the permeability was inhibited by using 10% EtOH. The solution containing 1.5% F-127 and 10% EtOH was shown to be an advantageous system for UMF in view of the solubility-permeability balance. The authors suppose the findings of the study to be useful for the design of pharmaceutical formulations based on UMF antiviral drugs.
Collapse
|
105
|
Thermoresponsive in-situ gel containing hyaluronic acid and indomethacin for the treatment of corneal chemical burn. Int J Pharm 2023; 631:122468. [PMID: 36503038 DOI: 10.1016/j.ijpharm.2022.122468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Ocular chemical burns are prevalent injuries that must have immediate and effective treatment to avoid complications. Aiming to improve bioavailability and efficacy, a poloxamer-based thermoresponsive in-situ gelling system containing hyaluronic acid and indomethacin was developed. Formulations with different polymeric proportions were screened through rheological measurements resulting in an optimized system (F2) with gelling temperature of 34.2 ± 0.11 °C. Its maximum viscosity varied from 77.33 mPa (25 °C) to 82.95 mPa (34 °C) following a non-Newtonian profile and a pH of 6.86 ± 0.01. No incompatibilities were found after infrared analysis. Polarized light microscopy and cryo-transmission electron microscopy have demonstrated micelles of nano-sized dimensions (21.86 nm) with indomethacin entrapped in the core, forming a polymeric network under heating. In vitro tests revealed a cumulative release of 59.75 ± 3.17 % up to 24 h under a sustained release profile. Results from HET-CAM assay indicated that F2 was well tolerated. Corneal wound healing was significantly faster in animals treated with F2 compared to a commercial formulation and an untreated group. These findings suggests that F2 could be an efficient system to delivery drugs into the ocular surface improving wound healing.
Collapse
|
106
|
Matias M, Santos AO, Silvestre S, Alves G. Fighting Epilepsy with Nanomedicines-Is This the Right Weapon? Pharmaceutics 2023; 15:pharmaceutics15020306. [PMID: 36839629 PMCID: PMC9959131 DOI: 10.3390/pharmaceutics15020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is a chronic and complex condition and is one of the most common neurological diseases, affecting about 50 million people worldwide. Pharmacological therapy has been, and is likely to remain, the main treatment approach for this disease. Although a large number of new antiseizure drugs (ASDs) has been introduced into the market in the last few years, many patients suffer from uncontrolled seizures, demanding the development of more effective therapies. Nanomedicines have emerged as a promising approach to deliver drugs to the brain, potentiating their therapeutic index. Moreover, nanomedicine has applied the knowledge of nanoscience, not only in disease treatment but also in prevention and diagnosis. In the current review, the general features and therapeutic management of epilepsy will be addressed, as well as the main barriers to overcome to obtain better antiseizure therapies. Furthermore, the role of nanomedicines as a valuable tool to selectively deliver drugs will be discussed, considering the ability of nanocarriers to deal with the less favourable physical-chemical properties of some ASDs, enhance their brain penetration, reduce the adverse effects, and circumvent the concerning drug resistance.
Collapse
Affiliation(s)
- Mariana Matias
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (M.M.); (A.O.S.); Tel.: +351-275-329-002 (M.M.); +351-275-329-079 (A.O.S.)
| | - Adriana O. Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (M.M.); (A.O.S.); Tel.: +351-275-329-002 (M.M.); +351-275-329-079 (A.O.S.)
| | - Samuel Silvestre
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
107
|
de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023; 353:802-822. [PMID: 36521691 DOI: 10.1016/j.jconrel.2022.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.
Collapse
Affiliation(s)
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - João Prata
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Ricardo Martins Lopes da Fonte
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - Patrícia Severino
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP) and Tiradentes University, Aracaju, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
108
|
Koganti R, Yadavalli T, Sutar Y, Mallick S, Date A, Shukla D. Topical phenylbutyrate antagonizes NF-κB signaling and resolves corneal inflammation. iScience 2022; 25:105682. [PMID: 36536680 PMCID: PMC9758524 DOI: 10.1016/j.isci.2022.105682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic inflammation of the immune privileged cornea originating from viral or nonviral conditions results in significant vision loss. Topical corticosteroids are the common treatments for corneal inflammation, but the drugs cause serious and potentially blinding side effects in the long term. Therefore, new standalone and/or synergistic anti-inflammatory therapies with lower side effects are desperately needed. Here, we show that the aromatic fatty acid phenylbutyrate (PBA) acts as a potent inhibitor of inflammation in preclinical ocular-inflammation models. PBA prevents the transcription as well as translation of pro-inflammatory cytokines by LPS and poly(I:C) via persistent inhibition of NF-κB signaling. PBA quickens the resolution of ocular inflammation in mice by decreasing corneal thickness and immune cell infiltration. More importantly, PBA can synergize with the dexamethasone to antagonize NF-κB signaling at lower drug concentrations. Our results demonstrate that PBA therapy exerts previously unreported anti-inflammatory effects in the eye and facilitates corneal healing during persistent inflammation.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Yogesh Sutar
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, HI 96720, USA
- R. Ken Coit College of Pharmacy, The University of Arizona, Tuscon, AZ 85721, USA
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, HI 96720, USA
| | - Abhijit Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, HI 96720, USA
- R. Ken Coit College of Pharmacy, The University of Arizona, Tuscon, AZ 85721, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
109
|
Chen IC, Su CY, Chen PY, Hoang TC, Tsou YS, Fang HW. Investigation and Characterization of Factors Affecting Rheological Properties of Poloxamer-Based Thermo-Sensitive Hydrogel. Polymers (Basel) 2022; 14:polym14245353. [PMID: 36559720 PMCID: PMC9781578 DOI: 10.3390/polym14245353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Poloxamers are negatively temperature-sensitive hydrogels and their hydrophilic groups interact with water molecules at lower temperatures (liquid phase) while their hydrophobic groups interact more strongly with increases in temperature causing gelation. To investigate the factors affecting the rheological properties of poloxamers, various parameters including different poloxamer P407 concentrations, poloxamers P407/P188 blending ratios and additives were examined. The results presented a clear trend of decreasing gelling temperature/time when P407 was at higher concentrations. Moreover, the addition of P188 enhanced the gelling temperature regardless of poloxamer concentration. Polysaccharides and their derivatives have been widely used as components of hydrogel and we found that alginic acid (AA) or carboxymethyl cellulose (CMC) reduced the gelling temperature of poloxamers. In addition, AA-containing poloxamer promoted cell proliferation and both AA -and CMC-containing poloxamer hydrogels reduced cell migration. This study investigated the intriguing characteristics of poloxamer-based hydrogel, providing useful information to compounding an ideal and desired thermo-sensitive hydrogel for further potential clinical applications such as development of sprayable anti-adhesive barrier, wound-healing dressings or injectable drug-delivery system for cartilage repair.
