101
|
Li J, Chen J, Zhao M, Li Z, Liu N, Fang H, Fang M, Zhu P, Lei L, Chen C. Downregulated ALKBH5 contributes to myocardial ischemia/reperfusion injury by increasing m 6A modification of Trio mRNA. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:417. [PMID: 35530959 PMCID: PMC9073777 DOI: 10.21037/atm-22-1289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022]
Abstract
Background The modification of N6-methyladenosine (m6A) is a dynamic and reversible course that might play a role in cardiovascular disease. However, the mechanisms of m6A modification in myocardial ischemia/reperfusion injury (MIRI) remain unclear. Methods A mouse model of MIRI and a cell model of oxygen-glucose deprivation/reperfusion (OGD/R) HL-1 cells were employed. In an in vivo study, the total RNA m6A modification levels were determined by dot blot, and the key genes related to m6A modification were screened by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. In an in vitro study, the effects of AlkB homolog 5 (ALKBH5), an RNA demethylase, on cell proliferation, cell injury, and apoptosis were detected by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, lactate dehydrogenase (LDH) and cardiac troponin-I (cTnI) levels, and flow cytometry. Besides, the m6A modification-changed and differentially expressed messenger RNA (mRNA) were determined by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) in ALKBH5-overexpressed HL-1 cells. Finally, the mRNA levels of the promising targeted gene were examined by RT-qPCR and its m6A modification levels were examined by MeRIP-qPCR. Results Our results showed that RNA m6A modification was involved in MIRI, in which ALKBH5 was downregulated. Functionally, by overexpressing or silencing ALKBH5 in experimental cells, we verified its protective properties on cell proliferation, cell injury, and apoptosis in the process of MIRI. Besides, we provided a mass of latent different mRNAs with m6A modification variation in ALKBH5-overexpressed HL-1 cells. Mechanistically, we further screened the most potential targeted mRNAs and suggested that triple functional domain (Trio) mRNA could be upregulated by ALKBH5 by reducing m6A level of Trio. Conclusions This study demonstrated that the downregulated ALKBH5 might contribute to MIRI process by increasing the m6A modification of Trio mRNA and downregulating Trio.
Collapse
Affiliation(s)
- Jiaxin Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jieshan Chen
- Department of Emergency, Maoming People’s Hospital, Maoming, China
| | - Mingyi Zhao
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhetao Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Nanbo Liu
- Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Heng Fang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Miaoxian Fang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liming Lei
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunbo Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Critical Care Medicine, Maoming People’s Hospital, Maoming, China
| |
Collapse
|
102
|
CircRNA CDR1as promotes cardiomyocyte apoptosis through activating hippo signaling pathway in diabetic cardiomyopathy. Eur J Pharmacol 2022; 922:174915. [PMID: 35339477 DOI: 10.1016/j.ejphar.2022.174915] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Diabetic cardiomyopathy (DCM), as a major complication of diabetic patients, can cause myocardial metabolic remodeling and lead to severe and irreversible cardiac dysfunction. Previously, we found that the circular RNA cerebellar degeneration-related protein 1 antisense (Circ-CDR1as) independently predicted acute myocardial infarction (AMI) and might be a new indicator marker for this. However, CDR1as was not clearly described in diabetic cardiomyopathy. Therefore, our purpose was to deeply explore the function of CDR1as in DCM. In this study, we found that CDR1as was upregulated in DCM, and knockdown of CDR1as could improve the apoptosis caused by DCM. Mechanistically, CDR1as activates the Hippo signaling pathway by significantly inhibiting Mammalian sterile 20-like kinase 1 (MST1) ubiquitination level. Furthermore, as a transcriptional factor of CDR1as, Forkhead box group O3a (FOXO3) was identified to activate the Hippo signaling pathway. Notably, the total m6A level was downregulated in the cardiac tissue of DCM. Alk B homolog 5 (ALKBH5), a m6A demethylation enzyme, was upregulated in the cardiomyocytes of DCM mice and posttranscriptionally activated FOXO3 by m6A demethylation in an m6A-YTHDF2-dependent manner. Hence, our work reveals the key function of the ALKBH5-FOXO3-CDR1as/Hippo signaling pathway in DCM and provides insight into the critical roles of m6A methylation in DCM.
Collapse
|
103
|
Xu Z, Lv B, Qin Y, Zhang B. Emerging Roles and Mechanism of m6A Methylation in Cardiometabolic Diseases. Cells 2022; 11:cells11071101. [PMID: 35406663 PMCID: PMC8997388 DOI: 10.3390/cells11071101] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiometabolic diseases (CMDs) are currently the leading cause of death and disability worldwide, and their underlying regulatory mechanisms remain largely unknown. N6-methyladenosine (m6A) methylation, the most common and abundant epigenetic modification of eukaryotic mRNA, is regulated by m6A methyltransferase, demethylase, and the m6A binding protein, which affect the transcription, cleavage, translation, and degradation of target mRNA. m6A methylation plays a vital role in the physiological and pathological processes of CMDs. In this review, we summarize the role played by m6A methylation in CMDs, including obesity, hypertension, pulmonary hypertension, ischemic heart disease, myocardial hypertrophy, heart failure, and atherosclerosis. We also describe mechanisms that potentially involve the participation of m6A methylation, such as those driving calcium homeostasis, circadian rhythm, lipid metabolism, autophagy, macrophage response, and inflammation. m6A methylation and its regulators are expected to be targets for the treatment of CMDs.
