101
|
Yaghmur A, Al-Hosayni S, Amenitsch H, Salentinig S. Structural Investigation of Bulk and Dispersed Inverse Lyotropic Hexagonal Liquid Crystalline Phases of Eicosapentaenoic Acid Monoglyceride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14045-14057. [PMID: 29136473 DOI: 10.1021/acs.langmuir.7b03078] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent studies demonstrated the potential therapeutic use of newly synthesized omega-3 (ω-3) polyunsaturated fatty acid (PUFA) monoglycerides owing to their beneficial health effects in various disorders including cancer and inflammation diseases. To date, the research was mainly focused on exploring the biological effects of these functional lipids. However, to the best of our knowledge, there is no report on the hydration-mediated self assembly of these lipids that leads to the formation of nanostructures, which are attractive for use as vehicles for the delivery of drugs and functional foods. In the present study, we investigated the temperature-composition phase behaviour of eicosapentaenoic acid monoglyceride (MAG-EPA), which is one of the most investigated ω-3 PUFA monoglycerides, during a heating-cooling cycle in the temperature range of 5-60 °C. Experimental synchrotron small-angle X-ray scattering (SAXS) evidence on the formation of a dominant inverse hexagonal (H2) lyotropic liquid crystalline phase and its temperature-induced transition to an inverse micellar solution (L2 phase) is presented for the fully hydrated bulk MAG-EPA system and its corresponding dispersion. We produced colloidal MAG-EPA hexosomes with an internal inverse hexagonal (H2) lyotropic crystalline phase in the presence of F127, a well-known polymeric stabilizer, or citrem, which is a negatively charged food-grade emulsifier. In this work, we report also on the formation of MAG-EPA hexosomes by vortexing MAG-EPA in excess aqueous medium containing F127 at room temperature. This low-energy emulsification method is different than most reported studies in the literature that have demonstrated the need for using a high-energy input during the emulsification step or adding an organic solvent for the formation of such colloidal nonlamellar liquid crystalline dispersions. The designed nanoparticles hold promise for future drug and functional food delivery applications due to their unique structural properties and the potential health-promoting effects of MAG-EPA.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Sabah Al-Hosayni
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Heinz Amenitsch
- Elettra-Sincrotrone Trieste , Strada Statale 14, 34149 Basovizza, Trieste, Italy
| | - Stefan Salentinig
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
102
|
Khaliqi K, Ghazal A, Azmi IDM, Amenitsch H, Mortensen K, Salentinig S, Yaghmur A. Direct monitoring of lipid transfer on exposure of citrem nanoparticles to an ethanol solution containing soybean phospholipids by combining synchrotron SAXS with microfluidics. Analyst 2017; 142:3118-3126. [PMID: 28744529 DOI: 10.1039/c7an00860k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Lipid exchange among citrem nanoparticles and an ethanol micellar solution containing soy phosphatidylcholine was investigated in situ by coupling small angle X-ray scattering with a microfluidic device. The produced soy phosphatidylcholine/citrem nanoparticles have great potential in the development of hemocompatible nanocarriers for drug delivery.
Collapse
Affiliation(s)
- K Khaliqi
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | | | |
Collapse
|
103
|
de Campo L, Castle T, Hyde ST. Optimal packings of three-arm star polyphiles: from tricontinuous to quasi-uniformly striped bicontinuous forms. Interface Focus 2017. [PMID: 28630673 DOI: 10.1098/rsfs.2016.0130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Star-shaped molecules with three mutually immiscible arms self-assemble to form a variety of novel structures, with conformations that attempt to minimize interfacial area between the domains composed of the different arms. The geometric frustration caused by the joining of these arms at a common centre limits the size and shape of each domain, encouraging the creation of complex and interesting solutions. Some solutions are tricontinuous, and these solutions (and others) share aspects of bicontinuous structures with amphiphilic assemblies as similar molecular segregation factors are at work. We describe both highly symmetric and balanced structures, as well as unbalanced solutions that take the form of intricately striped amphiphilic membranes. All these patterns can result in chiral assemblies with multiple networks.