Collapse
Affiliation(s)
- I-Cheng Chen
- Accelerator for Happiness and Health Industry, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Chen-Ying Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Pei-Yu Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - The Chien Hoang
- Biotegy Vietnam Company Limited, No. 23, Alley 48, Tho Lao Street, Dong Mac Ward, Hai Ba Trung District, Hanoi City 11609, Vietnam
| | - Yi-Syue Tsou
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110301, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110301, Taiwan
| | - Hsu-Wei Fang
- Accelerator for Happiness and Health Industry, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
- Correspondence: ; Tel.: +886-2-2771-2171 (ext. 2521)
| |
Collapse
|
110
|
A Self-Forming Hydrogel from a Bactericidal Copolymer: Synthesis, Characterization, Biological Evaluations and Perspective Applications. Int J Mol Sci 2022; 23:ijms232315092. [PMID: 36499417 PMCID: PMC9741259 DOI: 10.3390/ijms232315092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Objects touched by patients and healthcare workers in hospitals may harbor pathogens, including multi-drug resistant (MDR) staphylococci, enterococci (VRE), Escherichia coli, Acinetobacter, and Pseudomonas species. Medical devices contaminated by these pathogens may also act as a source of severe and difficult-to-treat human infections, thus becoming a critical public health concern requiring urgent resolutions. To this end, we recently reported the bactericidal effects of a cationic copolymer (CP1). Here, aiming at developing a bactericidal formulation possibly to be used either for surfaces disinfection or to treat skin infections, CP1 was formulated as a hydrogel (CP1_1.1-Hgel). Importantly, even if not cross-linked, CP1 formed the gel upon simple dispersion in water, without requiring gelling agents or other additives which could be skin-incompatible or interfere with CP1 bactericidal effects in possible future topical applications. CP1_1.1-Hgel was characterized by attenuated-total-reflectance Fourier transform infrared (ATR-FTIR) and UV-Vis spectroscopy, as well as optic and scanning electron microscopy (OM and SEM) to investigate its chemical structure and morphology. Its stability was assessed by monitoring its inversion properties over time at room temperature, while its mechanical characteristics were assessed by rheological experiments. Dose-dependent cytotoxicity studies performed on human fibroblasts for 24 h with gel samples obtained by diluting CP_1.1-Hgel at properly selected concentrations established that the 3D network formation did not significantly affect the cytotoxic profile of CP1. Also, microbiologic investigations carried out on two-fold serial dilutions of CP1-gel confirmed the minimum inhibitory concentrations (MICs) previously reported for the not formulated CP1.Selectivity indices values up to 12 were estimated by the values of LD50 and MICs determined here on gel samples.
Collapse
|
111
|
Su M, Zhang J, Li Z, Wei Y, Zhang J, Pang Z, Gao Y, Qian S, Heng W. Recent advances on small molecular gels: formation mechanism and their application in pharmaceutical fields. Expert Opin Drug Deliv 2022; 19:1597-1617. [PMID: 36259939 DOI: 10.1080/17425247.2022.2138329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION As an essential complement to chemically cross-linked macromolecular gels, drug delivery systems based on small molecular gels formed under the driving forces of non-covalent interactions are attracting considerable research interest due to their potential advantages of high structural functionality, lower biological toxicity, reversible stimulus-response, and so on. AREA COVERED The present review summarizes recent advances in small molecular gels and provides their updates as a comprehensive overview in terms of gelation mechanism, gel properties, and physicochemical characterizations. In particular, this manuscript reviews the effects of drug-based small molecular gels on the drug development and their potential applications in the pharmaceutical fields. EXPERT OPINION Small molecular-based gel systems, constructed by inactive compounds or active pharmaceutical ingredients, have been extensively studied as carriers for drug delivery in pharmaceutical field, such as oral formulations, injectable formulations, and transdermal formulations. However, the construction of such gel systems yet faces several challenges such as rational and efficient design of functional gelators and the great occasionality of drug-based gel formation. Thus, a deeper understanding of the gelation mechanism and its relationship with gel properties will be conducive to the construction of small molecular gels systems and their future application.
Collapse
Affiliation(s)
- Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingwen Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zudi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
112
|
Hassan ML, Abou-Elesoud WS, Safwat EM, Hassan EA, Fadel SM, Labeeb AM. Effect of cellulose nanocrystals on rheology, liquid crystal, and delivery behavior of metronidazole poloxamer-based in-situ dental medication. CELLULOSE 2022; 29:9511-9529. [DOI: 10.1007/s10570-022-04864-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2025]
|
113
|
Mutual Jellification of Two Bactericidal Cationic Polymers: Synthesis and Physicochemical Characterization of a New Two-Component Hydrogel. Pharmaceutics 2022; 14:pharmaceutics14112444. [PMID: 36432635 PMCID: PMC9692830 DOI: 10.3390/pharmaceutics14112444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Here, a new two-component hydrogel (CP1OP2-Hgel) was developed, simply by dispersing in water two cationic bactericidal polymers (CP1 and OP2) effective against several multidrug-resistant (MDR) clinical isolates of the most relevant Gram-positive and Gram-negative species. Interestingly, while OP2 acts only as an antibacterial ingredient when in gel, CP1 works as both an antibacterial and a gelling agent. To verify whether it would be worthwhile to use CP1 and OP2 as bioactive ingredients of a new hydrogel supposed for a future treatment of skin infections, dose-dependent cytotoxicity studies with CP1 and OP2 were performed on human fibroblasts for 24 h, before preparing the formulation. Although a significant cytotoxicity at concentrations > 2 µM was evidenced for both polymers, selectivity indices (SIs) over 12 (CP1) and up to six (OP2) were determined, due to the powerful antibacterial properties of the two polymers, thus supporting the rationale for their formulation as a hydrogel. The chemical structure and morphology of CP1OP2-Hgel were investigated by PCA-assisted attenuated total reflectance (ATR) Fourier-transform infrared (FTIR) analysis and scanning electron microscopy (SEM), while its rheological properties were assessed by determining its dynamic viscosity. The cumulative weight loss and swelling percentage curves, the porosity, and the maximum swelling capability of CP1OP2-Hgel were also determined and reported. Overall, due to the potent bactericidal effects of CP1 and OP2 and their favorable selectivity indices against several MDR pathogens, good rheological properties, high porosity, and strong swelling capability, CP1OP2-Hgel may, in the future, become a new weapon for treating severe nosocomial skin infections or infected chronic wounds. Further investigations in this sense are currently being carried out.
Collapse
|
114
|
Koland M, Narayanan Vadakkepushpakath A, John A, Tharamelveliyil Rajendran A, Raghunath I. Thermosensitive In Situ Gels for Joint Disorders: Pharmaceutical Considerations in Intra-Articular Delivery. Gels 2022; 8:723. [PMID: 36354630 PMCID: PMC9689403 DOI: 10.3390/gels8110723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 09/17/2023] Open
Abstract
The intra-articular administration of conventional drug solutions or dispersions in joint diseases such as osteoarthritis has a relatively short retention time and, therefore, limited therapeutic effect. Thermosensitive polymer solutions that exhibit a sol-gel phase transition near body temperature after injection can prolong drug retention by providing a depot from which the drug release is sustained while relieving inflammation and preventing degradation of the joint complex. Thermosensitive hydrogels have in recent times garnered considerable attention in the intra-articular therapeutics of joint diseases such as osteoarthritis. Among the stimuli-responsive gelling systems, most research has focused on thermosensitive hydrogels. These gels are preferred over other stimuli-sensitive hydrogels since they have well-controlled in situ gelling properties and are also easier to load with drugs. Temperature-sensitive polymers, such as block copolymers or poloxamers, are frequently used to modify their gelation properties, usually in combination with other polymers. They are compatible with most drugs but may pose formulation challenges in terms of their low-response time, highly fragile nature, and low biocompatibility. The stability and biodegradability of implant hydrogels can control the drug release rate and treatment efficacy. This review stresses the application of thermosensitive gels in joint disorders and summarizes recent developments for intra-articular application, including the incorporation of nanoparticles. The hydrogel composition, drug release mechanisms, and the challenges involved in their formulation and storage are also discussed.
Collapse
Affiliation(s)
- Marina Koland
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, India
| | | | | | | | | |
Collapse
|
115
|
Bora L, Burkard T, Juan MHS, Radeke HH, Muț AM, Vlaia LL, Magyari-Pavel IZ, Diaconeasa Z, Socaci S, Borcan F, Kis B, Muntean D, Dehelean CA, Danciu C. Phytochemical Characterization and Biological Evaluation of Origanum vulgare L. Essential Oil Formulated as Polymeric Micelles Drug Delivery Systems. Pharmaceutics 2022; 14:2413. [PMID: 36365231 PMCID: PMC9693391 DOI: 10.3390/pharmaceutics14112413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
This study presents phytochemical characterization and biological evaluation of Origanum vulgare L. essential oil (OEO) formulated as polymeric micelles drug delivery systems as a possible non-invasive approach for the management of skin tags. GC-MS analysis of Romanian OEO revealed the identification and quantification of 43 volatile compounds (thymol and carvacrol being the main ones). The antioxidant activity was shown by four consecrated methods: CUPRAC, ABTS, ORAC and DPPH. OEO was incorporated by micellar solubilization into a binary hydrogel based on a Pluronic F 127/L 31 block-copolymers mixture. The pH, consistency, spreadability, particle size, polydispersity index and zeta potential of the OEO-loaded poloxamer-based binary hydrogel (OEO-PbH) were investigated. OEO-PbH was skin compatible in terms of pH and exhibited adequate spreadability and consistency. The minimal inhibitory concentrations of the tested OEO were similar to those obtained for the formulation, lower (2.5 µg/mL) for yeast and higher (40-80 µg/mL) for Gram-negative bacilli. As keratinocytes are among main components of skin tags, an in vitro evaluation was conducted in order to see the effect of the formulation against HaCaT human keratinocytes. OEO-PbH decreased HaCaT cells migration and proliferation and elicited a cytotoxic and pro-apoptotic effect in a dose- and time-dependent manner. No harmful effect on the viability of dendritic cells (DCs) was detected following the incubation with different concentrations (0-200 µg/mL) of the 5% formulation. Treatment in inflammatory DCs (+LPS) indicated a decrease in cytokine production of IL-6, TNF-α and IL-23 but no significant effect on IL-10 in any of the tested concentrations.
