101
|
Liu W, Vicario DS. Dynamic encoding of phonetic categories in zebra finch auditory forebrain. Sci Rep 2023; 13:11172. [PMID: 37430030 DOI: 10.1038/s41598-023-37982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Vocal communication requires the formation of acoustic categories to enable invariant representations of sounds despite superficial variations. Humans form acoustic categories for speech phonemes, enabling the listener to recognize words independent of speakers; animals can also discriminate speech phonemes. We investigated the neural mechanisms of this process using electrophysiological recordings from the zebra finch secondary auditory area, caudomedial nidopallium (NCM), during passive exposure to human speech stimuli consisting of two naturally spoken words produced by multiple speakers. Analysis of neural distance and decoding accuracy showed improvements in neural discrimination between word categories over the course of exposure, and this improved representation transferred to the same words by novel speakers. We conclude that NCM neurons formed generalized representations of word categories independent of speaker-specific variations that became more refined over the course of passive exposure. The discovery of this dynamic encoding process in NCM suggests a general processing mechanism for forming categorical representations of complex acoustic signals that humans share with other animals.
Collapse
Affiliation(s)
- Wanyi Liu
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - David S Vicario
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
102
|
Harvey RE, Robinson HL, Liu C, Oliva A, Fernandez-Ruiz A. Hippocampo-cortical circuits for selective memory encoding, routing, and replay. Neuron 2023; 111:2076-2090.e9. [PMID: 37196658 PMCID: PMC11146684 DOI: 10.1016/j.neuron.2023.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Traditionally considered a homogeneous cell type, hippocampal pyramidal cells have been recently shown to be highly diverse. However, how this cellular diversity relates to the different hippocampal network computations that support memory-guided behavior is not yet known. We show that the anatomical identity of pyramidal cells is a major organizing principle of CA1 assembly dynamics, the emergence of memory replay, and cortical projection patterns in rats. Segregated pyramidal cell subpopulations encoded trajectory and choice-specific information or tracked changes in reward configuration respectively, and their activity was selectively read out by different cortical targets. Furthermore, distinct hippocampo-cortical assemblies coordinated the reactivation of complementary memory representations. These findings reveal the existence of specialized hippocampo-cortical subcircuits and provide a cellular mechanism that supports the computational flexibility and memory capacities of these structures.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Heath L Robinson
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Can Liu
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
103
|
Khazali MF, Wong YT, Dean HL, Hagan MA, Fabiszak MM, Pesaran B. Putative cell-type-specific multiregional mode in posterior parietal cortex during coordinated visual behavior. Neuron 2023; 111:1979-1992.e7. [PMID: 37044088 PMCID: PMC10935574 DOI: 10.1016/j.neuron.2023.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/09/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
In the reach and saccade regions of the posterior parietal cortex (PPC), multiregional communication depends on the timing of neuronal activity with respect to beta-frequency (10-30 Hz) local field potential (LFP) activity, termed dual coherence. Neural coherence is believed to reflect neural excitability, whereby spiking tends to occur at a particular phase of LFP activity, but the mechanisms of multiregional dual coherence remain unknown. Here, we investigate dual coherence in the PPC of non-human primates performing eye-hand movements. We computationally model dual coherence in terms of multiregional neural excitability and show that one latent component, a multiregional mode, reflects shared excitability across distributed PPC populations. Analyzing the power in the multiregional mode with respect to different putative cell types reveals significant modulations with the spiking of putative pyramidal neurons and not inhibitory interneurons. These results suggest a specific role for pyramidal neurons in dual coherence supporting multiregional communication in PPC.
Collapse
Affiliation(s)
- Mohammad Farhan Khazali
- Center for Neural Science, New York University, New York, NY 10003, USA; Freiburg Epilepsy Center, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Yan T Wong
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Heather L Dean
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Maureen A Hagan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | | | - Bijan Pesaran
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 190104, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 190104, USA; Department of Bioengineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 190104, USA.
| |
Collapse
|
104
|
Price BH, Jensen CM, Khoudary AA, Gavornik JP. Expectation violations produce error signals in mouse V1. Cereb Cortex 2023; 33:8803-8820. [PMID: 37183176 PMCID: PMC10321125 DOI: 10.1093/cercor/bhad163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Repeated exposure to visual sequences changes the form of evoked activity in the primary visual cortex (V1). Predictive coding theory provides a potential explanation for this, namely that plasticity shapes cortical circuits to encode spatiotemporal predictions and that subsequent responses are modulated by the degree to which actual inputs match these expectations. Here we use a recently developed statistical modeling technique called Model-Based Targeted Dimensionality Reduction (MbTDR) to study visually evoked dynamics in mouse V1 in the context of an experimental paradigm called "sequence learning." We report that evoked spiking activity changed significantly with training, in a manner generally consistent with the predictive coding framework. Neural responses to expected stimuli were suppressed in a late window (100-150 ms) after stimulus onset following training, whereas responses to novel stimuli were not. Substituting a novel stimulus for a familiar one led to increases in firing that persisted for at least 300 ms. Omitting predictable stimuli in trained animals also led to increased firing at the expected time of stimulus onset. Finally, we show that spiking data can be used to accurately decode time within the sequence. Our findings are consistent with the idea that plasticity in early visual circuits is involved in coding spatiotemporal information.
Collapse
Affiliation(s)
- Byron H Price
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| | - Cambria M Jensen
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215, USA
| | - Anthony A Khoudary
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jeffrey P Gavornik
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| |
Collapse
|
105
|
Lin J, Lai D, Wan Z, Feng L, Zhu J, Zhang J, Wang Y, Xu K. Representation and decoding of bilateral arm motor imagery using unilateral cerebral LFP signals. Front Hum Neurosci 2023; 17:1168017. [PMID: 37388414 PMCID: PMC10304012 DOI: 10.3389/fnhum.2023.1168017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction In the field of upper limb brain computer interfaces (BCIs), the research focusing on bilateral decoding mostly based on the neural signals from two cerebral hemispheres. In addition, most studies used spikes for decoding. Here we examined the representation and decoding of different laterality and regions arm motor imagery in unilateral motor cortex based on local field potentials (LFPs). Methods The LFP signals were recorded from a 96-channel Utah microelectrode array implanted in the left primary motor cortex of a paralyzed participant. There were 7 kinds of tasks: rest, left, right and bilateral elbow and wrist flexion. We performed time-frequency analysis on the LFP signals and analyzed the representation and decoding of different tasks using the power and energy of different frequency bands. Results The frequency range of <8 Hz and >38 Hz showed power enhancement, whereas 8-38 Hz showed power suppression in spectrograms while performing motor imagery. There were significant differences in average energy between tasks. What's more, the movement region and laterality were represented in two dimensions by demixed principal component analysis. The 135-300 Hz band signal had the highest decoding accuracy among all frequency bands and the contralateral and bilateral signals had more similar single-channel power activation patterns and larger signal correlation than contralateral and ipsilateral signals, bilateral and ipsilateral signals. Discussion The results showed that unilateral LFP signals had different representations for bilateral motor imagery on the average energy of the full array and single-channel power levels, and different tasks could be decoded. These proved the feasibility of multilateral BCI based on the unilateral LFP signal to broaden the application of BCI technology. Clinical trial registration https://www.chictr.org.cn/showproj.aspx?proj=130829, identifier ChiCTR2100050705.
