101
|
Al-Jaderi Z, Maghazachi AA. Utilization of Dimethyl Fumarate and Related Molecules for Treatment of Multiple Sclerosis, Cancer, and Other Diseases. Front Immunol 2016; 7:278. [PMID: 27499754 PMCID: PMC4956641 DOI: 10.3389/fimmu.2016.00278] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022] Open
Abstract
Several drugs have been approved for treatment of multiple sclerosis (MS). Dimethyl fumarate (DMF) is utilized as an oral drug to treat this disease and is proven to be potent with less side effects than several other drugs. On the other hand, monomethyl fumarate (MMF), a related compound, has not been examined in greater details although it has the potential as a therapeutic drug for MS and other diseases. The mechanism of action of DMF or MMF is related to their ability to enhance the antioxidant pathways and to inhibit reactive oxygen species. However, other mechanisms have also been described, which include effects on monocytes, dendritic cells, T cells, and natural killer cells. It is also reported that DMF might be useful for treating psoriasis, asthma, aggressive breast cancers, hematopoeitic tumors, inflammatory bowel disease, intracerebral hemorrhage, osteoarthritis, chronic pancreatitis, and retinal ischemia. In this article, we will touch on some of these diseases with an emphasis on the effects of DMF and MMF on various immune cells.
Collapse
Affiliation(s)
- Zaidoon Al-Jaderi
- Department of Clinical Sciences, College of Medicine and Sahrjah Institute for Medical Research, University of Sharjah , Sharjah , United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and Sahrjah Institute for Medical Research, University of Sharjah , Sharjah , United Arab Emirates
| |
Collapse
|
102
|
Ghalamfarsa G, Hojjat-Farsangi M, Mohammadnia-Afrouzi M, Anvari E, Farhadi S, Yousefi M, Jadidi-Niaragh F. Application of nanomedicine for crossing the blood–brain barrier: Theranostic opportunities in multiple sclerosis. J Immunotoxicol 2016; 13:603-19. [DOI: 10.3109/1547691x.2016.1159264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ghasem Ghalamfarsa
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mousa Mohammadnia-Afrouzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Shohreh Farhadi
- Department of Agricultural Engineering, Islamic Azad University, Tehran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
103
|
Tafferner N, Barthelmes J, Eberle M, Ulshöfer T, Henke M, deBruin N, Mayer CA, Foerch C, Geisslinger G, Parnham MJ, Schiffmann S. Alpha-methylacyl-CoA racemase deletion has mutually counteracting effects on T-cell responses, associated with unchanged course of EAE. Eur J Immunol 2016; 46:570-81. [DOI: 10.1002/eji.201545782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/05/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Nadja Tafferner
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt am Main Germany
| | - Julia Barthelmes
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology; Goethe-University Hospital Frankfurt; Frankfurt/Main Germany
| | - Max Eberle
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology; Goethe-University Hospital Frankfurt; Frankfurt/Main Germany
| | - Thomas Ulshöfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt am Main Germany
| | - Marina Henke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt am Main Germany
| | - Natasja deBruin
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt am Main Germany
| | - Christoph A. Mayer
- Department of Neurology; Goethe-University Frankfurt; Frankfurt/Main Germany
| | - Christian Foerch
- Department of Neurology; Goethe-University Frankfurt; Frankfurt/Main Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology; Goethe-University Hospital Frankfurt; Frankfurt/Main Germany
| | - Michael J. Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt am Main Germany
| | - Susanne Schiffmann
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology; Goethe-University Hospital Frankfurt; Frankfurt/Main Germany
| |
Collapse
|
104
|