Collapse
Affiliation(s)
- Larisa Bora
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Tobias Burkard
- Pharmazentrum Frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Hospital of the Goethe University, 60596 Frankfurt am Main, Germany
| | - Martina Herrero San Juan
- Pharmazentrum Frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Hospital of the Goethe University, 60596 Frankfurt am Main, Germany
| | - Heinfried H. Radeke
- Pharmazentrum Frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Hospital of the Goethe University, 60596 Frankfurt am Main, Germany
| | - Ana Maria Muț
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Lavinia Lia Vlaia
- Department II—Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Zorița Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania
| | - Sonia Socaci
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania
| | - Florin Borcan
- Department of Analytical Chemistry, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Brigitta Kis
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Centre for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Clinical County Hospital of Timisoara, Liviu Rebreanu Blvd. 156, 300736 Timisoara, Romania
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Microbiology, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
116
|
Djoudi A, Molina-Peña R, Ferreira N, Ottonelli I, Tosi G, Garcion E, Boury F. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. Int J Mol Sci 2022; 23:12174. [PMID: 36293030 PMCID: PMC9602826 DOI: 10.3390/ijms232012174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.
Collapse
Affiliation(s)
- Amel Djoudi
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Rodolfo Molina-Peña
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Natalia Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| |
Collapse
|
117
|
Gheorghita D, Grosu E, Robu A, Ditu LM, Deleanu IM, Gradisteanu Pircalabioru G, Raiciu AD, Bita AI, Antoniac A, Antoniac VI. Essential Oils as Antimicrobial Active Substances in Wound Dressings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196923. [PMID: 36234263 PMCID: PMC9570933 DOI: 10.3390/ma15196923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/13/2023]
Abstract
Wound dressings for skin lesions, such as bedsores or pressure ulcers, are widely used for many patients, both during hospitalization and in subsequent treatment at home. To improve the treatment and shorten the healing time and, therefore, the cost, numerous types of wound dressings have been developed by manufacturers. Considering certain inconveniences related to the intolerance of some patients to antibiotics and the antimicrobial, antioxidant, and curative properties of certain essential oils, we conducted research by incorporating these oils, based on polyvinyl alcohol/ polyvinyl pyrrolidone (PVA/PVP) biopolymers, into dressings. The objective of this study was to study the potential of a polymeric matrix for wound healing, with polyvinyl alcohol as the main material and polyvinyl pyrrolidone and hydroxypropyl methylcellulose (HPMC) as secondary materials, together with additives (plasticizers poly(ethylene glycol) (PEG) and glycerol), stabilizers (Zn stearate), antioxidants (vitamin A and vitamin E), and four types of essential oils (fennel, peppermint, pine, and thyme essential oils). For all the studied samples, the combining compatibility, antimicrobial, and cytotoxicity properties were investigated. The obtained results demonstrated a uniform morphology for almost all the samples and adequate barrier properties for contact with suppurating wounds. The results show that the obtained samples containing essential oils have a good inhibitory effect on, or antimicrobial properties against, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The MTT assay showed that the tested samples were not toxic and did not lead to cell death. The results showed that the essential oils used provide an effective solution as active substances in wound dressings.
Collapse
Affiliation(s)
- Daniela Gheorghita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Lia Mara Ditu
- Faculty of Biology, University of Bucharest, 1-3 Intr. Portocalelor Street, 060101 Bucharest, Romania
| | - Iuliana Mihaela Deleanu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| | - Anca-Daniela Raiciu
- Faculty of Pharmacy, Titu Maiorescu University, 22 Dambovnicului Street, 040441 Bucharest, Romania
- S.C. Hofigal Import Export S.A., 2 Intrarea Serelor Street, 042124 Bucharest, Romania
| | - Ana-Iulia Bita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Correspondence:
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Vasile Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| |
Collapse
|
118
|
Fonseca-García A, Osorio BH, Aguirre-Loredo RY, Calambas HL, Caicedo C. Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties. Carbohydr Polym 2022; 293:119744. [DOI: 10.1016/j.carbpol.2022.119744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
119
|
Tan MSA, Pandey P, Lohman RJ, Falconer JR, Siskind DJ, Parekh HS. Fabrication and Characterization of Clozapine Nanoemulsion Sol-Gel for Intranasal Administration. Mol Pharm 2022; 19:4055-4066. [PMID: 36149013 DOI: 10.1021/acs.molpharmaceut.2c00513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clozapine is the most effective antipsychotic for treatment-resistant schizophrenia. However, it causes many adverse drug reactions (ADRs), which lead to poor treatment outcomes. Nose-to-brain (N2B) drug delivery offers a promising approach to reduce peripheral ADRs by minimizing systemic drug exposure. The aim of the present study was to develop and characterize clozapine-loaded nanoemulsion sol-gel (CLZ-NESG) for intranasal administration using high energy sonication method. A range of oils, surfactants, and cosurfactants were screened with the highest clozapine solubility selected for the development of nanoemulsion. Pseudoternary phase diagrams were constructed using a low-energy (spontaneous) method to identify the microemulsion regions (i.e., where mixtures were transparent). The final formulation, CLZ-NESG (pH 5.5 ± 0.2), comprising 1% w/w clozapine, 1% w/w oleic acid, 10% w/w polysorbate 80/propylene glycol (3:1), and 20% w/w poloxamer 407 (P407) solution, had an average globule size of ≤30 nm with PDI 0.2 and zeta potential of -39.7 ± 1.5 mV. The in vitro cumulative drug release of clozapine from the nanoemulsion gel at 34 °C (temperature of nasal cavity) after 72 h was 38.9 ± 4.6% compared to 84.2 ± 3.9% with the control solution. The permeation study using sheep nasal mucosa as diffusion barriers confirmed a sustained release of clozapine with 56.2 ± 2.3% cumulative drug permeated after 8 h. Additionally, the histopathological examination found no severe nasal ciliotoxicity on the mucosal tissues. The thermodynamic stability studies showed that the gel strength and viscosity of CLZ-NESG decreased after temperature cycling but was still seen to be in "gel" form at nasal temperature. However, the accelerated storage stability study showed a decrease in drug concentration after 3 months, which can be expected at elevated stress conditions. The formulation developed in this study showed desirable physicochemical properties for intranasal administration, highlighting the potential value of a nanoemulsion gel for improving drug bioavailability of clozapine for N2B delivery.