Collapse
Affiliation(s)
- Jiafan Lin
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dongrong Lai
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zijun Wan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | | | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| |
Collapse
|
106
|
Liu Y, Li A, Bair-Marshall C, Xu H, Jee HJ, Zhu E, Sun M, Zhang Q, Lefevre A, Chen ZS, Grinevich V, Froemke RC, Wang J. Oxytocin promotes prefrontal population activity via the PVN-PFC pathway to regulate pain. Neuron 2023; 111:1795-1811.e7. [PMID: 37023755 PMCID: PMC10272109 DOI: 10.1016/j.neuron.2023.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Neurons in the prefrontal cortex (PFC) can provide top-down regulation of sensory-affective experiences such as pain. Bottom-up modulation of sensory coding in the PFC, however, remains poorly understood. Here, we examined how oxytocin (OT) signaling from the hypothalamus regulates nociceptive coding in the PFC. In vivo time-lapse endoscopic calcium imaging in freely behaving rats showed that OT selectively enhanced population activity in the prelimbic PFC in response to nociceptive inputs. This population response resulted from the reduction of evoked GABAergic inhibition and manifested as elevated functional connectivity involving pain-responsive neurons. Direct inputs from OT-releasing neurons in the paraventricular nucleus (PVN) of the hypothalamus are crucial to maintaining this prefrontal nociceptive response. Activation of the prelimbic PFC by OT or direct optogenetic stimulation of oxytocinergic PVN projections reduced acute and chronic pain. These results suggest that oxytocinergic signaling in the PVN-PFC circuit constitutes a key mechanism to regulate cortical sensory processing.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Chloe Bair-Marshall
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Helen Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Hyun Jung Jee
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Elaine Zhu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Mengqi Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Zhe Sage Chen
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
107
|
Aquino TG, Cockburn J, Mamelak AN, Rutishauser U, O'Doherty JP. Neurons in human pre-supplementary motor area encode key computations for value-based choice. Nat Hum Behav 2023; 7:970-985. [PMID: 36959327 PMCID: PMC10330469 DOI: 10.1038/s41562-023-01548-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
Adaptive behaviour in real-world environments requires that choices integrate several variables, including the novelty of the options under consideration, their expected value and uncertainty in value estimation. Here, to probe how integration over decision variables occurs during decision-making, we recorded neurons from the human pre-supplementary motor area (preSMA), ventromedial prefrontal cortex and dorsal anterior cingulate. Unlike the other areas, preSMA neurons not only represented separate pre-decision variables for each choice option but also encoded an integrated utility signal for each choice option and, subsequently, the decision itself. Post-decision encoding of variables for the chosen option was more widely distributed and especially prominent in the ventromedial prefrontal cortex. Our findings position the human preSMA as central to the implementation of value-based decisions.
Collapse
Affiliation(s)
- Tomas G Aquino
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Jeffrey Cockburn
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John P O'Doherty
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
108
|
Langdon C, Genkin M, Engel TA. A unifying perspective on neural manifolds and circuits for cognition. Nat Rev Neurosci 2023; 24:363-377. [PMID: 37055616 PMCID: PMC11058347 DOI: 10.1038/s41583-023-00693-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/15/2023]
Abstract
Two different perspectives have informed efforts to explain the link between the brain and behaviour. One approach seeks to identify neural circuit elements that carry out specific functions, emphasizing connectivity between neurons as a substrate for neural computations. Another approach centres on neural manifolds - low-dimensional representations of behavioural signals in neural population activity - and suggests that neural computations are realized by emergent dynamics. Although manifolds reveal an interpretable structure in heterogeneous neuronal activity, finding the corresponding structure in connectivity remains a challenge. We highlight examples in which establishing the correspondence between low-dimensional activity and connectivity has been possible, unifying the neural manifold and circuit perspectives. This relationship is conspicuous in systems in which the geometry of neural responses mirrors their spatial layout in the brain, such as the fly navigational system. Furthermore, we describe evidence that, in systems in which neural responses are heterogeneous, the circuit comprises interactions between activity patterns on the manifold via low-rank connectivity. We suggest that unifying the manifold and circuit approaches is important if we are to be able to causally test theories about the neural computations that underlie behaviour.
Collapse
Affiliation(s)
- Christopher Langdon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Mikhail Genkin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Tatiana A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
109
|
Guan C, Aflalo T, Kadlec K, Gámez de Leon J, Rosario ER, Bari A, Pouratian N, Andersen RA. Decoding and geometry of ten finger movements in human posterior parietal cortex and motor cortex. J Neural Eng 2023; 20:036020. [PMID: 37160127 PMCID: PMC10209510 DOI: 10.1088/1741-2552/acd3b1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 05/11/2023]
Abstract
Objective. Enable neural control of individual prosthetic fingers for participants with upper-limb paralysis.Approach. Two tetraplegic participants were each implanted with a 96-channel array in the left posterior parietal cortex (PPC). One of the participants was additionally implanted with a 96-channel array near the hand knob of the left motor cortex (MC). Across tens of sessions, we recorded neural activity while the participants attempted to move individual fingers of the right hand. Offline, we classified attempted finger movements from neural firing rates using linear discriminant analysis with cross-validation. The participants then used the neural classifier online to control individual fingers of a brain-machine interface (BMI). Finally, we characterized the neural representational geometry during individual finger movements of both hands.Main Results. The two participants achieved 86% and 92% online accuracy during BMI control of the contralateral fingers (chance = 17%). Offline, a linear decoder achieved ten-finger decoding accuracies of 70% and 66% using respective PPC recordings and 75% using MC recordings (chance = 10%). In MC and in one PPC array, a factorized code linked corresponding finger movements of the contralateral and ipsilateral hands.Significance. This is the first study to decode both contralateral and ipsilateral finger movements from PPC. Online BMI control of contralateral fingers exceeded that of previous finger BMIs. PPC and MC signals can be used to control individual prosthetic fingers, which may contribute to a hand restoration strategy for people with tetraplegia.