Collapse
Affiliation(s)
- Liliana de Campo
- Department of Applied Mathematics, Research School of Physical Sciences, Australian National University, Canberra, Australia.,Australian Nuclear Science and Technology Organisation, ACNS, Lucas Heights, Australia
| | - Toen Castle
- Department of Applied Mathematics, Research School of Physical Sciences, Australian National University, Canberra, Australia.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen T Hyde
- Department of Applied Mathematics, Research School of Physical Sciences, Australian National University, Canberra, Australia
| |
Collapse
|
104
|
Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces O. Engineering Compartmentalized Biomimetic Micro- and Nanocontainers. ACS NANO 2017; 11:6549-6565. [PMID: 28658575 DOI: 10.1021/acsnano.7b03245] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Compartmentalization of biological content and function is a key architectural feature in biology, where membrane bound micro- and nanocompartments are used for performing a host of highly specialized and tightly regulated biological functions. The benefit of compartmentalization as a design principle is behind its ubiquity in cells and has led to it being a central engineering theme in construction of artificial cell-like systems. In this review, we discuss the attractions of designing compartmentalized membrane-bound constructs and review a range of biomimetic membrane architectures that span length scales, focusing on lipid-based structures but also addressing polymer-based and hybrid approaches. These include nested vesicles, multicompartment vesicles, large-scale vesicle networks, as well as droplet interface bilayers, and double-emulsion multiphase systems (multisomes). We outline key examples of how such structures have been functionalized with biological and synthetic machinery, for example, to manufacture and deliver drugs and metabolic compounds, to replicate intracellular signaling cascades, and to demonstrate collective behaviors as minimal tissue constructs. Particular emphasis is placed on the applications of these architectures and the state-of-the-art microfluidic engineering required to fabricate, functionalize, and precisely assemble them. Finally, we outline the future directions of these technologies and highlight how they could be applied to engineer the next generation of cell models, therapeutic agents, and microreactors, together with the diverse applications in the emerging field of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mark Friddin
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Yuval Elani
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Robert V Law
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - John M Seddon
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Oscar Ces
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
105
|
Biffi S, Andolfi L, Caltagirone C, Garrovo C, Falchi AM, Lippolis V, Lorenzon A, Macor P, Meli V, Monduzzi M, Obiols-Rabasa M, Petrizza L, Prodi L, Rosa A, Schmidt J, Talmon Y, Murgia S. Cubosomes for in vivo fluorescence lifetime imaging. NANOTECHNOLOGY 2017; 28:055102. [PMID: 28032617 DOI: 10.1088/1361-6528/28/5/055102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein we provided the first proof of principle for in vivo fluorescence optical imaging application using monoolein-based cubosomes in a healthy mouse animal model. This formulation, administered at a non-cytotoxic concentration, was capable of providing both exogenous contrast for NIR fluorescence imaging with very high efficiency and chemospecific information upon lifetime analysis. Time-resolved measurements of fluorescence after the intravenous injection of cubosomes revealed that the dye rapidly accumulated mainly in the liver, while lifetimes profiles obtained in vivo allowed for discriminating between free dye or dye embedded within the cubosome nanostructure after injection.
Collapse
Affiliation(s)
- Stefania Biffi
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Akbar S, Anwar A, Ayish A, Elliott JM, Squires AM. Phytantriol based smart nano-carriers for drug delivery applications. Eur J Pharm Sci 2017; 101:31-42. [PMID: 28137471 DOI: 10.1016/j.ejps.2017.01.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/14/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
From the last couple of decades, lyotropic liquid crystals have garnered enormous attentions in medical and pharmaceutical sciences. Non-toxic, chemically stable, and biocompatible properties of these liquid crystal systems are contributing to their applications for drug delivery. Among a large variety of liquid crystal phases, inverse bicontinuous cubic and inverse hexagonal mesophases have been extensively investigated for their ability to encapsulate and controlled release of bioactive molecules of various sizes and polarity. The concept of changing the drug release rate in situ by simply changing the mesophase structure is much more fascinating. The encapsulation of bioactive compounds in mesophase systems of desirable features in sub-micron sized particles such as hexosomes and cubosomes, at ambient and high temperature is bringing innovation in the development of new drug applications. This review article outlines unique structural features of cubosomes and hexosomes, their methods of productions, factors affecting their formations and their potential utilization as smart nano-carriers for biopharmaceuticals in drug delivery applications.
Collapse
Affiliation(s)
- Samina Akbar
- Department of Basic Sciences and Humanities, University of Engineering and Technology, KSK Campus, GT Road, Lahore, Pakistan.