Collapse
Affiliation(s)
- Madeleine S A Tan
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.,Medicines Management Unit, Department of Health, Northern Territory Government, Royal Darwin Hospital, 105 Rocklands Drive, Tiwi, Northern Territory 0810, Australia
| | - Preeti Pandey
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Rink-Jan Lohman
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - James R Falconer
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Dan J Siskind
- Faculty of Medicine, The University of Queensland, 20 Weightman Street, Herston, Queensland 4006, Australia.,Metro South Addiction and Mental Health Service, Level 2 Mental Health, Woolloongabba Community Health Centre, 228 Logan Road, Woolloongabba, Queensland 4102, Australia
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
120
|
Protopapa C, Siamidi A, Pavlou P, Vlachou M. Excipients Used for Modified Nasal Drug Delivery: A Mini-Review of the Recent Advances. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6547. [PMID: 36233902 PMCID: PMC9571052 DOI: 10.3390/ma15196547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ongoing challenging task in the field of nasal drug delivery is the maintenance of an efficient concentration of the active substance in the target area for an adequate period of time. Thus, there is an urgent need to develop effective new strategies for drug delivery to the nose, using cutting edge technology and materials for this particular type of drug delivery. This review gives an account of the critical components of nasal drug delivery and the parameters influencing drug absorption in the nose, including the excipients required for modified drug administration.
Collapse
Affiliation(s)
- Chrystalla Protopapa
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Angeliki Siamidi
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
121
|
Curcumin-Loaded Mesoporous Silica Nanoparticles Dispersed in Thermo-Responsive Hydrogel as Potential Alzheimer Disease Therapy. Pharmaceutics 2022; 14:pharmaceutics14091976. [PMID: 36145723 PMCID: PMC9504573 DOI: 10.3390/pharmaceutics14091976] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. Curcumin-loaded mesoporous silica nanoparticles (MSN-CCM) can overcome the drawbacks related to the free curcumin (CCM) clinical application, such as water insolubility and low bioavailability, besides acting over the main causes associated to AD. A thermo-responsive hydrogel is an interesting approach for facilitating the administration of the nanosystem via a nasal route, as well as for overcoming mucociliary clearance mechanisms. In light of this, MSN-CCM were dispersed in the hydrogel and evaluated through in vitro and in vivo assays. The MSNs and MSN-CCM were successfully characterized by physicochemical analysis and a high value of the CCM encapsulation efficiency (EE%, 87.70 ± 0.05) was achieved. The designed thermo-responsive hydrogel (HG) was characterized by rheology, texture profile analysis, and ex vivo mucoadhesion, showing excellent mechanical and mucoadhesive properties. Ex vivo permeation studies of MSN-CCM and HG@MSN-CCM showed high permeation values (12.46 ± 1.08 and 28.40 ± 1.88 μg cm−2 of CCM, respectively) in porcine nasal mucosa. In vivo studies performed in a streptozotocin-induced AD model confirmed that HG@MSN-CCM reverted the cognitive deficit in mice, acting as a potential formulation in the treatment of AD.
Collapse
|
122
|
Corazza E, di Cagno MP, Bauer-Brandl A, Abruzzo A, Cerchiara T, Bigucci F, Luppi B. Drug delivery to the brain: In situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. Eur J Pharm Sci 2022; 179:106294. [PMID: 36116696 DOI: 10.1016/j.ejps.2022.106294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
The objective of this work was to optimize a thermosensitive in situ gelling formulation to improve intranasal and nose-to-brain delivery of the antiepileptic drug carbamazepine (CBZ). A preliminary procedure of vehicles obtained just mixing different fractions of poloxamer 407 (P407) and poloxamer 188 (P188) revealed preparations with phase transition temperatures, times to gelation and pH values suitable for nasal delivery. Subsequently, the mucoadhesive properties of the most promising formulations were tuned by adding hydroxypropylmethylcellulose types of different viscosity grades, and the effect of the adhesive polymers was evaluated by testing in vitro time and strength of mucoadhesion on specimens of sheep nasal mucosa. The formulation that showed the greatest mucoadhesive potential in vitro, with a time and force of mucoadhesion equal to 1746,75 s and 3.66 × 10-4 N, respectively, was that composed of 22% P407, 5% P188 and 0.8% HPMC low-viscous and it was further investigated for its ability to increase drug solubility and to control the release of the drug. Lastly, the capability of the candidate vehicle to ensure drug permeation across the biomimetic membrane Permeapad®, an artificial phospholipid-based barrier with a stratified architecture, and the same barrier enriched with a mucin layer was verified. The final formulation was characterized by a pH value of 6.0, underwent gelation at 32.33°C in 37.85 s, thus showing all the features required by in situ gelling thermosensitive preparations designed for nasal delivery and, more notably, it conserved the ability to favor drug permeation in the presence of mucin. These findings suggest that the optimized gelling system could be a promising and easy to realize strategy to improve CBZ delivery to the brain exploiting both a direct and indirect pathway.
Collapse
Affiliation(s)
- Elisa Corazza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælands vei 3, Oslo 0371, Norway.
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Angela Abruzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| |
Collapse
|
123
|
Balsam Poplar Buds: Extraction of Potential Phenolic Compounds with Polyethylene Glycol Aqueous Solution, Thermal Sterilization of Extracts and Challenges to Their Application in Topical Ocular Formulations. Antioxidants (Basel) 2022; 11:antiox11091771. [PMID: 36139845 PMCID: PMC9495353 DOI: 10.3390/antiox11091771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds of natural origin have been valued for their beneficial effects on health since ancient times. During our study, we performed the extraction of phenolic compounds from balsam poplar buds using different concentrations of aqueous polyethylene glycol 400 solvents (10-30% PEG400). The aqueous 30% PEG400 extract showed the best phenolic yield. The stability of the extract during autoclave sterilization was evaluated. The extract remained stable under heat sterilization. Ophthalmic formulations are formed using different concentrations (8-15%) of poloxamer 407 (P407) together with hydroxypropyl methylcellulose (0.3%), sodium carboxymethyl cellulose (0.3%) or hyaluronic acid (0.1%). Physicochemical parameters of the formulations remained significantly unchanged after sterilization. Formulations based on 12% P407 exhibited properties characteristic of in situ gels, the gelation point of the formulations was close to the temperature of the cornea. After evaluating the amount of released compounds, it was found that, as the concentration of polymers increases, the amount of released compounds decreases. Formulations based on 15% P407 released the least biologically active compounds. Sterilized formulations remained stable for 30 days.
Collapse
|
124
|
Dash S, Zuo J, Steyger PS. Local Delivery of Therapeutics to the Cochlea Using Nanoparticles and Other Biomaterials. Pharmaceuticals (Basel) 2022; 15:1115. [PMID: 36145336 PMCID: PMC9504900 DOI: 10.3390/ph15091115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss negatively impacts the well-being of millions of people worldwide. Systemic delivery of ototherapeutics has limited efficacy due to severe systemic side effects and the presence of the blood-labyrinth barrier that selectively limits or enables transfer of molecules between plasma and inner ear tissues and fluids. Local drug delivery into the middle and inner ear would be preferable for many newly emerging classes of drugs. Although the cochlea is a challenging target for drug delivery, recent technologies could provide a safe and efficacious delivery of ototherapeutics. Local drug delivery routes include topical delivery via the external auditory meatus, retroauricular, transtympanic, and intracochlear delivery. Many new drug delivery systems specifically for the inner ear are under development or undergoing clinical studies. Future studies into these systems may provide a means for extended delivery of drugs to preserve or restore hearing in patients with hearing disorders. This review outlines the anatomy of the (inner) ear, describes the various local delivery systems and routes, and various quantification methodologies to determine the pharmacokinetics of the drugs in the inner ear.