Collapse
Affiliation(s)
- Charles Guan
- California Institute of Technology, Pasadena, CA, United States of America
| | - Tyson Aflalo
- California Institute of Technology, Pasadena, CA, United States of America
- T&C Chen Brain-Machine Interface Center at Caltech, Pasadena, CA, United States of America
| | - Kelly Kadlec
- California Institute of Technology, Pasadena, CA, United States of America
| | | | - Emily R Rosario
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA, United States of America
| | - Ausaf Bari
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Nader Pouratian
- University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Richard A Andersen
- California Institute of Technology, Pasadena, CA, United States of America
- T&C Chen Brain-Machine Interface Center at Caltech, Pasadena, CA, United States of America
| |
Collapse
|
110
|
Singh B, Wang Z, Constantinidis C. Neuronal selectivity for stimulus information determines prefrontal LFP gamma power regardless of task execution. Commun Biol 2023; 6:505. [PMID: 37169826 PMCID: PMC10175284 DOI: 10.1038/s42003-023-04855-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Local field potential (LFP) power in the gamma frequency is modulated by cognitive variables during task execution. We sought to examine whether such modulations only emerge when task rules are established. We therefore analyzed neuronal firing and LFPs in different prefrontal subdivisions before and after the same monkeys were trained to perform cognitive tasks. Prior to task rule learning, sites containing neurons selective for stimuli already exhibited increased gamma power during and after the passive viewing of stimuli compared to the baseline period. Unexpectedly, when the same monkeys learned to maintain these stimuli in working memory, the elevation of gamma power above the baseline was diminished, despite an overall increase in firing rate. Learning and executing the task further decoupled LFP power from single neuron firing. Gamma power decreased at the time when subjects needed to make a judgment about whether two stimuli were the same or not, and differential gamma power was observed for matching and nonmatching stimuli. Our results indicate that prefrontal gamma power emerges spontaneously, not necessarily tied to a cognitive task being executed.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
111
|
Trautmann EM, Hesse JK, Stine GM, Xia R, Zhu S, O'Shea DJ, Karsh B, Colonell J, Lanfranchi FF, Vyas S, Zimnik A, Steinmann NA, Wagenaar DA, Andrei A, Lopez CM, O'Callaghan J, Putzeys J, Raducanu BC, Welkenhuysen M, Churchland M, Moore T, Shadlen M, Shenoy K, Tsao D, Dutta B, Harris T. Large-scale high-density brain-wide neural recording in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526664. [PMID: 37205406 PMCID: PMC10187172 DOI: 10.1101/2023.02.01.526664] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High-density, integrated silicon electrodes have begun to transform systems neuroscience, by enabling large-scale neural population recordings with single cell resolution. Existing technologies, however, have provided limited functionality in nonhuman primate species such as macaques, which offer close models of human cognition and behavior. Here, we report the design, fabrication, and performance of Neuropixels 1.0-NHP, a high channel count linear electrode array designed to enable large-scale simultaneous recording in superficial and deep structures within the macaque or other large animal brain. These devices were fabricated in two versions: 4416 electrodes along a 45 mm shank, and 2496 along a 25 mm shank. For both versions, users can programmatically select 384 channels, enabling simultaneous multi-area recording with a single probe. We demonstrate recording from over 3000 single neurons within a session, and simultaneous recordings from over 1000 neurons using multiple probes. This technology represents a significant increase in recording access and scalability relative to existing technologies, and enables new classes of experiments involving fine-grained electrophysiological characterization of brain areas, functional connectivity between cells, and simultaneous brain-wide recording at scale.
Collapse
|
112
|
Goudar V, Peysakhovich B, Freedman DJ, Buffalo EA, Wang XJ. Schema formation in a neural population subspace underlies learning-to-learn in flexible sensorimotor problem-solving. Nat Neurosci 2023; 26:879-890. [PMID: 37024575 PMCID: PMC11559441 DOI: 10.1038/s41593-023-01293-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/27/2023] [Indexed: 04/08/2023]
Abstract
Learning-to-learn, a progressive speedup of learning while solving a series of similar problems, represents a core process of knowledge acquisition that draws attention in both neuroscience and artificial intelligence. To investigate its underlying brain mechanism, we trained a recurrent neural network model on arbitrary sensorimotor mappings known to depend on the prefrontal cortex. The network displayed an exponential time course of accelerated learning. The neural substrate of a schema emerges within a low-dimensional subspace of population activity; its reuse in new problems facilitates learning by limiting connection weight changes. Our work highlights the weight-driven modifications of the vector field, which determines the population trajectory of a recurrent network and behavior. Such plasticity is especially important for preserving and reusing the learned schema in spite of undesirable changes of the vector field due to the transition to learning a new problem; the accumulated changes across problems account for the learning-to-learn dynamics.
Collapse
Affiliation(s)
- Vishwa Goudar
- Center for Neural Science, New York University, New York, NY, USA
| | | | - David J Freedman
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
113
|
Cazettes F, Mazzucato L, Murakami M, Morais JP, Augusto E, Renart A, Mainen ZF. A reservoir of foraging decision variables in the mouse brain. Nat Neurosci 2023; 26:840-849. [PMID: 37055628 PMCID: PMC10280691 DOI: 10.1038/s41593-023-01305-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
In any given situation, the environment can be parsed in different ways to yield decision variables (DVs) defining strategies useful for different tasks. It is generally presumed that the brain only computes a single DV defining the current behavioral strategy. Here to test this assumption, we recorded neural ensembles in the frontal cortex of mice performing a foraging task admitting multiple DVs. Methods developed to uncover the currently employed DV revealed the use of multiple strategies and occasional switches in strategy within sessions. Optogenetic manipulations showed that the secondary motor cortex (M2) is needed for mice to use the different DVs in the task. Surprisingly, we found that regardless of which DV best explained the current behavior, M2 activity concurrently encoded a full basis set of computations defining a reservoir of DVs appropriate for alternative tasks. This form of neural multiplexing may confer considerable advantages for learning and adaptive behavior.
Collapse
Affiliation(s)
| | - Luca Mazzucato
- Departments of Biology, Mathematics & Physics, Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Masayoshi Murakami
- Champalimaud Foundation, Lisbon, Portugal
- Department of Neurophysiology, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | |
Collapse
|
114
|
Deo DR, Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. Translating deep learning to neuroprosthetic control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537581. [PMID: 37131830 PMCID: PMC10153231 DOI: 10.1101/2023.04.21.537581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Advances in deep learning have given rise to neural network models of the relationship between movement and brain activity that appear to far outperform prior approaches. Brain-computer interfaces (BCIs) that enable people with paralysis to control external devices, such as robotic arms or computer cursors, might stand to benefit greatly from these advances. We tested recurrent neural networks (RNNs) on a challenging nonlinear BCI problem: decoding continuous bimanual movement of two computer cursors. Surprisingly, we found that although RNNs appeared to perform well in offline settings, they did so by overfitting to the temporal structure of the training data and failed to generalize to real-time neuroprosthetic control. In response, we developed a method that alters the temporal structure of the training data by dilating/compressing it in time and re-ordering it, which we show helps RNNs successfully generalize to the online setting. With this method, we demonstrate that a person with paralysis can control two computer cursors simultaneously, far outperforming standard linear methods. Our results provide evidence that preventing models from overfitting to temporal structure in training data may, in principle, aid in translating deep learning advances to the BCI setting, unlocking improved performance for challenging applications.