Collapse
|
104
|
m6A Methylases Regulate Myoblast Proliferation, Apoptosis and Differentiation. Animals (Basel) 2022; 12:ani12060773. [PMID: 35327170 PMCID: PMC8944832 DOI: 10.3390/ani12060773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary N6-methyladenosine (m6A) is the most prevalent methylation modification in eukaryotic mRNA, and it plays an important role in regulating gene expression. Previous studies found that m6A methylation plays a role in mammalian skeletal muscle development. Skeletal muscle is an important factor that regulates livestock muscle quality and maintains metabolic homeostasis, and skeletal myogenesis is regulated by a series of transcription factors. However, the role of m6A in bovine skeletal myogenesis is unclear. In this study, we examined the expression patterns of the m6A methylase genes METTL3, METTL14, WTAP, FTO and ALKBH5 in bovine skeletal muscle tissue and during myogenesis in myoblasts. Furthermore, we used bovine skeletal muscle myoblasts as the object of study to discover the regulatory role of these genes in the process of skeletal myogenesis in vitro. Our findings indicate that these five m6A methylases have pronounced and diverse functions in regulating bovine skeletal myoblast proliferation, apoptosis and myogenic differentiation, which can contribute to further understanding the roles of m6A in skeletal muscle development. Abstract N6-methyladenosine (m6A) plays an important role in regulating gene expression. Previous studies found that m6A methylation affects skeletal muscle development. However, the effect of m6A methylases on bovine skeletal myogenesis is still unclear. Here, we found that the expression of m6A demethylases (FTO and ALKBH5) was significantly higher in the longissimus dorsi muscle of adult cattle than in newborn cattle. In contrast, the expression of m6A methyltransferases (METTL3, METTL14 and WTAP) was reduced. The mRNA expression of all five genes was found to be increased during the myogenesis of myoblasts in vitro. Knockdown of FTO or METTL3 promoted myoblast proliferation, inhibited myoblast apoptosis and suppressed myogenic differentiation, whereas ALKBH5 knockdown had the opposite effect. METTL14 knockdown enhanced myoblast proliferation and impaired myogenic differentiation. WTAP knockdown attenuated proliferation and contributed to apoptosis but did not affect differentiation. Furthermore, the functional domains of these five m6A methylases are conserved across species. Our results suggest that m6A methylases are involved in regulating skeletal muscle development and that there may be a complex network of m6A methylation regulating skeletal myogenesis.
Collapse
|
105
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 371] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
106
|
Chen H, Yu Y, Yang M, Huang H, Ma S, Hu J, Xi Z, Guo H, Yao G, Yang L, Huang X, Zhang F, Tan G, Wu H, Zheng W, Li L. YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner. Cell Biosci 2022; 12:19. [PMID: 35197112 PMCID: PMC8867832 DOI: 10.1186/s13578-022-00759-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most common post-transcriptional modification at the RNA level. However, the exact molecular mechanisms of m6A epigenetic regulation in breast cancer remain largely unknown and need to be fully elucidated. Methods The integrating bioinformatics analyses were used to screen clinical relevance and dysregulated m6A “reader” protein YTHDF1 in breast cancer from TCGA databases, which was further validated in a cohort of clinical specimens. Furthermore, functional experiments such as the CCK-8 assay, EdU assay, wound healing assay, transwell invasion assay and cell cycle assay were used to determine the biological role of YTHDF1 in breast cancer. RIP, m6A-IP, and CLIP assays were used to find the target of YTHDF1 and further verification by RT-qPCR, western blot, polysome profiling assay. The protein–protein interaction between YTHDF1 and FOXM1 was detected via co-immunoprecipitation. Results Our study showed that YTHDF1 was overexpressed in breast cancer cells and clinical tissues specimens. At the same time, the high expression level of YTHDF1 was positively correlated with tumor size, lymph node invasion, and distant metastasis in breast cancer patients. YTHDF1 depletion repressed the proliferation, invasion and epithelial-mesenchymal transformation (EMT) and induced G0/G1 phase cell cycle arrest of breast cancer cells in vitro and in vivo. We also demonstrated that FOXM1 is a target of YTHDF1. Through recognizing and binding to the m6A-modified mRNA of FOXM1, YTHDF1 accelerated the translation process of FOXM1 and promoted breast cancer metastasis. Whereas overexpression of FOXM1 in breast cancer cells partially counteracted the tumor suppressed effects caused by YTHDF1 silence, which further verified the regulatory relationship between YTHDF1 and FOXM1. Conclusion Our study reveals a novel YTHDF1/FOXM1 regulatory pathway that contributes to metastasis and progression of breast cancer, suggesting that YTHDF1 might be applied as a potential biomarker and therapeutic target. That also advances our understanding of the tumorigenesis for breast cancer from m6A epigenetic regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00759-w.