Inactivation of Protein Tyrosine Phosphatase Receptor Type Z by Pleiotrophin Promotes Remyelination through Activation of Differentiation of Oligodendrocyte Precursor Cells. J Neurosci 2015; 35:12162-71. [PMID: 26338327 DOI: 10.1523/jneurosci.2127-15.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Multiple sclerosis (MS) is a progressive neurological disorder associated with myelin destruction and neurodegeneration. Oligodendrocyte precursor cells (OPCs) present in demyelinated lesions gradually fail to differentiate properly, so remyelination becomes incomplete. Protein tyrosine phosphatase receptor type Z (PTPRZ), one of the most abundant protein tyrosine phosphatases expressed in OPCs, is known to suppress oligodendrocyte differentiation and maintain their precursor cell stage. In the present study, we examined the in vivo mechanisms for remyelination using a cuprizone-induced demyelination model. Ptprz-deficient and wild-type mice both exhibited severe demyelination and axonal damage in the corpus callosum after cuprizone feeding. The similar accumulation of OPCs was observed in the lesioned area in both mice; however, remyelination was significantly accelerated in Ptprz-deficient mice after the removal of cuprizone. After demyelination, the expression of pleiotrophin (PTN), an inhibitory ligand for PTPRZ, was transiently increased in mouse brains, particularly in the neurons involved, suggesting its role in promoting remyelination by inactivating PTPRZ activity. In support of this view, oligodendrocyte differentiation was augmented in a primary culture of oligodendrocyte-lineage cells from wild-type mice in response to PTN. In contrast, these cells from Ptprz-deficient mice showed higher oligodendrocyte differentiation without PTN and differentiation was not enhanced by its addition. We further demonstrated that PTN treatment increased the tyrosine phosphorylation of p190 RhoGAP, a PTPRZ substrate, using an established line of OPCs. Therefore, PTPRZ inactivation in OPCs by PTN, which is secreted from demyelinated axons, may be the mechanism responsible for oligodendrocyte differentiation during reparative remyelination in the CNS. SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is an inflammatory disease of the CNS that destroys myelin, the insulation that surrounds axons. Associated damages to oligodendrocytes (the cells that produce myelin) and nerve fibers produce neurological disability. Most patients with MS have an initial relapsing-remitting course for 5-15 years. Remyelination during the early stages of the disease process has been documented; however, the molecular mechanism underlying remyelination has not been understood. Protein tyrosine phosphatase receptor type Z (PTPRZ) is a receptor-like protein tyrosine phosphatase preferentially expressed in the CNS. This study shows that pleiotrophin, an inhibitory ligand for PTPRZ, is transiently expressed and released from demyelinated neurons to inactivate PTPRZ in oligodendrocyte precursor cells present in the lesioned part, thereby allowing their differentiation for remyelination.
Collapse
|
105
|
Zhao C, Du H, Xu L, Wang J, Tang L, Cao Y, Li C, Wang Q, Liu Y, Shan F, Feng J, Xu F, Gao P. Metabolomic analysis revealed glycylglycine accumulation in astrocytes after methionine enkephalin administration exhibiting neuron protective effects. J Pharm Biomed Anal 2015; 115:48-54. [PMID: 26163404 DOI: 10.1016/j.jpba.2015.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 02/03/2023]
Abstract
Owing to its unrevealed etiology, multiple sclerosis lacks specific therapies up to now. Experiential administration of methionine enkephalin (MENK) on mouse model improved disease manifestations to some extent. In order to gain more insight on the significance of MENK application, a capillary electrophoresis-mass spectrometry (CE-MS) technique was employed to profile intracellular metabolite fluctuation in 5 astrocytoma cell lines challenged by MENK. The processed data were first evaluated through a bioinformatic process to ensure their compatibility with the study aims and then subjected to multivariate analysis. The results indicated that MENK administration increased intracellular tyrosine, phenylalanine, methionine and glycylglycine. Exemplified by U87 cells, glycylglycine inhibited cell proliferation as well as MENK but it also decreased cell nitric oxide excretion which could not be evoked by MENK. The neuron protective effects were also mirrored by the increased expression of some genes related to remyelination. This study demonstrated CE-MS to be a promising tool for cell metabolomic analysis and benefited the therapeutic exploring of multiple sclerosis with respect to metabolism intervention.