Collapse
|
115
|
Abbaspourazad H, Erturk E, Pesaran B, Shanechi MM. Dynamical flexible inference of nonlinear latent structures in neural population activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532479. [PMID: 36993605 PMCID: PMC10054986 DOI: 10.1101/2023.03.13.532479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Inferring complex spatiotemporal dynamics in neural population activity is critical for investigating neural mechanisms and developing neurotechnology. These activity patterns are noisy observations of lower-dimensional latent factors and their nonlinear dynamical structure. A major unaddressed challenge is to model this nonlinear structure, but in a manner that allows for flexible inference, whether causally, non-causally, or in the presence of missing neural observations. We address this challenge by developing DFINE, a new neural network that separates the model into dynamic and manifold latent factors, such that the dynamics can be modeled in tractable form. We show that DFINE achieves flexible nonlinear inference across diverse behaviors and brain regions. Further, despite enabling flexible inference unlike prior neural network models of population activity, DFINE also better predicts the behavior and neural activity, and better captures the latent neural manifold structure. DFINE can both enhance future neurotechnology and facilitate investigations across diverse domains of neuroscience.
Collapse
|
116
|
Lundqvist M, Brincat SL, Rose J, Warden MR, Buschman TJ, Miller EK, Herman P. Working memory control dynamics follow principles of spatial computing. Nat Commun 2023; 14:1429. [PMID: 36918567 PMCID: PMC10015009 DOI: 10.1038/s41467-023-36555-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023] Open
Abstract
Working memory (WM) allows us to remember and selectively control a limited set of items. Neural evidence suggests it is achieved by interactions between bursts of beta and gamma oscillations. However, it is not clear how oscillations, reflecting coherent activity of millions of neurons, can selectively control individual WM items. Here we propose the novel concept of spatial computing where beta and gamma interactions cause item-specific activity to flow spatially across the network during a task. This way, control-related information such as item order is stored in the spatial activity independent of the detailed recurrent connectivity supporting the item-specific activity itself. The spatial flow is in turn reflected in low-dimensional activity shared by many neurons. We verify these predictions by analyzing local field potentials and neuronal spiking. We hypothesize that spatial computing can facilitate generalization and zero-shot learning by utilizing spatial component as an additional information encoding dimension.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA.
| | - Scott L Brincat
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
| | - Jonas Rose
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
- Faculty of Psychology, Neural Basis of Learning, Ruhr University Bochum, 44801, Bochum, Germany
| | - Melissa R Warden
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Timothy J Buschman
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
- Princeton Neuroscience Institute, Princeton University, Washington Rd., Princeton, NJ, 08540, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
| | - Pawel Herman
- Division of Computational Science and Technology, School of Electrical Engineering and Computer Science & Digital Futures, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden.
| |
Collapse
|
117
|
Vahidi P, Sani OG, Shanechi MM. Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532554. [PMID: 36993213 PMCID: PMC10055042 DOI: 10.1101/2023.03.14.532554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other regions. To avoid misinterpreting temporally-structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of a specific behavior. We first show how training dynamical models of neural activity while considering behavior but not input, or input but not behavior may lead to misinterpretations. We then develop a novel analytical learning method that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the new capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of task while other methods can be influenced by the change in task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the three subjects and two tasks whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed.
Collapse
|
118
|
Pugavko MM, Maslennikov OV, Nekorkin VI. Multitask computation through dynamics in recurrent spiking neural networks. Sci Rep 2023; 13:3997. [PMID: 36899052 PMCID: PMC10006454 DOI: 10.1038/s41598-023-31110-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In this work, inspired by cognitive neuroscience experiments, we propose recurrent spiking neural networks trained to perform multiple target tasks. These models are designed by considering neurocognitive activity as computational processes through dynamics. Trained by input-output examples, these spiking neural networks are reverse engineered to find the dynamic mechanisms that are fundamental to their performance. We show that considering multitasking and spiking within one system provides insightful ideas on the principles of neural computation.
Collapse
Affiliation(s)
- Mechislav M Pugavko
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia
| | - Oleg V Maslennikov
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia.
| | - Vladimir I Nekorkin
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
119
|
Latimer KW, Freedman DJ. Low-dimensional encoding of decisions in parietal cortex reflects long-term training history. Nat Commun 2023; 14:1010. [PMID: 36823109 PMCID: PMC9950136 DOI: 10.1038/s41467-023-36554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Neurons in parietal cortex exhibit task-related activity during decision-making tasks. However, it remains unclear how long-term training to perform different tasks over months or even years shapes neural computations and representations. We examine lateral intraparietal area (LIP) responses during a visual motion delayed-match-to-category task. We consider two pairs of male macaque monkeys with different training histories: one trained only on the categorization task, and another first trained to perform fine motion-direction discrimination (i.e., pretrained). We introduce a novel analytical approach-generalized multilinear models-to quantify low-dimensional, task-relevant components in population activity. During the categorization task, we found stronger cosine-like motion-direction tuning in the pretrained monkeys than in the category-only monkeys, and that the pretrained monkeys' performance depended more heavily on fine discrimination between sample and test stimuli. These results suggest that sensory representations in LIP depend on the sequence of tasks that the animals have learned, underscoring the importance of considering training history in studies with complex behavioral tasks.
Collapse
Affiliation(s)
- Kenneth W Latimer
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
| | - David J Freedman
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
120
|
Abstract
Neural mechanisms of perceptual decision making have been extensively studied in experimental settings that mimic stable environments with repeating stimuli, fixed rules, and payoffs. In contrast, we live in an ever-changing environment and have varying goals and behavioral demands. To accommodate variability, our brain flexibly adjusts decision-making processes depending on context. Here, we review a growing body of research that explores the neural mechanisms underlying this flexibility. We highlight diverse forms of context dependency in decision making implemented through a variety of neural computations. Context-dependent neural activity is observed in a distributed network of brain structures, including posterior parietal, sensory, motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive control. We propose that investigating the distributed network underlying flexible decisions is key to advancing our understanding and discuss a path forward for experimental and theoretical investigations.
Collapse
Affiliation(s)
- Gouki Okazawa
- Center for Neural Science, New York University, New York, NY, USA;
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY, USA;
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
121
|
Mitchell-Heggs R, Prado S, Gava GP, Go MA, Schultz SR. Neural manifold analysis of brain circuit dynamics in health and disease. J Comput Neurosci 2023; 51:1-21. [PMID: 36522604 PMCID: PMC9840597 DOI: 10.1007/s10827-022-00839-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/30/2022] [Accepted: 10/29/2022] [Indexed: 12/23/2022]
Abstract
Recent developments in experimental neuroscience make it possible to simultaneously record the activity of thousands of neurons. However, the development of analysis approaches for such large-scale neural recordings have been slower than those applicable to single-cell experiments. One approach that has gained recent popularity is neural manifold learning. This approach takes advantage of the fact that often, even though neural datasets may be very high dimensional, the dynamics of neural activity tends to traverse a much lower-dimensional space. The topological structures formed by these low-dimensional neural subspaces are referred to as "neural manifolds", and may potentially provide insight linking neural circuit dynamics with cognitive function and behavioral performance. In this paper we review a number of linear and non-linear approaches to neural manifold learning, including principal component analysis (PCA), multi-dimensional scaling (MDS), Isomap, locally linear embedding (LLE), Laplacian eigenmaps (LEM), t-SNE, and uniform manifold approximation and projection (UMAP). We outline these methods under a common mathematical nomenclature, and compare their advantages and disadvantages with respect to their use for neural data analysis. We apply them to a number of datasets from published literature, comparing the manifolds that result from their application to hippocampal place cells, motor cortical neurons during a reaching task, and prefrontal cortical neurons during a multi-behavior task. We find that in many circumstances linear algorithms produce similar results to non-linear methods, although in particular cases where the behavioral complexity is greater, non-linear methods tend to find lower-dimensional manifolds, at the possible expense of interpretability. We demonstrate that these methods are applicable to the study of neurological disorders through simulation of a mouse model of Alzheimer's Disease, and speculate that neural manifold analysis may help us to understand the circuit-level consequences of molecular and cellular neuropathology.