Collapse
Affiliation(s)
- Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Haikou, 570311, China.,Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanhang Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Yang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haohao Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, 430070, China
| | - Shenghui Ma
- Medical College Wuhan University of Science and Technology, Wuhan, 430070, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zihan Xi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Guo
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guojie Yao
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, 430070, China
| | - Liu Yang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, 430070, China
| | - Xiaoqing Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Zhang
- Department of Emergency Medicine, Affiliated Hospital of Sergeant School Affiliated to Army Medical University, Shijiazhuang, 050047, China
| | - Guanghong Tan
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Haikou, 570311, China.
| | - Huangfu Wu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Haikou, 570311, China.
| | - Wuping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Haikou, 570311, China.
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
107
|
Zhang Y, Hua W, Dang Y, Cheng Y, Wang J, Zhang X, Teng M, Wang S, Zhang M, Kong Z, Lu X, Zheng Y. Validated Impacts of N6-Methyladenosine Methylated mRNAs on Apoptosis and Angiogenesis in Myocardial Infarction Based on MeRIP-Seq Analysis. Front Mol Biosci 2022; 8:789923. [PMID: 35155564 PMCID: PMC8831860 DOI: 10.3389/fmolb.2021.789923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives: N6-methyladenosine (m6A) is hypothesized to play a role in the regulation of pathogenesis of myocardial infarction (MI). This study was designed to compare m6A-tagged transcript profiles to identify mRNA-specific changes on pathophysiological variations after MI. Methods: N6-methyladenosine methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were interacted to select m6A-modified mRNAs with samples collected from sham operated and MI rat models. m6A methylation regulated mRNAs were interacted with apoptosis/angiogenesis related genes in GeneCards. Afterwards, MeRIP-quantitative real-time PCR (MeRIP-qRT-PCR) was performed to measure m6A methylation level of hub mRNAs. m6A methylation variation was tested under different oxygen concentration or hypoxic duration in H9c2 cells and HUVECs. In addition, Western blot and qRT-PCR were employed to detect expression of hub mRNAs and relevant protein level. Flow cytometry and Tunel assay were conducted to assess apoptotic level. CCK-8, EdU, and tube formation assay were performed to measure cell proliferation and tube formation ability. Results: Upregulation of Mettl3 was firstly observed in vivo and in vitro, followed by upregulation of m6A methylation level. A total of 567 significantly changed m6A methylation peaks were identified, including 276 upregulated and 291 downregulated peaks. A total of 576 mRNAs were upregulated and 78 were downregulated. According to combined analysis of MeRIP-seq and RNA-seq, we identified 26 significantly hypermethylated and downregulated mRNAs. Based on qRT-PCR and interactive analysis, Hadh, Kcnn1, and Tet1 were preliminarily identified as hub mRNAs associated with apoptosis/angiogenesis. MeRIP-qRT-PCR assay confirmed the results from MeRIP-seq. With the inhibition of Mettl3 in H9c2 cells and HUVECs, downregulated m6A methylation level of total RNA and upregulated expression of hub mRNAs were observed. Increased m6A level was verified in the gradient context in terms of prolonged hypoxic duration and decreased oxygen concentration. Under simulated hypoxia, roles of Kcnn1 and Tet1 in angiogenesis and Hadh, Tet1, and Kcnn1 in apoptosis were further confirmed with our validation experiments. Conclusion: Roles of m6A-modified mRNA transcripts in the context of MI were preliminarily verified. In the context of m6A methylation, three hub mRNAs were validated to impact the process of apoptosis/angiogenesis. Our study provided theoretical basis and innovative targets for treatment of MI and paved the way for future investigations aiming at exploring upstream epigenetic mechanisms of pathogenesis after MI.
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Hua
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihui Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayue Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiu Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Teng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shenrui Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Kong
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yu Zheng, ; Xiao Lu,
| | - Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yu Zheng, ; Xiao Lu,
| |
Collapse
|
108
|
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J, Cai Z. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol 2022; 15:8. [PMID: 35063010 PMCID: PMC8780705 DOI: 10.1186/s13045-022-01224-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
RNA demethylase ALKBH5 takes part in the modulation of N6-methyladenosine (m6A) modification and controls various cell processes. ALKBH5-mediated m6A demethylation regulates gene expression by affecting multiple events in RNA metabolism, e.g., pre-mRNA processing, mRNA decay and translation. Mounting evidence shows that ALKBH5 plays critical roles in a variety of human malignancies, mostly via post-transcriptional regulation of oncogenes or tumor suppressors in an m6A-dependent manner. Meanwhile, increasing non-coding RNAs are recognized as functional targets of ALKBH5 in cancers. Here we reviewed up-to-date findings about the pathological roles of ALKBH5 in cancer, the molecular mechanisms by which it exerts its functions, as well as the underlying mechanism of its dysregulation. We also discussed the therapeutic implications of targeting ALKBH5 in cancer and potential ALKBH5-targeting strategies.