Collapse
Affiliation(s)
| | | | - Peter S. Steyger
- Translational Hearing Center, Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
125
|
Patel D, Bhojani AK, Ray D, Singh DK, Bhattacharjee S, Seth D, Aswal VK, Kuperkar K, Bahadur P. Glucose-induced self-assembly and phase separation in hydrophilic triblock copolymers and the governing mechanism. Phys Chem Chem Phys 2022; 24:21141-21156. [PMID: 36039741 DOI: 10.1039/d2cp01909d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ethylene oxide, EO)-poly(propylene oxide, PO)-poly(ethylene oxide, EO)-based triblock copolymers (BCPs) with 80% hydrophilicity stay molecularly dissolved as Gaussian chains at ambient temperature, even at fairly high concentrations (>5 %w/v). This study presents the plausible micellization behaviour of such very-hydrophilic Pluronics® - F38, F68, F88, F98, and F108 - incited upon the addition of glucose at low concentrations and temperatures. The outcomes obtained from phase behaviour and scattering studies are described. At temperatures near to ambient temperature, these BCPs form micelles with a central core made of a PO block, surrounded by a corona of highly hydrated EO chains. The phase transitions in these hydrophilic Pluronics® in the presence of glucose are demonstrated via the dehydration of the copolymer coil, leading to a decrease in the I1/I3 ratio, as determined using fluorescence spectroscopy. The temperature-dependent cloud point (CP) showed a marked decrease with an increase in the PO molecular weight and also in the presence of glucose. The change in solution relative viscosity (ηrel) caused by glucose is due to the enhanced dehydration of the EO block of the BCP amphiphile. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) investigations suggested that the dimensions of the hydrophobic core increase during the dehydration of the EO-PO blocks upon a temperature increase or after adding varying concentrations of glucose, thereby resulting in a micellar shape transition. It has been observed that added glucose influences the phase behaviour of BCPs in an analogous way to the influence of temperature. Also, plausible interactions between the EO-PO blocks and glucose were suggested based on the evaluated optimized descriptors obtained from a computational simulation approach. In addition, the core-shell blended micelles obtained using these BCPs are successfully utilized for drug (curcumin, Cur) solubilization based on the observed peak intensities from UV-visible spectroscopy. The loading of Cur into glucose-containing and glucose-free hydrophilic Pluronic® micelles shows how the radius of the micellar core (Rc) increases in the presence of glucose, thereby indicating Cur solubility enhancement for the Pluronic® micelles. Various kinetics models were employed, demonstrating a drug release profile that enables this approach to be used as an ideal platform for drug delivery.
Collapse
Affiliation(s)
- Divya Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat-395 007, Gujarat, India.
| | - Amit K Bhojani
- Department of Basic Sciences, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad-380 026, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, Maharashtra, India
| | - Dheeraj K Singh
- Department of Basic Sciences, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad-380 026, India
| | - Sanyukta Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Patna (IITP), Bihta, Patna, 801 106, Bihar, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna (IITP), Bihta, Patna, 801 106, Bihar, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, Maharashtra, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat-395 007, Gujarat, India.
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat-395 007, Gujarat, India
| |
Collapse
|
126
|
Nakano T, Yamanaka H, Sakamoto M, Aiki Y, Yanase N, Hori R, Katayama Y, Tsuge I, Saito S, Morimoto N. Adjustable biodegradability of low-swelling hydrogels prepared from recombinant peptides based on human collagen type 1. J Biomater Appl 2022; 37:881-890. [PMID: 36007126 DOI: 10.1177/08853282221123452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An ideal hydrogel for tissue engineering and regenerative therapy is cytocompatible, biocompatible, and has low-swelling characteristics. Recently, a novel low-swelling hydrogel with a homogenous structure was developed by crosslinking a recombinant peptide, modeled on human collagen type 1 (RCPhC1), with a four-arm polyethylene glycol (tetra-PEG). Here, we hypothesized that the biodegradability of the RCPhC1 hydrogel was adjustable by altering its initial polymer concentration. Three types of RCPhC1 hydrogels were prepared using the initial polymer at different concentrations, and their morphology, swelling ratio, collagenase degradability, cytocompatibility, biocompatibility, and biodegradability were compared. The results revealed a low swelling ratio. The higher the concentration of the initial polymer, the longer it took for it to be degraded by collagenase. The average cell viability ratio was over 92% when using the direct contact method, which suggests that the hydrogels have excellent cytocompatibility. No death, tumorigenesis, exposure of the implants, or skin necrosis associated with the subcutaneous implantation of the hydrogels was found in mice in vivo. Moreover, histological evaluation revealed the formation of a thin fibrous capsule, which suggests an acceptable biocompatibility. Furthermore, as hypothesized, it was confirmed that the biodegradability can be adjusted by changing the initial polymer concentration. Collectively, the ability to fine-tune the biodegradability of RCPhC1 hydrogels demonstrates their potential for use in various clinical applications.
Collapse
Affiliation(s)
- Takashi Nakano
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Hiroki Yamanaka
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Michiharu Sakamoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Yasuhiro Aiki
- Bio Science & Engineering Laboratory, 34778FUJIFILM Corporation, Kanagawa, Japan
| | - Naoto Yanase
- Analysis Technology Center, 612992FUJIFILM Corporation, Kanagawa, Japan
| | - Ritsuko Hori
- Analysis Technology Center, 612992FUJIFILM Corporation, Kanagawa, Japan
| | - Yasuhiro Katayama
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, 38049Kyoto University, Kyoto, Japan
| |
Collapse
|
127
|
Preparation, Structural Characterization of Anti-Cancer Drugs-Mediated Self-Assembly from the Pluronic Copolymers through Synchrotron SAXS Investigation. MATERIALS 2022; 15:ma15155387. [PMID: 35955322 PMCID: PMC9369513 DOI: 10.3390/ma15155387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Chemotherapy drugs are mainly administered via intravenous injection or oral administration in a very a high dosage. If there is a targeted drug vehicle which can be deployed on the tumor, the medical treatment is specific and precise. Binary mixing of biocompatible Pluronic® F127 and Pluronic® L121 was used in this study for a drug carrier of pluronic biomedical hydrogels (PBHs). Based on the same PBH ingredients, the addition of fluorouracil (5-FU) was separated in three ways when it was incorporated with pluronics: F127-L121-(5-FU), F127-(5-FU), and L121-(5-FU). Small angle X-ray scattering experiments were performed to uncover the self-assembled structures of the PBHs. Meanwhile, the expected micelle and lamellar structural changes affected by the distribution of 5-FU were discussed with respect to the corresponding drug release monitoring. PBH-all with the mixing method of F127-L121-(5-FU) has the fastest drug release rate owing to the undulated amphiphilic boundary. In contrast, PBH-2 with the mixing method of L121-(5-FU) has a prolonged drug release rate at 67% for one month of the continuous drug release experiment because the flat lamellar amphiphilic boundary of PBH-2 drags the migration of 5-FU from the hydrophobic core. Therefore, the PBHs developed in the study possess great potential for targeted delivery and successfully served as a microenvironment model to elucidate the diffusion pathway of 5-FU.
Collapse
|
128
|
Jain A, Kishore N. Micellar properties of pluronics in combination with cationic surfactant and interaction with lysozyme: Thermodynamic evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
129
|
Pironi AM, Melero A, Eloy JO, Guillot AJ, Pini Santos K, Chorilli M. Solid dipersions included in poloxamer hydrogels have favorable rheological properties for topical application and enhance the in vivo antiinflammatory effect of ursolic acid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
130
|
Gao XD, Zhang XB, Zhang RH, Yu DC, Chen XY, Hu YC, Chen L, Zhou HY. Aggressive strategies for regenerating intervertebral discs: stimulus-responsive composite hydrogels from single to multiscale delivery systems. J Mater Chem B 2022; 10:5696-5722. [PMID: 35852563 DOI: 10.1039/d2tb01066f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As our research on the physiopathology of intervertebral disc degeneration (IVD degeneration, IVDD) has advanced and tissue engineering has rapidly evolved, cell-, biomolecule- and nucleic acid-based hydrogel grafting strategies have been widely investigated for their ability to overcome the harsh microenvironment of IVDD. However, such single delivery systems suffer from excessive external dimensions, difficult performance control, the need for surgical implantation, and difficulty in eliminating degradation products. Stimulus-responsive composite hydrogels have good biocompatibility and controllable mechanical properties and can undergo solution-gel phase transition under certain conditions. Their combination with ready-to-use particles to form a multiscale delivery system may be a breakthrough for regenerative IVD strategies. In this paper, we focus on summarizing the progress of research on the stimulus response mechanisms of regenerative IVD-related biomaterials and their design as macro-, micro- and nanoparticles. Finally, we discuss multi-scale delivery systems as bioinks for bio-3D printing technology for customizing personalized artificial IVDs, which promises to take IVD regenerative strategies to new heights.