Collapse
Affiliation(s)
- Rufus Mitchell-Heggs
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, EH8 9XD United Kingdom
| | - Seigfred Prado
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ United Kingdom
- Department of Electronics Engineering, University of Santo Tomas, Manila, Philippines
| | - Giuseppe P. Gava
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ United Kingdom
| | - Mary Ann Go
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ United Kingdom
| | - Simon R. Schultz
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ United Kingdom
| |
Collapse
|
122
|
Boven E, Pemberton J, Chadderton P, Apps R, Costa RP. Cerebro-cerebellar networks facilitate learning through feedback decoupling. Nat Commun 2023; 14:51. [PMID: 36599827 DOI: 10.1038/s41467-022-35658-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Behavioural feedback is critical for learning in the cerebral cortex. However, such feedback is often not readily available. How the cerebral cortex learns efficiently despite the sparse nature of feedback remains unclear. Inspired by recent deep learning algorithms, we introduce a systems-level computational model of cerebro-cerebellar interactions. In this model a cerebral recurrent network receives feedback predictions from a cerebellar network, thereby decoupling learning in cerebral networks from future feedback. When trained in a simple sensorimotor task the model shows faster learning and reduced dysmetria-like behaviours, in line with the widely observed functional impact of the cerebellum. Next, we demonstrate that these results generalise to more complex motor and cognitive tasks. Finally, the model makes several experimentally testable predictions regarding cerebro-cerebellar task-specific representations over learning, task-specific benefits of cerebellar predictions and the differential impact of cerebellar and inferior olive lesions. Overall, our work offers a theoretical framework of cerebro-cerebellar networks as feedback decoupling machines.
Collapse
Affiliation(s)
- Ellen Boven
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Joseph Pemberton
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK
| | - Paul Chadderton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Rui Ponte Costa
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK.
| |
Collapse
|
123
|
Koh TH, Bishop WE, Kawashima T, Jeon BB, Srinivasan R, Mu Y, Wei Z, Kuhlman SJ, Ahrens MB, Chase SM, Yu BM. Dimensionality reduction of calcium-imaged neuronal population activity. NATURE COMPUTATIONAL SCIENCE 2023; 3:71-85. [PMID: 37476302 PMCID: PMC10358781 DOI: 10.1038/s43588-022-00390-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/05/2022] [Indexed: 07/22/2023]
Abstract
Calcium imaging has been widely adopted for its ability to record from large neuronal populations. To summarize the time course of neural activity, dimensionality reduction methods, which have been applied extensively to population spiking activity, may be particularly useful. However, it is unclear if the dimensionality reduction methods applied to spiking activity are appropriate for calcium imaging. We thus carried out a systematic study of design choices based on standard dimensionality reduction methods. We also developed a method to perform deconvolution and dimensionality reduction simultaneously (Calcium Imaging Linear Dynamical System, CILDS). CILDS most accurately recovered the single-trial, low-dimensional time courses from simulated calcium imaging data. CILDS also outperformed the other methods on calcium imaging recordings from larval zebrafish and mice. More broadly, this study represents a foundation for summarizing calcium imaging recordings of large neuronal populations using dimensionality reduction in diverse experimental settings.
Collapse
Affiliation(s)
- Tze Hui Koh
- Department of Biomedical Engineering, Carnegie Mellon University, PA
- Center for the Neural Basis of Cognition, PA
| | - William E. Bishop
- Center for the Neural Basis of Cognition, PA
- Department of Machine Learning, Carnegie Mellon University, PA
- Janelia Research Campus, Howard Hughes Medical Institute, VA
| | - Takashi Kawashima
- Janelia Research Campus, Howard Hughes Medical Institute, VA
- Department of Brain Sciences, Weizmann Institute of Science, Israel
| | - Brian B. Jeon
- Department of Biomedical Engineering, Carnegie Mellon University, PA
- Center for the Neural Basis of Cognition, PA
| | - Ranjani Srinivasan
- Department of Biomedical Engineering, Carnegie Mellon University, PA
- Department of Electrical and Computer Engineering, Johns Hopkins University, MD
| | - Yu Mu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
| | - Ziqiang Wei
- Janelia Research Campus, Howard Hughes Medical Institute, VA
| | - Sandra J. Kuhlman
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, PA
- Department of Biological Sciences, Carnegie Mellon University, PA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, VA
| | - Steven M. Chase
- Department of Biomedical Engineering, Carnegie Mellon University, PA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, PA
| | - Byron M. Yu
- Department of Biomedical Engineering, Carnegie Mellon University, PA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, PA
- Department of Electrical and Computer Engineering, Carnegie Mellon University, PA
| |
Collapse
|
124
|
Brennan C, Aggarwal A, Pei R, Sussillo D, Proekt A. One dimensional approximations of neuronal dynamics reveal computational strategy. PLoS Comput Biol 2023; 19:e1010784. [PMID: 36607933 PMCID: PMC9821456 DOI: 10.1371/journal.pcbi.1010784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
The relationship between neuronal activity and computations embodied by it remains an open question. We develop a novel methodology that condenses observed neuronal activity into a quantitatively accurate, simple, and interpretable model and validate it on diverse systems and scales from single neurons in C. elegans to fMRI in humans. The model treats neuronal activity as collections of interlocking 1-dimensional trajectories. Despite their simplicity, these models accurately predict future neuronal activity and future decisions made by human participants. Moreover, the structure formed by interconnected trajectories-a scaffold-is closely related to the computational strategy of the system. We use these scaffolds to compare the computational strategy of primates and artificial systems trained on the same task to identify specific conditions under which the artificial agent learns the same strategy as the primate. The computational strategy extracted using our methodology predicts specific errors on novel stimuli. These results show that our methodology is a powerful tool for studying the relationship between computation and neuronal activity across diverse systems.