Collapse
Affiliation(s)
- Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haimeng Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Hou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
109
|
Dubey PK, Patil M, Singh S, Dubey S, Ahuja P, Verma SK, Krishnamurthy P. Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice. Mol Cell Biochem 2022; 477:129-141. [PMID: 34581943 PMCID: PMC8758538 DOI: 10.1007/s11010-021-04267-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 01/03/2023]
Abstract
Endotoxemia triggers life-threatening immune and cardiovascular response that leads to tissue damage, multi-organ failure, and death. The understanding of underlying molecular mechanisms is still evolving. N6-methyladenosine (m6A)-RNA modification plays key regulatory role in numerous biological processes. However, it remains unclear whether endotoxemia alters RNA methylation in the myocardium. In the current study, we investigated the effect of lipopolysaccharide (LPS)-induced endotoxemia on m6A-RNA methylation and its implications on myocardial inflammation and left ventricular (LV) function. Following LPS administration, mice showed increases in m6A-RNA methylation in the myocardium with a corresponding decrease in the expression of fat mass and obesity-associated protein (FTO, an m6A eraser/demethylase). The changes were associated with a significant increase in expression of myocardial inflammatory cytokine genes, such as IL-6, TNF-α, IL-1β, and reduced LV function. Moreover, rat cardiomyoblasts (H9c2) exposed to LPS showed similar changes (with increase in m6A-RNA methylation and inflammatory cytokine genes, whereas downregulation of FTO). Furthermore, methylated RNA immunoprecipitation assay showed hypermethylation and increase in the expression of IL-6 and TNF-α genes in LPS-treated H9c2 cells as compared to untreated cells. Interestingly, FTO knockdown in cardiomyocytes mimicked the above effects. Taken together, these data suggest that endotoxemia-induced m6A methylation might play a critical role in expression of cardiac proinflammatory cytokines, and modulation of m6A methylation might limit myocardial inflammation and dysfunction during endotoxemia.
Collapse
Affiliation(s)
- Praveen K Dubey
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mallikarjun Patil
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sarojini Singh
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shubham Dubey
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Paras Ahuja
- Science and Technology Honors College, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
110
|
Yu Y, Pan Y, Fan Z, Xu S, Gao Z, Ren Z, Yu J, Li W, Liu F, Gu J, Yuan Y, Du Z. LuHui Derivative, A Novel Compound That Inhibits the Fat Mass and Obesity-Associated (FTO), Alleviates the Inflammatory Response and Injury in Hyperlipidemia-Induced Cardiomyopathy. Front Cell Dev Biol 2021; 9:731365. [PMID: 34881240 PMCID: PMC8647038 DOI: 10.3389/fcell.2021.731365] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Hyperlipidemia is a major risk factor for metabolic disorders and cardiovascular injury. The excessive deposition of saturated fatty acids in the heart leads to chronic cardiac inflammation, which in turn causes myocardial damage and systolic dysfunction. However, the effective suppression of cardiac inflammation has emerged as a new strategy to reduce the impact of hyperlipidemia on cardiovascular disease. In this study, we identified a novel monomer, known as LuHui Derivative (LHD), which reduced the serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and reduced lipid deposition in cardiomyocytes. In addition, LHD treatment improved cardiac function, reduced hyperlipidemia-induced inflammatory infiltration in cardiomyocytes and suppressed the release of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). From a mechanistic perspective, cluster of differentiation 36 (CD36), an important cell surface receptor, was identified as a downstream target following the LHD treatment of palmitic acid-induced inflammation in cardiomyocytes. LHD specifically binds the pocket containing the regulatory sites of RNA methylation in the fat mass and obesity-associated (FTO) protein that is responsible for elevated intracellular m6A levels. Moreover, the overexpression of the N6-methyladenosine (m6A) demethylase FTO markedly increased CD36 expression and suppressed the anti-inflammatory effects of LHD. Conversely, loss-of-function of FTO inhibited palmitic acid-induced cardiac inflammation and altered CD36 expression by diminishing the stability of CD36 mRNA. Overall, our results provide evidence for the crucial role of LHD in fatty acid-induced cardiomyocyte inflammation and present a new strategy for the treatment of hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Ying Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Yumiao Pan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Ziyi Fan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Silun Xu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Zhiyuan Gao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Zijing Ren
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Jie Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Wen Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Fangtong Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Jintao Gu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China
| | - Ye Yuan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
111
|
Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1270-1279. [PMID: 34853726 PMCID: PMC8609105 DOI: 10.1016/j.omtn.2021.10.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
YTHDF1 is the most versatile and powerful reader protein of N6-methyladenosine (m6A)-modified RNA, and it can recognize both G(m6A)C and A(m6A)C RNAs as ligands without sequence selectivity. YTHDF1 regulates target gene expression by different mechanisms, such as promoting translation or regulating the stability of mRNA. Numerous studies have shown that YTHDF1 plays an important role in tumor biology and nontumor lesions by mediating the protein translation of important genes or by affecting the expression of key factors involved in many important cell signaling pathways. Therefore, in this review we focus on some of the roles of YTHDF1 in tumor biology and diseases.