Collapse
Affiliation(s)
- Chungang Zhao
- Department of Neurology, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China; Department of Neurology, Dalian (Municipal) Friendship Hospital (Dalian Red Cross Hospital),116001 Dalian, China
| | - Huijie Du
- Clinical Laboratory, The Second Hospital of Dalian Medical University, 116023 Dalian, China
| | - Li Xu
- Department of Endocrinology, Diabetes and Nutrition, Charité Universitätsmedizin, Campus Benjamin Franklin, 12200 Berlin, Germany; Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Jiao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China; School of Life Sciences and Technology, Dalian University, 116622, China
| | - Ling Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China; School of Life Sciences and Technology, Dalian University, 116622, China
| | - Yunfeng Cao
- Personalized Treatment & Diagnosis Research Center, The First Affiliated Hospital of Liaoning Medical University and Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Jinzhou 121001, China
| | - Chen Li
- Personalized Treatment & Diagnosis Research Center, The First Affiliated Hospital of Liaoning Medical University and Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Jinzhou 121001, China
| | - Qingjun Wang
- Personalized Treatment & Diagnosis Research Center, The First Affiliated Hospital of Liaoning Medical University and Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Jinzhou 121001, China
| | - Yang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China.
| | - Fang Xu
- Clinical Laboratory, The Second Hospital of Dalian Medical University, 116023 Dalian, China.
| | - Peng Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China; Personalized Treatment & Diagnosis Research Center, The First Affiliated Hospital of Liaoning Medical University and Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Jinzhou 121001, China; Clinical Laboratory, Dalian Sixth People's Hospital, Dalian 116031, China.
| |
Collapse
|
106
|
Vitaliti G, Matin N, Tabatabaie O, Di Traglia M, Pavone P, Lubrano R, Falsaperla R. Natalizumab in multiple sclerosis: discontinuation, progressive multifocal leukoencephalopathy and possible use in children. Expert Rev Neurother 2015; 15:1321-1341. [PMID: 26513633 DOI: 10.1586/14737175.2015.1102061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the early 1990s, attention was drawn to the migration of immune cells into the central nervous system via the blood-brain barrier. The literature showed that lymphocytes binding to the endothelium were successfully inhibited by an antibody against α4β1 integrin. These biological findings resulted in the development of a humanized antibody to α4 integrin - natalizumab (NTZ) - to treat multiple sclerosis (MS). Here, we provide a systematic review and meta-analysis on the efficacy and safety of natalizumab, trying to answer the question whether its use may be recommended both in adult and in pediatric age groups as standard MS treatment. Our results highlight the improvement of clinical and radiological findings in treated patients (p < 0.005), confirming NTZ efficacy. Nevertheless, if NTZ is shown to be efficient, further studies should be performed to evaluate its safety and to target the MS profile that could benefit from this treatment.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- a General Paediatrics Operative Unit , Policlinico-Vittorio-Emanuele University Hospital, University of Catania , Catania , Italy
| | - Nassim Matin
- b Tehran University of Medical Sciences , Tehran , Iran
| | | | - Mario Di Traglia
- c Department of Statistics , La Sapienza University of Rome , Rome , Italy
| | - Piero Pavone
- a General Paediatrics Operative Unit , Policlinico-Vittorio-Emanuele University Hospital, University of Catania , Catania , Italy
| | - Riccardo Lubrano
- d Paediatric Department, Paediatric Nephrology Operative Unit , Sapienza University of Rome , Rome , Italy
| | - Raffaele Falsaperla
- a General Paediatrics Operative Unit , Policlinico-Vittorio-Emanuele University Hospital, University of Catania , Catania , Italy
| |
Collapse
|
107
|
Ghalamfarsa G, Mahmoudi M, Mohammadnia-Afrouzi M, Yazdani Y, Anvari E, Hadinia A, Ghanbari A, Setayesh M, Yousefi M, Jadidi-Niaragh F. IL-21 and IL-21 receptor in the immunopathogenesis of multiple sclerosis. J Immunotoxicol 2015; 13:274-85. [PMID: 26507681 DOI: 10.3109/1547691x.2015.1089343] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytokines are considered important factors in the modulation of various immune responses. Among them, interleukin (IL)-21 is one of the major immune modulators, adjusting various immune responses by affecting various immune cells. It has been suggested that IL-21 may enhance autoimmunity through different mechanisms, such as development and activation of helper T (TH)-17 and follicular helper T (TFH) cells, activation of natural killer (NK) cells, enhancing B-cell differentiation and antibody secretion and suppression of regulatory T (Treg) cells. Moreover, IL-21 has also been suggested to be an inducer of autoimmunity when following treatment of MS patients with some therapeutics such as alemtuzumab. This review will seek to clarify the precise role of IL-21/IL-21R in the pathogenesis of MS and, in its animal model, experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Ghasem Ghalamfarsa