Collapse
Affiliation(s)
- Connor Brennan
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adeeti Aggarwal
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rui Pei
- Department of Psychology, Stanford University, Palo Alto, California, United States of America
| | - David Sussillo
- Stanford Neurosciences Institute, Stanford University, Palo Alto, California, United States of America
- Department of Electrical Engineering, Stanford University, Palo Alto, California, United States of America
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
125
|
Cregg JM, Mirdamadi JL, Fortunato C, Okorokova EV, Kuper C, Nayeem R, Byun AJ, Avraham C, Buonocore A, Winner TS, Mildren RL. Highlights from the 31st Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2023; 129:220-234. [PMID: 36541602 PMCID: PMC9844973 DOI: 10.1152/jn.00500.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jared M Cregg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jasmine L Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Cátia Fortunato
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Clara Kuper
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rashida Nayeem
- Department of Electrical Engineering, Northeastern University, Boston, Massachusetts
| | - Andrew J Byun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Chen Avraham
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples, Italy
| | - Taniel S Winner
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Robyn L Mildren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
126
|
Abstract
The dorsal premotor cortex (DPC) has classically been associated with a role in preparing and executing the physical motor variables during cognitive tasks. While recent work has provided nuanced insights into this role, here we propose that DPC also participates more actively in decision-making. We recorded neuronal activity in DPC while two trained monkeys performed a vibrotactile categorization task, utilizing two partially overlapping ranges of stimulus values that varied on two physical attributes: vibrotactile frequency and amplitude. We observed a broad heterogeneity across DPC neurons, the majority of which maintained the same response patterns across attributes and ranges, coding in the same periods, mixing temporal and categorical dynamics. The predominant categorical signal was maintained throughout the delay, movement periods and notably during the intertrial period. Putting the entire population's data through two dimensionality reduction techniques, we found strong temporal and categorical representations without remnants of the stimuli's physical parameters. Furthermore, projecting the activity of one population over the population axes of the other yielded identical categorical and temporal responses. Finally, we sought to identify functional subpopulations based on the combined activity of all stimuli, neurons, and time points; however, we found that single-unit responses mixed temporal and categorical dynamics and couldn't be clustered. All these point to DPC playing a more decision-related role than previously anticipated.
Collapse
|
127
|
Chae H, Banerjee A, Dussauze M, Albeanu DF. Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron 2022; 110:3970-3985.e7. [PMID: 36174573 PMCID: PMC9742324 DOI: 10.1016/j.neuron.2022.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Elucidating the neural circuits supporting odor identification remains an open challenge. Here, we analyze the contribution of the two output cell types of the mouse olfactory bulb (mitral and tufted cells) to decode odor identity and concentration and its dependence on top-down feedback from their respective major cortical targets: piriform cortex versus anterior olfactory nucleus. We find that tufted cells substantially outperform mitral cells in decoding both odor identity and intensity. Cortical feedback selectively regulates the activity of its dominant bulb projection cell type and implements different computations. Piriform feedback specifically restructures mitral responses, whereas feedback from the anterior olfactory nucleus preferentially controls the gain of tufted representations without altering their odor tuning. Our results identify distinct functional loops involving the mitral and tufted cells and their cortical targets. We suggest that in addition to the canonical mitral-to-piriform pathway, tufted cells and their target regions are ideally positioned to compute odor identity.
Collapse
Affiliation(s)
- Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Arkarup Banerjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Marie Dussauze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA.
| |
Collapse
|
128
|
Xing D, Truccolo W, Borton DA. Emergence of Distinct Neural Subspaces in Motor Cortical Dynamics during Volitional Adjustments of Ongoing Locomotion. J Neurosci 2022; 42:9142-9157. [PMID: 36283830 PMCID: PMC9761674 DOI: 10.1523/jneurosci.0746-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023] Open
Abstract
The ability to modulate ongoing walking gait with precise, voluntary adjustments is what allows animals to navigate complex terrains. However, how the nervous system generates the signals to precisely control the limbs while simultaneously maintaining locomotion is poorly understood. One potential strategy is to distribute the neural activity related to these two functions into distinct cortical activity coactivation subspaces so that both may be conducted simultaneously without disruptive interference. To investigate this hypothesis, we recorded the activity of primary motor cortex in male nonhuman primates during obstacle avoidance on a treadmill. We found that the same neural population was active during both basic unobstructed locomotion and volitional obstacle avoidance movements. We identified the neural modes spanning the subspace of the low-dimensional dynamics in primary motor cortex and found a subspace that consistently maintains the same cyclic activity throughout obstacle stepping, despite large changes in the movement itself. All of the variance corresponding to this large change in movement during the obstacle avoidance was confined to its own distinct subspace. Furthermore, neural decoders built for ongoing locomotion did not generalize to decoding obstacle avoidance during locomotion. Our findings suggest that separate underlying subspaces emerge during complex locomotion that coordinates ongoing locomotor-related neural dynamics with volitional gait adjustments. These findings may have important implications for the development of brain-machine interfaces.SIGNIFICANCE STATEMENT Locomotion and precise, goal-directed movements are two distinct movement modalities with known differing requirements of motor cortical input. Previous studies have characterized the cortical activity during obstacle avoidance while walking in rodents and felines, but, to date, no such studies have been completed in primates. Additionally, in any animal model, it is unknown how these two movements are represented in primary motor cortex (M1) low-dimensional dynamics when both activities are performed at the same time, such as during obstacle avoidance. We developed a novel obstacle avoidance paradigm in freely moving nonhuman primates and discovered that the rhythmic locomotion-related dynamics and the voluntary, gait-adjustment movement separate into distinct subspaces in M1 cortical activity. Our analysis of decoding generalization may also have important implications for the development of brain-machine interfaces.
Collapse
Affiliation(s)
- David Xing
- School of Engineering, Brown University, Providence, Rhode Island 02912
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - David A Borton
- School of Engineering, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
- Center for Neurorestoration & Neurotechnology, Rehabilitation Research and Development Service, Department of Veterans Affairs, Providence, Rhode Island 02908
| |
Collapse
|
129
|
Keshtkaran MR, Sedler AR, Chowdhury RH, Tandon R, Basrai D, Nguyen SL, Sohn H, Jazayeri M, Miller LE, Pandarinath C. A large-scale neural network training framework for generalized estimation of single-trial population dynamics. Nat Methods 2022; 19:1572-1577. [PMID: 36443486 PMCID: PMC9825111 DOI: 10.1038/s41592-022-01675-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Achieving state-of-the-art performance with deep neural population dynamics models requires extensive hyperparameter tuning for each dataset. AutoLFADS is a model-tuning framework that automatically produces high-performing autoencoding models on data from a variety of brain areas and tasks, without behavioral or task information. We demonstrate its broad applicability on several rhesus macaque datasets: from motor cortex during free-paced reaching, somatosensory cortex during reaching with perturbations, and dorsomedial frontal cortex during a cognitive timing task.