Collapse
Affiliation(s)
- Zuyao Chen
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xiaolin Zhong
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Jing Zhong
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| |
Collapse
|
112
|
Han Z, Xu Z, Yu Y, Cao Y, Bao Z, Gao X, Ye D, Yan G, Gong R, Xu J, Zhang L, Ma W, Wang X, Yang F, Lei H, Tian Y, Hu S, Bamba D, Li Y, Li D, Li C, Wang N, Zhang Y, Pan Z, Yang B, Cai B. ALKBH5-mediated m 6A mRNA methylation governs human embryonic stem cell cardiac commitment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:22-33. [PMID: 34513291 PMCID: PMC8408434 DOI: 10.1016/j.omtn.2021.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
N6-methyladenosine (m6A), as the most abundant modification of mammalian messenger RNAs, is essential for tissue development and pathogenesis. However, the biological significance of m6A methylation in cardiac differentiation and development remains largely unknown. Here, we identify that the downregulation of m6A demethylase ALKBH5 is responsible for the increase of m6A methylation and cardiomyocyte fate determination of human embryonic stem cells (hESCs) from mesoderm cells (MESs). In contrast, ALKBH5 overexpression remarkably blocks cardiomyocyte differentiation of hESCs. Mechanistically, KDM5B and RBBP5, the components of H3K4 modifying enzyme complexes, are identified as downstream targets for ALKBH5 in cardiac-committed hESCs. Loss of function of ALKBH5 alters the expression of KDM5B and RBBP5 through impairing stability of their mRNAs, which in turn promotes the transcription of GATA4 by enhancing histone H3 Lys4 trimethylation (H3K4me3) at the promoter region of GATA4. Taken together, we reveal a previously unidentified role of m6A demethylase ALKBH5 in determining cardiac lineage commitment of hESCs.
Collapse
Affiliation(s)
- Zhenbo Han
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zihang Xu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ying Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yang Cao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhengyi Bao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xinlu Gao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Danyu Ye
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Gege Yan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Rui Gong
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Juan Xu
- Department of Bioinformatics, Harbin Medical University, Harbin 150086, China
| | - Lai Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Wenya Ma
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xiuxiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Fan Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Hong Lei
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ye Tian
- Department of Cardiology at the First Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou 215000, China
| | - Djibril Bamba
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ying Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Desheng Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Changzhu Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ning Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ying Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhenwei Pan
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Baofeng Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Benzhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150086, China.,Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
113
|
Shi X, Cao Y, Zhang X, Gu C, Liang F, Xue J, Ni HW, Wang Z, Li Y, Wang X, Cai Z, Hocher B, Shen LH, He B. Comprehensive Analysis of N6-Methyladenosine RNA Methylation Regulators Expression Identify Distinct Molecular Subtypes of Myocardial Infarction. Front Cell Dev Biol 2021; 9:756483. [PMID: 34778266 PMCID: PMC8578940 DOI: 10.3389/fcell.2021.756483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Myocardial infarction (MI) is one of the leading threats to human health. N6-methyladenosine (m6A) modification, as a pivotal regulator of messenger RNA stability, protein expression, and cellular processes, exhibits important roles in the development of cardiac remodeling and cardiomyocyte contractile function. Methods: The expression levels of m6A regulators were analyzed using the GSE5406 database. We analyzed genome-wide association study data and single-cell sequencing data to confirm the functional importance of m6A regulators in MI. Three molecular subtypes with different clinical characteristics were established to tailor treatment strategies for patients with MI. We applied pathway analysis and differentially expressed gene (DEG) analysis to study the changes in gene expression and identified four common DEGs. Furthermore, we constructed the protein–protein interaction network and confirmed several hub genes in three clusters of MI. To lucubrate the potential functions, we performed a ClueGO analysis of these hub networks. Results: In this study, we identified that the levels of FTO, YTHDF3, ZC3H13, and WTAP were dramatically differently expressed in MI tissues compared with controls. Bioinformatics analysis showed that DEGs in MI were significantly related to modulating calcium signaling and chemokine signaling, and m6A regulators were related to regulating glucose measurement and elevated blood glucose levels. Furthermore, genome-wide association study data analysis showed that WTAP single-nucleotide polymorphism was significantly related to the progression of MI. In addition, single-cell sequencing found that WTAP is widely expressed in the heart tissues. Moreover, we conducted consensus clustering for MI in view of the dysregulated m6A regulators’ expression in MI. According to the expression levels, we found MI patients could be clustered into three subtypes. Pathway analysis showed the DEGs among different clusters in MI were assigned to HIF-1, IL-17, MAPK, PI3K-Akt signaling pathways, etc. The module analysis detected several genes, including BAG2, BAG3, MMP2, etc. We also found that MI-related network was significantly related to positive and negative regulation of angiogenesis and response to heat. The hub networks in MI clusters were significantly related to antigen processing and ubiquitin-mediated proteolysis, RNA splicing, and stability, indicating that these processes may contribute to the development of MI. Conclusion: Collectively, our study could provide more information for understanding the roles of m6A in MI, which may provide a novel insight into identifying biomarkers for MI treatment and diagnosis.