| | - Aneela Anwar
- Department of Basic Sciences and Humanities, University of Engineering and Technology, KSK Campus, GT Road, Lahore, Pakistan
| | | | - Joanne M Elliott
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD
| | - Adam M Squires
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD
| |
Collapse
|
107
|
Nazaruk E, Majkowska-Pilip A, Bilewicz R. Lipidic Cubic-Phase Nanoparticles-Cubosomes for Efficient Drug Delivery to Cancer Cells. Chempluschem 2017; 82:570-575. [PMID: 31961592 DOI: 10.1002/cplu.201600534] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/15/2016] [Indexed: 12/18/2022]
Abstract
Self-assembled lipid liquid-crystalline nanoparticles, known as cubosomes, were used for the delivery of the anticancer drug doxorubicin (DOX). Several properties make cubosomes a promising alternative in the development of controlled-release systems for drug delivery. They have a larger internal surface area than other carriers, hence deliver more drug molecules to the affected cells and maintain the cubic symmetry of the parent lipidic cubic phase, but at the same time they have a lower viscosity thereby facilitating transport of the drug. The pH-dependent drug release profiles, evaluated by voltammetry, demonstrated triggered drug release from the cubosome carrier to the environment of the cancer cells, where pH is lower. The anticancer effect of a DOX-loaded cubosome on the glioblastoma T98G cell line was found to be highly efficient and required lower concentrations of DOX to inhibit the proliferation of cancer cells than the effective concentrations of free DOX.
Collapse
Affiliation(s)
- Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
108
|
Ghazal A, Gontsarik M, Kutter JP, Lafleur JP, Ahmadvand D, Labrador A, Salentinig S, Yaghmur A. Microfluidic Platform for the Continuous Production and Characterization of Multilamellar Vesicles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study. J Phys Chem Lett 2017; 8:73-79. [PMID: 27936765 DOI: 10.1021/acs.jpclett.6b02468] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A microfluidic platform combined with synchrotron small-angle X-ray scattering (SAXS) was used for monitoring the continuous production of multilamellar vesicles (MLVs). Their production was fast and started to evolve within less than 0.43 s of contact between the lipids and the aqueous phase. To obtain nanoparticles with a narrow size distribution, it was important to use a modified hydrodynamic flow focusing (HFF) microfluidic device with narrower microchannels than those normally used for SAXS experiments. Monodispersed MLVs as small as 160 nm in size, with a polydispersity index (PDI) of approximately 0.15 were achieved. The nanoparticles produced were smaller and had a narrower size distribution than those obtained via conventional bulk mixing methods. This microfluidic platform therefore has a great potential for the continuous production of monodispersed NPs.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Mark Gontsarik
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Josiane P Lafleur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Davoud Ahmadvand
- Iran University of Medical Sciences , Shahid Hemmat Highway, Tehran, Iran
| | - Ana Labrador
- MAX IV Laboratory, Lund University , 223 62 Lund, Sweden
| | - Stefan Salentinig
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
109
|
Fong WK, Sánchez-Ferrer A, Ortelli FG, Sun W, Boyd BJ, Mezzenga R. Dynamic formation of nanostructured particles from vesicles via invertase hydrolysis for on-demand delivery. RSC Adv 2017. [DOI: 10.1039/c6ra26688f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Controlled hydrolysis via invertase action alters molecular shape and therefore lipid curvature, consequently triggering the release of encapsulated drug.
Collapse
Affiliation(s)
- Wye-Khay Fong
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
- Drug Delivery, Disposition & Dynamics
| | | | | | - Wenjie Sun
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
| | - Ben J. Boyd
- Drug Delivery, Disposition & Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Raffaele Mezzenga
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
| |
Collapse
|
110
|
Meli V, Caltagirone C, Sinico C, Lai F, Falchi AM, Monduzzi M, Obiols-Rabasa M, Picci G, Rosa A, Schmidt J, Talmon Y, Murgia S. Theranostic hexosomes for cancer treatments: an in vitro study. NEW J CHEM 2017; 41:1558-1565. [DOI: 10.1039/c6nj03232j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Targeted liquid crystalline nanoparticles with a reverse hexagonal inner structure as diagnostic and therapeutic tools in oncology.
Collapse
|
111
|
Ghazal A, Gontsarik M, Kutter JP, Lafleur JP, Labrador A, Mortensen K, Yaghmur A. Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576716014199] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This article introduces a simple microfluidic device that can be combined with synchrotron small-angle X-ray scattering (SAXS) for monitoring dynamic structural transitions. The microfluidic device is a thiol–ene-based system equipped with 125 µm-thick polystyrene windows, which are suitable for X-ray experiments. The device was prepared by soft lithography using elastomeric molds followed by a simple UV-initiated curing step to polymerize the chip material and simultaneously seal the device with the polystyrene windows. The microfluidic device was successfully used to explore the dynamics of the structural transitions of phytantriol/dioleoylphosphatidylglycerol-based cubosomes on exposure to a buffer containing calcium ions. The resulting SAXS data were resolved in the time frame between 0.5 and 5.5 s, and a calcium-triggered structural transition from an internal inverted-type cubic phase of symmetryIm3mto an internal inverted-type cubic phase of symmetryPn3mwas detected. The combination of microfluidics with X-ray techniques opens the door to the investigation of early dynamic structural transitions, which is not possible with conventional techniques such as glass flow cells. The combination of microfluidics with X-ray techniques can be used for investigating protein unfolding, for monitoring the formation of nanoparticles in real time, and for other biomedical and pharmaceutical investigations.
