102
|
Liu S, Han S, Dai Q, Li S, Li J. BICAO-induced ischaemia caused depressive-like behaviours and caspase-8/-9-dependent brain regional neural cell apoptosis in mice. Stroke Vasc Neurol 2017; 3:1-8. [PMID: 29600001 PMCID: PMC5870644 DOI: 10.1136/svn-2017-000109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 11/04/2022] Open
Abstract
Introduction Cerebral ischaemia-induced depression is among the most frequent neuropsychiatric consequences and adversely impact the prognosis and recovery of patients. Although several brain regions have been implied in the development of ischaemia-induced depression, the brain region-specific neural cell apoptosis pathways have not been clarified yet. Methods In this study, bilateral internal carotid artery occlusion (BICAO) mouse model was established to induce cerebral ischaemia. Sucrose preference, tail suspension and forced swim tests were conducted on mice at 7, 21 and 30 days after BICAO treatment. In addition, brain regional ischaemic neuron loss was investigated by using immunofluorescent staining of neuronal nuclei (NeuN) and caspase-8/-9-dependent cell apoptosis was also examined by western blot analysis. Results BICAO-induced cerebral ischaemia resulted in decreased sucrose preference and increased immobility times, which were representative depressive-like behaviours of mice until 30 days after BICAO treatment compared with Sham-operated mice. This outcome was associated with significant neuron loss by using immunofluorescent staining and increased cleavage levels of pro-caspase-3/-8/-9, but not pro-caspase-12, by western blot analysis in hypothalamus, midbrain, prefrontal cortex and hippocampus of mice. Conclusions This study showed that BICAO-induced ischaemia caused depressive-like behaviours and caspase-8/-9-dependent neural cell apoptosis in several brain regions, including hypothalamus and midbrain of mice.
Collapse
Affiliation(s)
- Shuiqiao Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Qingqing Dai
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Shujuan Li
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
103
|
Li M, Li C, Yu H, Cai X, Shen X, Sun X, Wang J, Zhang Y, Wang C. Lentivirus-mediated interleukin-1β (IL-1β) knock-down in the hippocampus alleviates lipopolysaccharide (LPS)-induced memory deficits and anxiety- and depression-like behaviors in mice. J Neuroinflammation 2017; 14:190. [PMID: 28931410 PMCID: PMC5607621 DOI: 10.1186/s12974-017-0964-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Background Recent evidence has suggested that peripheral inflammatory responses induced by lipopolysaccharides (LPS) play an important role in neuropsychiatric dysfunction in rodents. Interleukin-1β (IL-1β), a pro-inflammatory cytokine, has been proposed to be a key mediator in a variety of behavioral dysfunction induced by LPS in mice. Thus, inhibition of IL-1β may have a therapeutic benefit in the treatment of neuropsychiatric disorders. However, the precise underlying mechanism of knock-down of IL-1β in repairing behavioral changes by LPS remains unclear. Methods The mice were treated with either IL-1β shRNA lentivirus or non-silencing shRNA control (NS shRNA) lentivirus by microinjection into the dentate gyrus (DG) regions of the hippocampus. After 7 days of recovery, LPS (1 mg/kg, i.p.) or saline was administered. The behavioral task for memory deficits was conducted in mice by the novel object recognition test (NORT), the anxiety-like behaviors were evaluated by the elevated zero maze (EZM), and the depression-like behaviors were examined by the sucrose preference test (SPT) and the forced swimming test (FST). Furthermore, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor erythroid-derived 2-like 2 (Nrf2), heme oxygenase 1 (HO1), IL-1β, tumor necrosis factor (TNF-α), neuropeptide VGF (non-acronymic), and brain-derived neurotrophic factor (BDNF) were assayed. Results Our results demonstrated that IL-1β knock-down in the hippocampus significantly attenuated the memory deficits and anxiety- and depression-like behaviors induced by LPS in mice. In addition, IL-1β knock-down ameliorated the oxidative and neuroinflammatory responses and abolished the downregulation of VGF and BDNF induced by LPS. Conclusions Collectively, our findings suggest that IL-1β is necessary for the oxidative and neuroinflammatory responses produced by LPS and offers a novel drug target in the IL-1β/oxidative/neuroinflammatory/neurotrophic pathway for treating neuropsychiatric disorders that are closely associated with neuroinflammation, oxidative stress, and the downregulation of VGF and BDNF.
Collapse
Affiliation(s)
- Mengmeng Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Chenli Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Hanjie Yu
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Xiongxiong Cai
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Xinbei Shen
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Xin Sun
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Jinting Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yanhua Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China. .,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China. .,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China. .,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
104
|
Strawbridge R, Young AH, Cleare AJ. Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatr Dis Treat 2017; 13:1245-1262. [PMID: 28546750 PMCID: PMC5436791 DOI: 10.2147/ndt.s114542] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A plethora of research has implicated hundreds of putative biomarkers for depression, but has not yet fully elucidated their roles in depressive illness or established what is abnormal in which patients and how biologic information can be used to enhance diagnosis, treatment and prognosis. This lack of progress is partially due to the nature and heterogeneity of depression, in conjunction with methodological heterogeneity within the research literature and the large array of biomarkers with potential, the expression of which often varies according to many factors. We review the available literature, which indicates that markers involved in inflammatory, neurotrophic and metabolic processes, as well as neurotransmitter and neuroendocrine system components, represent highly promising candidates. These may be measured through genetic and epigenetic, transcriptomic and proteomic, metabolomic and neuroimaging assessments. The use of novel approaches and systematic research programs is now required to determine whether, and which, biomarkers can be used to predict response to treatment, stratify patients to specific treatments and develop targets for new interventions. We conclude that there is much promise for reducing the burden of depression through further developing and expanding these research avenues.
Collapse
Affiliation(s)
- Rebecca Strawbridge
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|