Collapse
Affiliation(s)
- Mohammad Reza Keshtkaran
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Sedler
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
| | - Raeed H Chowdhury
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raghav Tandon
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
| | - Diya Basrai
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Physiology and Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Sarah L Nguyen
- College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hansem Sohn
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lee E Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Neurosurgery, Emory University, Atlanta, GA, USA.
| |
Collapse
|
130
|
Cohen Y, Engel TA, Langdon C, Lindsay GW, Ott T, Peters MAK, Shine JM, Breton-Provencher V, Ramaswamy S. Recent Advances at the Interface of Neuroscience and Artificial Neural Networks. J Neurosci 2022; 42:8514-8523. [PMID: 36351830 PMCID: PMC9665920 DOI: 10.1523/jneurosci.1503-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Biological neural networks adapt and learn in diverse behavioral contexts. Artificial neural networks (ANNs) have exploited biological properties to solve complex problems. However, despite their effectiveness for specific tasks, ANNs are yet to realize the flexibility and adaptability of biological cognition. This review highlights recent advances in computational and experimental research to advance our understanding of biological and artificial intelligence. In particular, we discuss critical mechanisms from the cellular, systems, and cognitive neuroscience fields that have contributed to refining the architecture and training algorithms of ANNs. Additionally, we discuss how recent work used ANNs to understand complex neuronal correlates of cognition and to process high throughput behavioral data.
Collapse
Affiliation(s)
- Yarden Cohen
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tatiana A Engel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724
| | | | - Grace W Lindsay
- Department of Psychology, Center for Data Science, New York University, New York, NY 10003
| | - Torben Ott
- Bernstein Center for Computational Neuroscience Berlin, Institute of Biology, Humboldt University of Berlin, 10117, Berlin, Germany
| | - Megan A K Peters
- Department of Cognitive Sciences, University of California-Irvine, Irvine, CA 92697
| | - James M Shine
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Srikanth Ramaswamy
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
131
|
Khona M, Fiete IR. Attractor and integrator networks in the brain. Nat Rev Neurosci 2022; 23:744-766. [DOI: 10.1038/s41583-022-00642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
|
132
|
Hadjidimitrakis K, De Vitis M, Ghodrati M, Filippini M, Fattori P. Anterior-posterior gradient in the integrated processing of forelimb movement direction and distance in macaque parietal cortex. Cell Rep 2022; 41:111608. [DOI: 10.1016/j.celrep.2022.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/16/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
|
133
|
Yang W, Tipparaju SL, Chen G, Li N. Thalamus-driven functional populations in frontal cortex support decision-making. Nat Neurosci 2022; 25:1339-1352. [PMID: 36171427 PMCID: PMC9534763 DOI: 10.1038/s41593-022-01171-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/18/2022] [Indexed: 12/02/2022]
Abstract
Neurons in frontal cortex exhibit diverse selectivity representing sensory, motor and cognitive variables during decision-making. The neural circuit basis for this complex selectivity remains unclear. We examined activity mediating a tactile decision in mouse anterior lateral motor cortex in relation to the underlying circuits. Contrary to the notion of randomly mixed selectivity, an analysis of 20,000 neurons revealed organized activity coding behavior. Individual neurons exhibited prototypical response profiles that were repeatable across mice. Stimulus, choice and action were coded nonrandomly by distinct neuronal populations that could be delineated by their response profiles. We related distinct selectivity to long-range inputs from somatosensory cortex, contralateral anterior lateral motor cortex and thalamus. Each input connects to all functional populations but with differing strength. Task selectivity was more strongly dependent on thalamic inputs than cortico-cortical inputs. Our results suggest that the thalamus drives subnetworks within frontal cortex coding distinct features of decision-making.
Collapse
Affiliation(s)
- Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
134
|
Singh B, Wang Z, Qi XL, Constantinidis C. Plasticity after cognitive training reflected in prefrontal local field potentials. iScience 2022; 25:104929. [PMID: 36065179 PMCID: PMC9440296 DOI: 10.1016/j.isci.2022.104929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Learning to perform a new cognitive task induces plasticity of the prefrontal cortex generally involving activation of more neurons and increases in firing rate; however, its effects on single neurons are diverse and complex. We sought to understand how training affects global measures of neural activity by recording and analyzing local field potentials (LFPs) in monkeys before and after they learned to perform working memory tasks. LFP power after training was characterized by a reduction in power in 20-40 Hz during the stimulus presentations and delay periods of the task. Both evoked power, synchronized to task events, and induced power exhibited this decrease after training. The effect was consistent across tasks requiring memory of spatial location and stimulus shape. Error trials were characterized by a lack of LFP power ramping around the fixation onset. Our results reveal signatures of cortical plasticity in LFPs associated with learning to perform cognitive tasks.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Xue-Lian Qi
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
135
|
Tsao A, Yousefzadeh SA, Meck WH, Moser MB, Moser EI. The neural bases for timing of durations. Nat Rev Neurosci 2022; 23:646-665. [PMID: 36097049 DOI: 10.1038/s41583-022-00623-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/10/2022]
Abstract
Durations are defined by a beginning and an end, and a major distinction is drawn between durations that start in the present and end in the future ('prospective timing') and durations that start in the past and end either in the past or the present ('retrospective timing'). Different psychological processes are thought to be engaged in each of these cases. The former is thought to engage a clock-like mechanism that accurately tracks the continuing passage of time, whereas the latter is thought to engage a reconstructive process that utilizes both temporal and non-temporal information from the memory of past events. We propose that, from a biological perspective, these two forms of duration 'estimation' are supported by computational processes that are both reliant on population state dynamics but are nevertheless distinct. Prospective timing is effectively carried out in a single step where the ongoing dynamics of population activity directly serve as the computation of duration, whereas retrospective timing is carried out in two steps: the initial generation of population state dynamics through the process of event segmentation and the subsequent computation of duration utilizing the memory of those dynamics.
Collapse
Affiliation(s)
- Albert Tsao
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - May-Britt Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
136
|
Loriette C, Amengual JL, Ben Hamed S. Beyond the brain-computer interface: Decoding brain activity as a tool to understand neuronal mechanisms subtending cognition and behavior. Front Neurosci 2022; 16:811736. [PMID: 36161174 PMCID: PMC9492914 DOI: 10.3389/fnins.2022.811736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
One of the major challenges in system neurosciences consists in developing techniques for estimating the cognitive information content in brain activity. This has an enormous potential in different domains spanning from clinical applications, cognitive enhancement to a better understanding of the neural bases of cognition. In this context, the inclusion of machine learning techniques to decode different aspects of human cognition and behavior and its use to develop brain-computer interfaces for applications in neuroprosthetics has supported a genuine revolution in the field. However, while these approaches have been shown quite successful for the study of the motor and sensory functions, success is still far from being reached when it comes to covert cognitive functions such as attention, motivation and decision making. While improvement in this field of BCIs is growing fast, a new research focus has emerged from the development of strategies for decoding neural activity. In this review, we aim at exploring how the advanced in decoding of brain activity is becoming a major neuroscience tool moving forward our understanding of brain functions, providing a robust theoretical framework to test predictions on the relationship between brain activity and cognition and behavior.