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Mahmoud Mahmoudi
- b Immunology Research Center, Department of Immunology and Allergy , School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mousa Mohammadnia-Afrouzi
- c Department of Immunology and Microbiology , School of Medicine, Babol University of Medical Sciences , Babol , Iran
| | - Yaghoub Yazdani
- d Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Enayat Anvari
- e Department of Physiology , Faculty of Medicine, Ilam University of Medical Sciences , Ilam , Iran
| | - Abolghasem Hadinia
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Amir Ghanbari
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Maryam Setayesh
- f Biology Department , School of Sciences, Shiraz University , Shiraz , Iran
| | - Mehdi Yousefi
- g Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran ;,h Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farhad Jadidi-Niaragh
- i Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
108
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|
109
|
de Oliveira FL, Gatto M, Bassi N, Luisetto R, Ghirardello A, Punzi L, Doria A. Galectin-3 in autoimmunity and autoimmune diseases. Exp Biol Med (Maywood) 2015; 240:1019-28. [PMID: 26142116 DOI: 10.1177/1535370215593826] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell-cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte-macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Felipe L de Oliveira
- Coimbra Group Fellowship for Latin American Professors, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ CEP 21941-902, Brazil Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Mariele Gatto
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Nicola Bassi
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Roberto Luisetto
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Anna Ghirardello
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine, University of Padova, Padova 35128, Italy
| |
Collapse
|
110
|
Hew M, O'Connor K, Edel MJ, Lucas M. The Possible Future Roles for iPSC-Derived Therapy for Autoimmune Diseases. J Clin Med 2015; 4:1193-206. [PMID: 26239553 PMCID: PMC4484994 DOI: 10.3390/jcm4061193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
The ability to generate inducible pluripotent stem cells (iPSCs) and the potential for their use in treatment of human disease is of immense interest. Autoimmune diseases, with their limited treatment choices are a potential target for the clinical application of stem cell and iPSC technology. IPSCs provide three potential ways of treating autoimmune disease; (i) providing pure replacement of lost cells (immuno-reconstitution); (ii) through immune-modulation of the disease process in vivo; and (iii) for the purposes of disease modeling in vitro. In this review, we will use examples of systemic, system-specific and organ-specific autoimmunity to explore the potential applications of iPSCs for treatment of autoimmune diseases and review the evidence of iPSC technology in auto-immunity to date.
Collapse
Affiliation(s)
- Meilyn Hew
- Department of Clinical Immunology, Pathwest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth 6009, Western Australia, Australia.
| | - Kevin O'Connor
- Department of Clinical Immunology, Royal Perth Hospital, Perth 6000, Western Australia, Australia.
| | - Michael J Edel
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, Barcelona 08036, Spain.
- Victor Chang Cardiac Research Institute, Sydney, 2010, New South Wales, Australia.
- School of Medicine and Pharmacology, Anatomy, Physiology and Human Biology, CCTRM, University of Western Australia, Perth, 6009, Western Australia, Australia.
| | - Michaela Lucas
- Department of Clinical Immunology, Pathwest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth 6009, Western Australia, Australia.
- School of Medicine and Pharmacology and School of Pathology and Laboratory Medicine, The University of Western Australia, Harry Perkins Institute of Medical Research, Perth, 6009, Western Australia, Australia.
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, 6150, Western Australia.
| |
Collapse
|
111
|
|
112
|
Devier DJ, Lovera JF, Lukiw WJ. Increase in NF-κB-sensitive miRNA-146a and miRNA-155 in multiple sclerosis (MS) and pro-inflammatory neurodegeneration. Front Mol Neurosci 2015; 8:5. [PMID: 25784854 PMCID: PMC4345893 DOI: 10.3389/fnmol.2015.00005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/12/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Deidre J Devier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Jesus F Lovera
- Department of Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Walter J Lukiw
- Department of Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
113
|
The epidemiology of alcohol consumption and multiple sclerosis: a review. Neurol Sci 2014; 36:189-96. [DOI: 10.1007/s10072-014-2007-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/06/2014] [Indexed: 12/14/2022]
|