Collapse
Affiliation(s)
- Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaochen Cao
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiaobin Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jieyuan Xue
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Han-Wen Ni
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zi Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Berthold Hocher
- 5th Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Rheumatology), University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ling-Hong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
114
|
Bongiovanni C, Sacchi F, Da Pra S, Pantano E, Miano C, Morelli MB, D'Uva G. Reawakening the Intrinsic Cardiac Regenerative Potential: Molecular Strategies to Boost Dedifferentiation and Proliferation of Endogenous Cardiomyocytes. Front Cardiovasc Med 2021; 8:750604. [PMID: 34692797 PMCID: PMC8531484 DOI: 10.3389/fcvm.2021.750604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Despite considerable efforts carried out to develop stem/progenitor cell-based technologies aiming at replacing and restoring the cardiac tissue following severe damages, thus far no strategies based on adult stem cell transplantation have been demonstrated to efficiently generate new cardiac muscle cells. Intriguingly, dedifferentiation, and proliferation of pre-existing cardiomyocytes and not stem cell differentiation represent the preponderant cellular mechanism by which lower vertebrates spontaneously regenerate the injured heart. Mammals can also regenerate their heart up to the early neonatal period, even in this case by activating the proliferation of endogenous cardiomyocytes. However, the mammalian cardiac regenerative potential is dramatically reduced soon after birth, when most cardiomyocytes exit from the cell cycle, undergo further maturation, and continue to grow in size. Although a slow rate of cardiomyocyte turnover has also been documented in adult mammals, both in mice and humans, this is not enough to sustain a robust regenerative process. Nevertheless, these remarkable findings opened the door to a branch of novel regenerative approaches aiming at reactivating the endogenous cardiac regenerative potential by triggering a partial dedifferentiation process and cell cycle re-entry in endogenous cardiomyocytes. Several adaptations from intrauterine to extrauterine life starting at birth and continuing in the immediate neonatal period concur to the loss of the mammalian cardiac regenerative ability. A wide range of systemic and microenvironmental factors or cell-intrinsic molecular players proved to regulate cardiomyocyte proliferation and their manipulation has been explored as a therapeutic strategy to boost cardiac function after injuries. We here review the scientific knowledge gained thus far in this novel and flourishing field of research, elucidating the key biological and molecular mechanisms whose modulation may represent a viable approach for regenerating the human damaged myocardium.
Collapse
Affiliation(s)
- Chiara Bongiovanni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Silvia Da Pra
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Elvira Pantano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Marco Bruno Morelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Gabriele D'Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| |
Collapse
|
115
|
Guimarães-Teixeira C, Barros-Silva D, Lobo J, Soares-Fernandes D, Constâncio V, Leite-Silva P, Silva-Santos R, Braga I, Henrique R, Miranda-Gonçalves V, Jerónimo C. Deregulation of N6-Methyladenosine RNA Modification and Its Erasers FTO/ALKBH5 among the Main Renal Cell Tumor Subtypes. J Pers Med 2021; 11:996. [PMID: 34683137 PMCID: PMC8538585 DOI: 10.3390/jpm11100996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Methylation of N6-adenosine (m6A) is the most abundant messenger RNA (mRNA) modification in eukaryotes. We assessed the expression profiles of m6A regulatory proteins in renal cell carcinoma (RCC) and their clinical relevance, namely, as potential biomarkers. (2) Methods: In silico analysis of The Cancer Genome Atlas (TCGA) dataset was use for evaluating the expression of the m6A regulatory proteins among RCC subtypes and select the most promising candidates for further validation. ALKBH5 and FTO transcript and protein expression were evaluated in a series of primary RCC (n = 120) and 40 oncocytomas selected at IPO Porto. (3) Results: In silico analysis of TCGA dataset disclosed altered expression of the major m6A demethylases among RCC subtypes, particularly FTO and ALKBH5. Furthermore, decreased FTO mRNA levels associated with poor prognosis in ccRCC and pRCC. In IPO Porto's cohort, FTO and ALKBH5 transcript levels discriminated ccRCC from oncocytomas. Furthermore, FTO and ALKBH5 immunoexpression differed among RCC subtypes, with higher expression levels found in ccRCC comparatively to the other RCC subtypes and oncocytomas. (4) Conclusion: We conclude that altered expression of m6A RNA demethylases is common in RCC and seems to be subtype specific. Specifically, FTO and ALKBH5 might constitute new candidate biomarkers for RCC patient management, aiding in differential diagnosis of renal masses and prognostication.