Collapse
Affiliation(s)
- Xi-Dan Gao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao tong University, Shaanxi 710000, P. R. China.
| | - Rui-Hao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - De-Chen Yu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiang-Yi Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Yi-Cun Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Lang Chen
- Department of Gastrointestinal Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China
| | - Hai-Yu Zhou
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| |
Collapse
|
131
|
The Use of Polymer Blends in the Treatment of Ocular Diseases. Pharmaceutics 2022; 14:pharmaceutics14071431. [PMID: 35890326 PMCID: PMC9322751 DOI: 10.3390/pharmaceutics14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The eye is an organ with limited drug access due to its anatomical and physiological barriers, and the usual forms of ocular administration are limited in terms of drug penetration, residence time, and bioavailability, as well as low patient compliance. Hence, therapeutic innovations in new drug delivery systems (DDS) have been widely explored since they show numerous advantages over conventional methods, besides delivering the content to the eye without interfering with its normal functioning. Polymers are usually used in DDS and many of them are applicable to ophthalmic use, especially biodegradable ones. Even so, it can be a hard task to find a singular polymer with all the desirable properties to deliver the best performance, and combining two or more polymers in a blend has proven to be more convenient, efficient, and cost-effective. This review was carried out to assess the use of polymer blends as DDS. The search conducted in the databases of Pubmed and Scopus for specific terms revealed that although the physical combination of polymers is largely applied, the term polymer blend still has low compliance.
Collapse
|
132
|
Nguyen TN, Park JS. Intratympanic drug delivery systems to treat inner ear impairments. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
133
|
Lin YJ, Chang Chien BY, Lee YH. Injectable and thermoresponsive hybrid hydrogel with Antibacterial, Anti-inflammatory, oxygen Transport, and enhanced cell growth activities for improved diabetic wound healing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
134
|
Tijani AO, Garg J, Frempong D, Verana G, Kaur J, Joga R, Sabanis CD, Kumar S, Kumar N, Puri A. Sustained drug delivery strategies for treatment of common substance use disorders: Promises and challenges. J Control Release 2022; 348:970-1003. [PMID: 35752256 DOI: 10.1016/j.jconrel.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Substance use disorders (SUDs) are a leading cause of death and other ill health effects in the United States and other countries in the world. Several approaches ranging from detoxification, behavioral therapy, and the use of antagonists or drugs with counter effects are currently being applied for its management. Amongst these, drug therapy is the mainstay for some drug abuse incidences, as is in place specifically for opioid abuse or alcohol dependence. The severity of the havocs observed with the SUDs has triggered constant interest in the discovery and development of novel medications as well as suitable or most appropriate methods for the delivery of these agents. The chronic need of such drugs in users warrants the need for their prolonged or sustained systemic availability. Further, the need to improve patient tolerance to medication, limit invasive drug use and overall treatment outcome are pertinent considerations for embracing sustained release designs for medications used in managing SUDs. This review aims to provide an overview on up-to-date advances made with regards to sustained delivery systems for the drugs for treatment of different types of SUDs such as opioid, alcohol, tobacco, cocaine, and cannabis use disorders. The clinical relevance, promises and the limitations of deployed sustained release approaches along with future opportunities are discussed.
Collapse
Affiliation(s)
- Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Jivesh Garg
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Dorcas Frempong
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Jagroop Kaur
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Chetan D Sabanis
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Neeraj Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
135
|
Liu Y, Li T, Sun M, Cheng Z, Jia W, Jiao K, Wang S, Jiang K, Yang Y, Dai Z, Liu L, Liu G, Luo Y. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater 2022; 146:37-48. [PMID: 35364317 DOI: 10.1016/j.actbio.2022.03.046] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Periodontitis is a chronic inflammatory disease caused by plaque that leads to alveolar bone resorption. In the treatment of periodontitis, it is necessary to reduce the bacterial load and promote alveolar bone regeneration. In this study, zeolitic imidazolate framework-8 (ZIF-8) is used in the treatment of periodontitis, and an injectable photopolymerizable ZIF-8/gelatin methacryloyl (GelMA) composite hydrogel (GelMA-Z) is constructed. We confirm that ZIF-8 nanoparticles are successfully loaded into GelMA, which demonstrates fluidity and photopolymerizability. GelMA-Z continuously releases Zn2+ and shows good cytocompatibility. In vitro, GelMA-Z can effectively upregulate the expression of osteogenesis-related genes and proteins, increase alkaline phosphatase activity, promote extracellular matrix mineralization by rat bone mesenchymal stem cells, and exert an obvious antibacterial effect against Porphyromonas gingivalis. In vivo, GelMA-Z reduces the bacterial load, relieves inflammation and promotes alveolar bone regeneration in a rat model. The above results show that GelMA-Z has potential prospects in the treatment of periodontitis. STATEMENT OF SIGNIFICANCE: Various methods have been explored for the treatment of periodontitis. However, current regiments have difficulty achieving ideal alveolar bone regeneration. In this study, we constructed a zeolitic imidazolate framework-8 (ZIF-8)/gelatin methacryloyl (GelMA) composite hydrogel (GelMA-Z). (1) The injectable and photopolymerizable GelMA-Z showed biocompatibility in vitro and in vivo. (2) GelMA-Z continually released zinc ions to promote the osteogenic differentiation of bone mesenchymal stem cells and kill bacteria in vitro. (3) In a rat model, the GelMA-Z pregel solution was used to fill the periodontal pocket and then crosslinked by UV exposure. GelMA-Z can stably remain in the periodontal pocket to reduce the bacterial load, relieve inflammation and promote alveolar bone regeneration. In conclusion, GelMA-Z has great potential for use in the treatment of periodontitis, especially in promoting alveolar bone regeneration.
Collapse
Affiliation(s)
- Yun Liu
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Ting Li
- Department of Gastroenterology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Maolei Sun
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agriculture University, Changchun 130000, China
| | - Wenyuan Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, China
| | - Kun Jiao
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Shaoru Wang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Kongzhao Jiang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yuheng Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhihui Dai
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Liping Liu
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Guomin Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130000, China.
| | - Yungang Luo
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
136
|
Metal-organic framework-based injectable in situ gel for multi-responsive insulin delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
137
|
pH-Responsive Hydrogel Beads Based on Alginate, κ-Carrageenan and Poloxamer for Enhanced Curcumin, Natural Bioactive Compound, Encapsulation and Controlled Release Efficiency. Molecules 2022; 27:molecules27134045. [PMID: 35807288 PMCID: PMC9268575 DOI: 10.3390/molecules27134045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds are used for treating various diseases due to their antioxidant and anticancer properties. However, utilization of hydrophobic compounds is limited due to their low bioavailability. In order to achieve a greater application of hydrophobic bioactive compounds, hydrogel beads based on biopolymers can be used as carriers for their enhanced incorporation and controlled delivery. In this study, beads based on the biopolymers-κ-carrageenan, sodium alginate and poloxamer 407 were prepared for encapsulation of curcumin. The prepared beads were characterized using IR, SEM, TGA and DSC. The curcumin encapsulation efficiency in the developed beads was 95.74 ± 2.24%. The release kinetics of the curcumin was monitored in systems that simulate the oral delivery (pH 1.2 and 7.4) of curcumin. The drug release profiles of the prepared beads with curcumin indicated that the curcumin release was significantly increased compared with the dissolution of curcumin itself. The cumulative release of curcumin from the beads was achieved within 24 h, with a final release rate of 12.07% (gastric fluid) as well as 81.93% (intestinal fluid). Both the in vitro and in vivo studies showed that new hydrogel beads based on carbohydrates and poloxamer improved curcumin’s bioavailability, and they can be used as powerful carriers for the oral delivery of different hydrophobic nutraceuticals.
