101
|
Hanaoka H, Ohshima Y, Suzuki H, Sasaki I, Watabe T, Ooe K, Watanabe S, Ishioka NS. Enhancing the Therapeutic Effect of 2- 211At-astato-α-methyl-L-phenylalanine with Probenecid Loading. Cancers (Basel) 2021; 13:cancers13215514. [PMID: 34771676 PMCID: PMC8583516 DOI: 10.3390/cancers13215514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary To enhance the therapeutic effect of 2-211At-astato-α-methyl-L-phenylalanine (2-211At-AAMP), a radiopharmaceutical for targeted alpha therapy, we evaluated the effect of probenecid loading on its biodistribution and therapeutic effect in mice. Probenecid preloading significantly delayed the clearance of 2-211At-AAMP from the blood, increasing its accumulation in tumors. Consequently, the therapeutic effect of 2-211At-AAMP markedly improved. These results indicate that 2-211At-AAMP with probenecid loading is useful for the treatment of various types of cancers. Abstract L-type amino acid transporter 1 (LAT1) might be a useful target for tumor therapy since it is highly expressed in various types of cancers. We previously developed an astatine-211 (211At)-labeled amino acid derivative, 2-211At-astato-α-methyl-L-phenylalanine (2-211At-AAMP), and demonstrated its therapeutic potential for LAT1-positive cancers. However, the therapeutic effect of 2-211At-AAMP was insufficient, probably due to its low tumor retention. The preloading of probenecid, an organic anion transporter inhibitor, can delay the clearance of some amino acid tracers from the blood and consequently increase their accumulation in tumors. In this study, we evaluated the effect of probenecid preloading on the biodistribution and therapeutic effect of 2-211At-AAMP in mice. In biodistribution studies, the blood radioactivity of 2-211At-AAMP significantly increased with probenecid preloading. Consequently, the accumulation of 2-211At-AAMP in tumors was significantly higher with probenecid than without probenecid loading. In a therapeutic study, tumor growth was suppressed by 2-211At-AAMP with probenecid, and the tumor volume was significantly lower in the treatment group than in the untreated control group from day 2 to day 30 (end of the follow-up period) after treatment. These results indicate that probenecid loading could improve the therapeutic effect of 2-211At-AAMP by increasing its accumulation in tumors.
Collapse
Affiliation(s)
- Hirofumi Hanaoka
- Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Osaka, Japan
- Department of Radiotheranostics, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
- Correspondence: ; Tel.: +81-72-804-2452
| | - Yasuhiro Ohshima
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| | - Hiroyuki Suzuki
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Chiba, Japan;
| | - Ichiro Sasaki
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, 1-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (T.W.); (K.O.)
| | - Kazuhiro Ooe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, 1-1 Yamadaoka, Suita 565-0871, Osaka, Japan; (T.W.); (K.O.)
| | - Shigeki Watanabe
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| | - Noriko S. Ishioka
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan; (Y.O.); (I.S.); (S.W.); (N.S.I.)
| |
Collapse
|
102
|
Evaluation of Aminopolycarboxylate Chelators for Whole-Body Clearance of Free 225Ac: A Feasibility Study to Reduce Unexpected Radiation Exposure during Targeted Alpha Therapy. Pharmaceutics 2021; 13:pharmaceutics13101706. [PMID: 34683999 PMCID: PMC8540721 DOI: 10.3390/pharmaceutics13101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
Actinium-225 (225Ac) is a promising radionuclide used in targeted alpha therapy (TAT). Although 225Ac labeling of bifunctional chelating ligands is effective, previous in vivo studies reported that free 225Ac can be released from the drugs and that such free 225Ac is predominantly accumulated in the liver and could cause unexpected toxicity. To accelerate the clinical development of 225Ac TAT with a variety of drugs, preparing methods to deal with any unexpected toxicity would be valuable. The aim of this study was to evaluate the feasibility of various chelators for reducing and excreting free 225Ac and compare their chemical structures. Nine candidate chelators (D-penicillamine, dimercaprol, Ca-DTPA, Ca-EDTA, CyDTA, GEDTA TTHA, Ca-TTHA, and DO3A) were evaluated in vitro and in vivo. The biodistribution and dosimetry of free 225Ac were examined in mice before an in vivo chelating study. The liver exhibited pronounced 225Ac uptake, with an estimated human absorbed dose of 4.76 SvRBE5/MBq. Aminopolycarboxylate chelators with five and six carboxylic groups, Ca-DTPA and Ca-TTHA, significantly reduced 225Ac retention in the liver (22% and 30%, respectively). Significant 225Ac reductions were observed in the heart and remainder of the body with both Ca-DTPA and Ca-TTHA, and in the lung, kidney, and spleen with Ca-TTHA. In vitro interaction analysis supported the in vivo reduction ability of Ca-DTPA and Ca-TTHA. In conclusion, aminopolycarboxylate chelators with five and six carboxylic groups, Ca-DTPA and Ca-TTHA, were effective for whole-body clearance of free 225Ac. This feasibility study provides useful information for reducing undesirable radiation exposure from free 225Ac.
Collapse
|