Collapse
Affiliation(s)
- Catarina Guimarães-Teixeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- PhD Programme in Pathology & Molecular Genetics, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- PhD Programme in Pathology & Molecular Genetics, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Diana Soares-Fernandes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
| | - Pedro Leite-Silva
- Cancer Epidemiology, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Rui Silva-Santos
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (D.B.-S.); (J.L.); (D.S.-F.); (V.C.); (R.H.); (V.M.-G.)
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
116
|
Xiao D, Fang TX, Lei Y, Xiao SJ, Xia JW, Lin TY, Li YL, Zhai JX, Li XY, Huang SH, Jia JS, Tian YG, Lin XL, Cai KC, Sun Y. m 6A demethylase ALKBH5 suppression contributes to esophageal squamous cell carcinoma progression. Aging (Albany NY) 2021; 13:21497-21512. [PMID: 34491904 PMCID: PMC8457604 DOI: 10.18632/aging.203490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant gastrointestinal cancer with a high recurrence rate and poor prognosis. Although N6-methyladenosine (m6A), the most abundant epitranscriptomic modification of mRNAs, has been implicated in several cancers, little is known about its participation in ESCC progression. We found reduced expression of ALKBH5, an m6A demethylase, in ESCC tissue specimens with a more pronounced effect in T3-T4, N1-N3, clinical stages III-IV, and histological grade III tumors, suggesting its involvement in advanced stages of ESCC. Exogenous expression of ALKBH5 inhibited the in vitro proliferation of ESCC cells, whereas depletion of endogenous ALKBH5 markedly enhanced ESCC cell proliferation in vitro. This suggests ALKBH5 exerts anti-proliferative effects on ESCC growth. Furthermore, ALKBH5 overexpression suppressed tumor growth of Eca-109 cells in nude mice; conversely, depletion of endogenous ALKBH5 accelerated tumor growth of TE-13 cells in vivo. The growth-inhibitory effects of ALKBH5 overexpression are partly attributed to a G1-phase arrest. In addition, ALKBH5 overexpression reduced the in vitro migration and invasion of ESCC cells. Altogether, our findings demonstrate that the loss of ALKBH5 expression contributes to ESCC malignancy.
Collapse
Affiliation(s)
- Dong Xiao
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci. & Tech. Co., Ltd., Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting-Xiao Fang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ye Lei
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci. & Tech. Co., Ltd., Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming, The Sixth Affiliated Hospital of Dali University, Kunming 650041, China
| | - Tao-Yan Lin
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yong-Long Li
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci. & Tech. Co., Ltd., Guangzhou 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Xue Zhai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Yan Li
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci. & Tech. Co., Ltd., Guangzhou 510515, China
| | - Shi-Hao Huang
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu-Guang Tian
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci. & Tech. Co., Ltd., Guangzhou 510515, China
| | - Xiao-Lin Lin
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kai-Can Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
117
|
Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5537804. [PMID: 34413927 PMCID: PMC8369182 DOI: 10.1155/2021/5537804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
N6-Methyladenosine (m6A) plays important roles in regulating mRNA processing. Despite rapid progress in this field, little is known about the role and mechanism of m6A modification in myocardial development and cardiomyocyte regeneration. Existing studies have shown that the heart tissues of newborn mice have the capability of proliferation and regeneration, but its mechanism, particularly its relation to m6A methylation, remains unknown. Methods. To systematically profile the mRNA m6A modification pattern in the heart tissues of mice at different developmental stages, we jointly performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of heart tissues of mice, respectively, aged 1 day old, 7 days old, and 28 days old. Results. We identified the linkages and association between differentially expressed mRNA transcripts and hyper or hypomethylated m6A peaks in C57BL/6J mice at different heart developmental stages. Results showed that the amount of m6A peaks and the level of m6A modification were the lowest in the heart of mice at 1 day old. By contrast, heart tissues from 7-day-old mice tended to possess the most m6A peaks and the highest global m6A level. However, the m6A characteristics of myocardial tissue changed little after 7 days old as compared to that of 1 day old. Specifically, we found 1269 downmethylated genes of 1434 methylated genes in 7-day-old mouse heart tissues as compared to those in 1-day-old mice. Hypermethylation of some specific genes may correlate with the heart's strong proliferative and regenerative capability at the first day after birth. In terms of m6A density, the tendency shifted from coding sequences (CDS) to 3′-untranslated regions (3′UTR) and stop codon with the progression of heart development. In addition, some genes demonstrated remarkable changes both in methylation and expression, like kiss1, plekha6, and megf6, which may play important roles in proliferation. Furthermore, signaling pathways highly related to proliferation such as “Wnt signaling pathway,” “ECM-receptor interaction,” and “cardiac chamber formation” were significantly enriched in 1-day-old methylated genes. Conclusions. Our results reveal a pattern that different m6A modifications are distributed in C57BL/6J heart tissue at different developmental stages, which provides new insights into a novel function of m6A methylation of mRNA in myocardial development and regeneration.