Collapse
|
138
|
Cui N, Dai CY, Mao X, Lv X, Gu Y, Lee ES, Jiang HB, Sun Y. Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review. Gels 2022; 8:360. [PMID: 35735704 PMCID: PMC9222596 DOI: 10.3390/gels8060360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 12/28/2022] Open
Abstract
Poloxamer is a triblock copolymer with amphiphilicity and reversible thermal responsiveness and has wide application prospects in biomedical applications owing to its multifunctional properties. Poloxamer hydrogels play a crucial role in the field of tissue engineering and have been regarded as injectable scaffolds for loading cells or growth factors (GFs) in the last few years. Hydrogel micelles can maintain the integrity and stability of cells and GFs and form an appropriate vascular network at the application site, thus creating an appropriate microenvironment for cell growth, nerve growth, or bone integration. The injectability and low toxicity of poloxamer hydrogels make them a noninvasive method. In addition, they can also be good candidates for bio-inks, the raw material for three-dimensional (3D) printing. However, the potential of poloxamer hydrogels has not been fully explored owing to the complex biological challenges. In this review, the latest progress and cutting-edge research of poloxamer-based scaffolds in different fields of application such as the bone, vascular, cartilage, skin, nervous system, and organs in tissue engineering and 3D printing are reviewed, and the important roles of poloxamers in tissue engineering scaffolds are discussed in depth.
Collapse
Affiliation(s)
- Naiyu Cui
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China; (N.C.); (C.-Y.D.); (X.M.); (X.L.); (Y.G.)
| | - Chun-Yu Dai
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China; (N.C.); (C.-Y.D.); (X.M.); (X.L.); (Y.G.)
| | - Xuran Mao
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China; (N.C.); (C.-Y.D.); (X.M.); (X.L.); (Y.G.)
| | - Xun Lv
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China; (N.C.); (C.-Y.D.); (X.M.); (X.L.); (Y.G.)
| | - Yue Gu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China; (N.C.); (C.-Y.D.); (X.M.); (X.L.); (Y.G.)
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Korea
| | - Heng-Bo Jiang
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China; (N.C.); (C.-Y.D.); (X.M.); (X.L.); (Y.G.)
| | - Yunhan Sun
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China; (N.C.); (C.-Y.D.); (X.M.); (X.L.); (Y.G.)
| |
Collapse
|
139
|
Tilkin RG, Mahy JG, Monteiro AP, Belet A, Feijóo J, Laird M, Carcel C, Régibeau N, Goderis B, Grandfils C, Wong Chi Man M, Lambert SD. Protein encapsulation in mesoporous silica: Influence of the mesostructured and pore wall properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
140
|
Ahmad MZ, Ahmad J, Alasmary MY, Akhter S, Aslam M, Pathak K, Jamil P, Abdullah M. Nanoemulgel as an approach to improve the biopharmaceutical performance of lipophilic drugs: Contemporary research and application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
141
|
Domnina YM, Zhavoronok ES, Suslov VV, Reshetnyak DV, Kedik SA. Thermoreversible Growth of Viscosity upon Heating of the Aqueous Solutions of Ethylene Oxide-Propylene Oxide Block Copolymers Unaccompanied by Gelation. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
142
|
Ma J, Wang B, Shao H, Zhang S, Chen X, Li F, Liang W. Hydrogels for localized chemotherapy of liver cancer: a possible strategy for improved and safe liver cancer treatment. Drug Deliv 2022; 29:1457-1476. [PMID: 35532174 PMCID: PMC9090357 DOI: 10.1080/10717544.2022.2070299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The systemic drug has historically been preferred for the treatment of the majority of pathological conditions, particularly liver cancer. Indeed, this mode of treatment is associated with adverse reactions, toxicity, off-target accumulation, and rapid hepatic and renal clearance. Numerous efforts have been made to design systemic therapeutic carriers to improve retention while decreasing side effects and clearance. Following systemic medication, local administration of therapeutic agents allows for higher 'effective' doses with fewer side effects, kidney accumulation, and clearance. Hydrogels are highly biocompatible and can be used for both imaging and therapy. Hydrogel-based drug delivery approach has fewer side effects than traditional chemotherapy and can deliver drugs to tumors for a longer time. The chemical and physical flexibility of hydrogels can be used to achieve disease-induced in situ accumulation as well as subsequent drug release and hydrogel-programmed degradation. Moreover, they can act as a biocompatible depot for localized chemotherapy when stimuli-responsive carriers are administrated. Herein, we summarize the design strategies of various hydrogels used for localized chemotherapy of liver cancer and their delivery routes, as well as recent research on smart hydrogels.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of General Practice, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Bingzhu Wang
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haibin Shao
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Feize Li
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
143
|
Xu F, Dawson C, Lamb M, Mueller E, Stefanek E, Akbari M, Hoare T. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Front Bioeng Biotechnol 2022; 10:849831. [PMID: 35600900 PMCID: PMC9119391 DOI: 10.3389/fbioe.2022.849831] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Graphical Abstract
Collapse
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe Dawson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Makenzie Lamb
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Eva Mueller
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Evan Stefanek
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| |
Collapse
|
144
|
Ziaei P, Resnick JL, Stella N, DiLeo MV. Novel Combined Lidocaine/Povidone Iodine Delivery System for Preintravitreal Injection. J Ocul Pharmacol Ther 2022; 38:319-325. [PMID: 35255227 PMCID: PMC9271332 DOI: 10.1089/jop.2021.0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Intravitreal injection has become a popular treatment for various retina disorders and dramatically increased over the past few years. In traditional preintravitreal injection, the preparation steps are time consuming for practitioners who perform a significant number of injections per day. Besides, lidocaine gel (L-Gel) shows a potential absorption barrier on the antibacterial effect of povidone iodine (PI). Methods: In this study, we describe a L/PI gel system as an alternative approach to address these issues for traditional preinjection drug administration. Lidocaine and PI are loaded in a thermoresponsive gel instilled as a liquid to the lower fornix that transitions to a stable, solid gel depot. Results and Conclusion: The gel demonstrated decrease in conjunctival touch sensitivity and sufficient bacteria killing with a single step, suggesting a significant decrease in the time required and less potential for drug inhibition due to sequential administration.
Collapse
Affiliation(s)
- Parissa Ziaei
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jayde L. Resnick
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicholas Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Morgan V. DiLeo
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemical Engineering, and University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,Address correspondence to: Prof. Morgan V. DiLeo, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
145
|
Alhakamy NA, Hosny KM, Rizg WY, Eshmawi BA, Badr MY, Safhi AY, Murshid SSA. Development and Optimization of Hyaluronic Acid-Poloxamer In-Situ Gel Loaded with Voriconazole Cubosomes for Enhancement of Activity against Ocular Fungal Infection. Gels 2022; 8:gels8040241. [PMID: 35448142 PMCID: PMC9032757 DOI: 10.3390/gels8040241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Fungal eye infections are largely disseminated, especially in developing countries where they may leave over half a million people blind per year. The current study aims to boost the voriconazole antifungal efficiency via loading it as cubosomes (VZ-Cub) into hyaluronic acid and poloxamer-based ocular in situ gel. VZ-Cub were fabricated applying Box-Behnken design and employing phytantriol, poloxamer F127, and VZ amounts as independent variables. The produced nano vesicles were evaluated for the dependent variables of particle size (PS), entrapment efficiency (EE%), and transcorneal steady-state flux (Jss) of the VZ, and, the obtained optimal VZ-Cub was loaded into an in situ gel base to enhance its ocular residence time. The in situ gel formulation was tested for its gelation temperature, drug release behavior, transcorneal permeation effects, and antifungal activity. The optimized VZ-Cub consisted of 100 mg of phytantriol, 60 mg of poloxamer F127, and 21 mg of VZ. This formulation led to a minimum PS of 71 nm, an EE% of 66%, Jss value of 6.5 µg/(cm2·min), and stability index of 94 ± 2%. The optimized VZ-Cub-loaded in situ gel released 84% VZ after 12 h and yielded a 4.5-fold increase in drug permeation compared with the VZ aqueous dispersion. The antifungal activity, which was obtained by measuring the fungal growth inhibition zones, revealed that the VZ-Cub-loaded in situ gel formulation had a 3.89-fold increase in antifungal activity compared with the VZ dispersion. In summary, an ocular in situ gel loaded with VZ-Cub could be an effective novel nano-paradigm with enhanced transcorneal permeation and antifungal properties.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence:
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bayan A. Eshmawi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
| | - Moutaz Y. Badr
- Department of Pharmaceutics, Collage of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia;
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
146
|
Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9165443. [PMID: 35434138 PMCID: PMC9010220 DOI: 10.1155/2022/9165443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Topical delivery of local anesthetics (LAs) is commonly used to decrease painful sensations, block pain throughout procedures, and alleviate pain after surgery. Dermal and/or transdermal delivery of LAs has other advantages, such as sustained drug delivery and decreased systemic adverse effects. This study reports the development of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles coated with chitosan for the sustained release and topicality of benzocaine (BZC) and topical delivery. BZC PLGA nanoparticles or nonencapsulated drugs were further incorporated into Poloxamer hydrogels (Pluronic™ F-127). The nanoparticles showed a mean diameter of 380 ± 4 nm, positive zeta potential after coating with chitosan (23.3 ± 1.7 mV), and high encapsulation efficiency (96.7 ± 0.02%). Cellular viability greater than 70% for both fibroblasts and keratinocytes was observed after treatment with nanoparticles, which is in accordance with the preconized guidelines for biomedical devices and delivery systems. Both the nanoparticles and hydrogels were able to modulate BZC delivery and increase drug permeation when compared to the nonencapsulated drug. Furthermore, the incorporation of limonene into hydrogels containing BZC-loaded nanoparticles increased the BZC permeation rates. Non-Newtonian and pseudoplastic behaviors were observed for all hydrogel nanoformulations with or without nanoparticles. These results demonstrate that the hydrogel-nanoparticle hybrids could be a promising delivery system for prolonged local anesthetic therapy.