Collapse
|
112
|
Park K. Hemocompatible and immune-safe library of citrem-phospholipid liquid crystalline nanoplatforms. J Control Release 2016; 239:249. [DOI: 10.1016/j.jconrel.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
113
|
A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies. J Control Release 2016; 239:1-9. [DOI: 10.1016/j.jconrel.2016.08.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
|
114
|
Jabłonowska E, Nazaruk E, Matyszewska D, Speziale C, Mezzenga R, Landau EM, Bilewicz R. Interactions of Lipidic Cubic Phase Nanoparticles with Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9640-8. [PMID: 27550742 DOI: 10.1021/acs.langmuir.6b01746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The interactions of liquid-crystalline monoolein (GMO) cubic phase nanoparticles with various model lipid membranes spread at the air-solution interface by the Langmuir technique were investigated. Cubosomes have attracted attention as potential biocompatible drug delivery systems, and thus understanding their mode of interaction with membranes is of special interest. Cubosomes spreading at the air-water interface as well as interactions with a monolayer of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) compressed to different surface pressures were studied by monitoring surface pressure-time dependencies at constant area. Progressive incorporation of the nanoparticles was shown to lead to mixed monolayer formation. The concentration of cubosomes influenced the mechanism of incorporation, as well as the fluidity and permeability of the resulting lipid membranes. Brewster angle microscopy images reflected the dependence of the monolayer structure on the cubosomes presence in the subphase. A parameter Csat was introduced to indicate the point of saturation of the lipid membrane with the cubosomal material. This parameter was found to depend on the surface pressure showing that the cubosomes disintegrate in prolonged contact with the membrane, filling available voids in the lipid membrane. At highest surface pressures when the layer is most compact, the penetration of cubosomal material is not possible and only some exchange with the membrane lipid becomes the route of including GMO into the layer. Finally, comparative studies of the interactions between lipids with various headgroup charges with cubosomes suggest that at high surface pressure an exchange of lipid component between the monolayer and the cubosome in its intact form may occur.
Collapse
Affiliation(s)
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Chiara Speziale
- Department of Health Sciences & Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Ehud M Landau
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
115
|
Gontsarik M, Buhmann MT, Yaghmur A, Ren Q, Maniura-Weber K, Salentinig S. Antimicrobial Peptide-Driven Colloidal Transformations in Liquid-Crystalline Nanocarriers. J Phys Chem Lett 2016; 7:3482-3486. [PMID: 27541048 DOI: 10.1021/acs.jpclett.6b01622] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Designing efficient colloidal systems for the delivery of membrane active antimicrobial peptides requires in-depth understanding of their structural and morphological characteristics. Using dispersions of inverted type bicontinuous cubic phase (cubosomes), we examine the effect of integrating the amphiphilic peptide LL-37 at different concentrations on the self-assembled structure and evaluate its bactericidal ability against Escherichia coli. Small-angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy show that LL-37 integrates into the bicontinuous cubic structure, inducing colloidal transformations to sponge and lamellar phases and micelles in a concentration-dependent manner. These investigations, together with in vitro evaluation studies using a clinically relevant bacterial strain, established the composition-nanostructure-activity relationship that can guide the design of new nanocarriers for antimicrobial peptides and may provide essential knowledge on the mechanisms underlying the bacterial membrane disruption with peptide-loaded nanostructures.
Collapse
Affiliation(s)
- Mark Gontsarik
- Laboratory for Biointerfaces, Department Materials meet Life, Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Matthias T Buhmann
- Laboratory for Biointerfaces, Department Materials meet Life, Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Qun Ren
- Laboratory for Biointerfaces, Department Materials meet Life, Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Department Materials meet Life, Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefan Salentinig
- Laboratory for Biointerfaces, Department Materials meet Life, Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
116
|
Miceli V, Meli V, Blanchard-Desce M, Bsaibess T, Pampalone M, Conaldi PG, Caltagirone C, Obiols-Rabasa M, Schmidt J, Talmon Y, Casu A, Murgia S. In vitro imaging of β-cells using fluorescent cubic bicontinuous liquid crystalline nanoparticles. RSC Adv 2016; 6:62119-62127. [DOI: 10.1039/c6ra09616f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Imaging of rat pancreatic β-cells using cubic bicontinuous liquid crystalline nanoparticles loaded with the TB139 fluorescent dye.
Collapse
|