Collapse
|
118
|
m6A RNA methylation in heart development, regeneration and disease. Hypertens Res 2021; 44:1236-1237. [PMID: 34253882 DOI: 10.1038/s41440-021-00696-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/08/2022]
|
119
|
Sikorski V, Karjalainen P, Blokhina D, Oksaharju K, Khan J, Katayama S, Rajala H, Suihko S, Tuohinen S, Teittinen K, Nummi A, Nykänen A, Eskin A, Stark C, Biancari F, Kiss J, Simpanen J, Ropponen J, Lemström K, Savinainen K, Lalowski M, Kaarne M, Jormalainen M, Elomaa O, Koivisto P, Raivio P, Bäckström P, Dahlbacka S, Syrjälä S, Vainikka T, Vähäsilta T, Tuncbag N, Karelson M, Mervaala E, Juvonen T, Laine M, Laurikka J, Vento A, Kankuri E. Epitranscriptomics of Ischemic Heart Disease-The IHD-EPITRAN Study Design and Objectives. Int J Mol Sci 2021; 22:6630. [PMID: 34205699 PMCID: PMC8235045 DOI: 10.3390/ijms22126630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m6A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m6A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m6A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Pasi Karjalainen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Daria Blokhina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Kati Oksaharju
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jahangir Khan
- Tampere Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland; (J.K.); (J.L.)
| | | | - Helena Rajala
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Satu Suihko
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Suvi Tuohinen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Kari Teittinen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Annu Nummi
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Antti Nykänen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Arda Eskin
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, 06800 Ankara, Turkey;
| | - Christoffer Stark
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Fausto Biancari
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
- Heart Center, Turku University Hospital and Department of Surgery, University of Turku, 20521 Turku, Finland
- Research Unit of Surgery, Anesthesiology and Critical Care, University of Oulu, 90014 Oulu, Finland
| | - Jan Kiss
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jarmo Simpanen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jussi Ropponen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Karl Lemström
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Kimmo Savinainen
- Clinical Biobank Tampere, Tampere University Hospital, 33520 Tampere, Finland;
| | - Maciej Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Biomedical Proteomics, 61-704 Poznan, Poland
| | - Markku Kaarne
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Mikko Jormalainen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Outi Elomaa
- Folkhälsan Research Center, 00250 Helsinki, Finland; (S.K.); (O.E.)
| | - Pertti Koivisto
- Chemistry Unit, Finnish Food Authority, 00790 Helsinki, Finland;
| | - Peter Raivio
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Pia Bäckström
- Helsinki Biobank, Hospital District of Helsinki and Uusimaa, 00029 Helsinki, Finland;
| | - Sebastian Dahlbacka
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Simo Syrjälä
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Tiina Vainikka
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Tommi Vähäsilta
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, 34450 Istanbul, Turkey;
- School of Medicine, Koç University, 34450 Istanbul, Turkey
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia;
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Tatu Juvonen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
- Research Unit of Surgery, Anesthesiology and Critical Care, University of Oulu, 90014 Oulu, Finland
| | - Mika Laine
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jari Laurikka
- Tampere Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland; (J.K.); (J.L.)
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| |
Collapse
|
120
|
Wu Y, Zhan S, Xu Y, Gao X. RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sci 2021; 278:119565. [PMID: 33965380 DOI: 10.1016/j.lfs.2021.119565] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/18/2021] [Indexed: 02/08/2023]
Abstract
More than one hundred RNA modifications decorate the chemical and topological properties of these ribose nucleotides, thereby executing their biological functions through post-transcriptional regulation. In cardiovascular diseases, a wide range of RNA modifications including m6A (N6-adenosine methylation), m5C (5-methylcytidin), Nm (2'-O-ribose-methylation), Ψ (pseudouridine), m7G (N7-methylguanosine), and m1A (N1-adenosine methylation) have been found in tRNA, rRNA, mRNA and other noncoding RNA, which can function as a novel mechanism in metabolic syndrome, heart failure, coronary heart disease, and hypertension. In this review, we will summarize the current understanding of the regulatory roles and significance of several types of RNA modifications in CVDs (cardiovascular diseases) and the interplay between RNA modifications and noncoding RNA, epigenetics. Finally, we will focus on the potential therapeutic strategies by using RNA modifications.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
| | - Siyao Zhan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China.
| | - Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|