Collapse
|
147
|
White JM, Calabrese MA. Impact of small molecule and reverse poloxamer addition on the micellization and gelation mechanisms of poloxamer hydrogels. Colloids Surf A Physicochem Eng Asp 2022; 638. [PMID: 35221534 PMCID: PMC8880963 DOI: 10.1016/j.colsurfa.2021.128246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poloxamer 407 (P407) is widely used for targeted drug-delivery because it exhibits thermoresponsive gelation behavior near body temperature, stemming from a disorder-to-order transition. Hydrophobic small molecules can be encapsulated within P407; however, these additives often negatively impact the rheological properties and lower the gelation temperatures of the hydrogels, limiting their clinical utility. Here we investigate the impact of adding two BAB reverse poloxamers (RPs), 25R4 and 31R1, on the thermal transitions, rheological properties, and assembled structures of P407 both with and without incorporated small molecules. By employing a combination of differential scanning calorimetry (DSC), rheology, and small-angle x-ray scattering (SAXS), we determine distinct mechanisms for RP incorporation. While 25R4 addition promotes inter-micelle bridge formation, the highly hydrophobic 31R1 co-micellizes with P407. Small molecule addition lowers thermal transition temperatures and increases the micelle size, while RP addition mitigates the decreases in modulus traditionally associated with small molecule incorporation. This fundamental understanding yields new strategies for tuning the mechanical and structural properties of the hydrogels, enabling design of drug-loaded formulations with ideal thermal transitions for a range of clinical applications.
Collapse
Affiliation(s)
- Joanna M White
- University of Minnesota, 421 Washington Ave SE, Minneapolis, 55455, MN, USA
| | | |
Collapse
|
148
|
Poloxamer 188 as surfactant in biological formulations - An alternative for polysorbate 20/80? Int J Pharm 2022; 620:121706. [PMID: 35367584 DOI: 10.1016/j.ijpharm.2022.121706] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Surfactants are used to stabilize biologics. Particularly, polysorbates (Tween® 20 and Tween® 80) dominate the group of surfactants in protein and especially antibody drug products. Since decades drug developers rely on the ethoxylated sorbitan fatty acid ester mixtures to stabilize sensitive molecules such as proteins. Reasons are (i) excellent stabilizing properties, and (ii) well recognized safety and tolerability profile of these polysorbates in humans, especially for parenteral applications. However, over the past decade concerns regarding the stability of these two polysorbates were raised. The search of alternatives with preferably less reservations concerning degradation and product quality reducing issues leads, among others, to poloxamer 188 (e.g. Kolliphor® P188), a nonionic triblock-copolymer surfactant. This review sums up our current knowledge related to the characterization and physico-chemical properties of poloxamer 188, its analytics and stability properties for biological formulations. Furthermore, the advantages and disadvantages as a suitable polysorbate-alternative for the stabilization of biologics are discussed.
Collapse
|
149
|
Nguyen NT, Bui QA, Huynh PD, Nguyen QH, Tran NQ, Viet NT, Nguyen DT. Curcumin and Paclitaxel co-Loaded Heparin and Poloxamer P403 Hybrid Nanocarrier for Improved Synergistic Efficacy in Breast Cancer. Curr Drug Deliv 2022; 19:966-979. [DOI: 10.2174/1567201819666220401095923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Introduction:
Multi-drug nanosystem has been employed in several therapeutic models due to the synergistic effect of the drugs and/or bioactive compounds, which help in tumor-targeting and limit usual side effects of chemotherapy.
Methods:
In this research, we developed the amphiphilic Heparin-Poloxamer P403 (HSP) nanogel that can load curcumin (CUR) and Paclitaxel (PTX) through the hydrophobic core of Poloxamer P403. The features of HSP nanogel are assessed through Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), differential light scattering (DLS), and critical micelle concentration (CMC). Nanogel and its duel-loaded platform show high stability and spherical morphology.
Results:
The drug release profile indicates fast release at pH 5.5, suggesting effective drug distribution at the tumor site. In vitro research confirms lower cytotoxicity of HSP@CUR@PTX compared with free PTX and higher inhibition effect with MCF-7 than HSP@PTX. These results support the synergism between PTX and CUR.
Conclusion,:
HSP@CUR@PTX suggests a prominent strategy for achieving the synergistic effect of PTX and CUR to circumvent undesirable effects in breast cancer treatment.
Collapse
Affiliation(s)
- Ngoc The Nguyen
- Faculty of Medicine - Pharmacy, Tra Vinh University, Tra Vinh City, Vietnam
| | - Quynh Anh Bui
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Phuong Duy Huynh
- Faculty of Medicine - Pharmacy, Tra Vinh University, Tra Vinh City, Vietnam
| | | | - Ngoc Quyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam;
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
| | - Nguyen Thanh Viet
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Dinh Trung Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
150
|
Alavarse AC, Frachini ECG, da Silva RLCG, Lima VH, Shavandi A, Petri DFS. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol 2022; 202:558-596. [PMID: 35038469 DOI: 10.1016/j.ijbiomac.2022.01.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Polysaccharides and proteins are important macromolecules for developing hydrogels devoted to biomedical applications. Chemical hydrogels offer chemical, mechanical, and dimensional stability than physical hydrogels due to the chemical bonds among the chains mediated by crosslinkers. There are many crosslinkers to synthesize polysaccharides and proteins based on hydrogels. In this review, we revisited the crosslinking reaction mechanisms between synthetic or natural crosslinkers and polysaccharides or proteins. The selected synthetic crosslinkers were glutaraldehyde, carbodiimide, boric acid, sodium trimetaphosphate, N,N'-methylene bisacrylamide, and polycarboxylic acid, whereas the selected natural crosslinkers included transglutaminase, tyrosinase, horseradish peroxidase, laccase, sortase A, genipin, vanillin, tannic acid, and phytic acid. No less important are the reactions involving click chemistry and the macromolecular crosslinkers for polysaccharides and proteins. Literature examples of polysaccharides or proteins crosslinked by the different strategies were presented along with the corresponding highlights. The general mechanism involved in chemical crosslinking mediated by gamma and UV radiation was discussed, with particular attention to materials commonly used in digital light processing. The evaluation of crosslinking efficiency by gravimetric measurements, rheology, and spectroscopic techniques was presented. Finally, we presented the challenges and opportunities to create safe chemical hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Alex Carvalho Alavarse
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Emilli Caroline Garcia Frachini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | - Vitoria Hashimoto Lima
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|