Collapse
Affiliation(s)
- Célia Loriette
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon 1, Bron, France
| | | | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
137
|
Buetfering C, Zhang Z, Pitsiani M, Smallridge J, Boven E, McElligott S, Häusser M. Behaviorally relevant decision coding in primary somatosensory cortex neurons. Nat Neurosci 2022; 25:1225-1236. [PMID: 36042310 PMCID: PMC7613627 DOI: 10.1038/s41593-022-01151-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
Primary sensory cortex is thought to process incoming sensory information, while decision variables important for driving behavior are assumed to arise downstream in the processing hierarchy. Here, we used population two-photon calcium imaging and targeted two-photon optogenetic stimulation of neurons in layer 2/3 of mouse primary somatosensory cortex (S1) during a texture discrimination task to test for the presence of decision signals and probe their behavioral relevance. Small but distinct populations of neurons carried information about the stimulus irrespective of the behavioral outcome (stimulus neurons), or about the choice irrespective of the presented stimulus (decision neurons). Decision neurons show categorical coding that develops during learning, and lack a conclusive decision signal in Miss trials. All-optical photostimulation of decision neurons during behavior improves behavioral performance, establishing a causal role in driving behavior. The fact that stimulus and decision neurons are intermingled challenges the idea of S1 as a purely sensory area, and causal perturbation suggests a direct involvement of S1 decision neurons in the decision-making process.
Collapse
Affiliation(s)
- Christina Buetfering
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Zihui Zhang
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Margarita Pitsiani
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - John Smallridge
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Neurophenomenology of Consciousness Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Ellen Boven
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sacha McElligott
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
138
|
Distractibility and impulsivity neural states are distinct from selective attention and modulate the implementation of spatial attention. Nat Commun 2022; 13:4796. [PMID: 35970856 PMCID: PMC9378734 DOI: 10.1038/s41467-022-32385-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
In the context of visual attention, it has been classically assumed that missing the response to a target or erroneously selecting a distractor occurs as a consequence of the (miss)allocation of attention in space. In the present paper, we challenge this view and provide evidence that, in addition to encoding spatial attention, prefrontal neurons also encode a distractibility-to-impulsivity state. Using supervised dimensionality reduction techniques in prefrontal neuronal recordings in monkeys, we identify two partially overlapping neuronal subpopulations associated either with the focus of attention or overt behaviour. The degree of overlap accounts for the behavioral gain associated with the good allocation of attention. We further describe the neural variability accounting for distractibility-to-impulsivity behaviour by a two dimensional state associated with optimality in task and responsiveness. Overall, we thus show that behavioral performance arises from the integration of task-specific neuronal processes and pre-existing neuronal states describing task-independent behavioral states. Failing to detect relevant information has been assumed to be a consequence of misallocation of attention. Here, the authors present findings showing that optimal behavioral performance results from the absence of interference between internal neural states and attention control.
Collapse
|
139
|
Erez Y, Kadohisa M, Petrov P, Sigala N, Buckley MJ, Kusunoki M, Duncan J. Integrated neural dynamics for behavioural decisions and attentional competition in the prefrontal cortex. Eur J Neurosci 2022; 56:4393-4410. [PMID: 35781352 DOI: 10.1111/ejn.15757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/27/2022]
Abstract
In the behaving monkey, complex neural dynamics in the prefrontal cortex contribute to context-dependent decisions and attentional competition. We used demixed principal component analysis to track prefrontal activity dynamics in a cued target detection task. In this task, the animal combined identity of a visual object with a prior instruction cue to determine a target/nontarget decision. From population activity, we extracted principal components for each task feature and examined their time course and sensitivity to stimulus and task variations. For displays containing a single choice object in left or right hemifield, object identity, cue identity and decision were all encoded in population activity, with different dynamics and lateralisation. Object information peaked at 100-200 ms from display onset and was largely confined to the contralateral hemisphere. Cue information was weaker and present even prior to display onset. Integrating information from cue and object, decision information arose more slowly and was bilateral. Individual neurons contributed independently to coding of the three task features. The analysis was then extended to displays with a target in one hemifield and a competing distractor in the other. In this case, the data suggest that each hemisphere initially encoded the identity of the contralateral object. The distractor representation was then rapidly suppressed, with the final target decision again encoded bilaterally. The results show how information is coded along task-related dimensions while competition is resolved and suggest how information flows within and across frontal lobes to implement a learned behavioural decision.
Collapse
Affiliation(s)
- Yaara Erez
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Mikiko Kadohisa
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Philippe Petrov
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Natasha Sigala
- Brighton and Sussex Medical School, Brighton, UK
- Sackler Center for Consciousness Science, University of Sussex, Brighton, UK
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Makoto Kusunoki
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
140
|
Heller CR, David SV. Targeted dimensionality reduction enables reliable estimation of neural population coding accuracy from trial-limited data. PLoS One 2022; 17:e0271136. [PMID: 35862300 PMCID: PMC9302847 DOI: 10.1371/journal.pone.0271136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Rapidly developing technology for large scale neural recordings has allowed researchers to measure the activity of hundreds to thousands of neurons at single cell resolution in vivo. Neural decoding analyses are a widely used tool used for investigating what information is represented in this complex, high-dimensional neural population activity. Most population decoding methods assume that correlated activity between neurons has been estimated accurately. In practice, this requires large amounts of data, both across observations and across neurons. Unfortunately, most experiments are fundamentally constrained by practical variables that limit the number of times the neural population can be observed under a single stimulus and/or behavior condition. Therefore, new analytical tools are required to study neural population coding while taking into account these limitations. Here, we present a simple and interpretable method for dimensionality reduction that allows neural decoding metrics to be calculated reliably, even when experimental trial numbers are limited. We illustrate the method using simulations and compare its performance to standard approaches for dimensionality reduction and decoding by applying it to single-unit electrophysiological data collected from auditory cortex.
Collapse
Affiliation(s)
- Charles R. Heller
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Stephen V. David
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
141
|
Inagaki HK, Chen S, Daie K, Finkelstein A, Fontolan L, Romani S, Svoboda K. Neural Algorithms and Circuits for Motor Planning. Annu Rev Neurosci 2022; 45:249-271. [PMID: 35316610 DOI: 10.1146/annurev-neuro-092021-121730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits.
Collapse
Affiliation(s)
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Kayvon Daie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| | - Arseny Finkelstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lorenzo Fontolan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| |
Collapse
|
142
|
Bagi B, Brecht M, Sanguinetti-Scheck JI. Unsupervised discovery of behaviorally relevant brain states in rats playing hide-and-seek. Curr Biol 2022; 32:2640-2653.e4. [PMID: 35588745 PMCID: PMC9245901 DOI: 10.1016/j.cub.2022.04.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022]
Abstract
In classical neuroscience experiments, neural activity is measured across many identical trials of animals performing simple tasks and is then analyzed, associating neural responses to pre-defined experimental parameters. This type of analysis is not suitable for patterns of behavior that unfold freely, such as play behavior. Here, we attempt an alternative approach for exploratory data analysis on a single-trial level, applicable in more complex and naturalistic behavioral settings in which no two trials are identical. We analyze neural population activity in the prefrontal cortex (PFC) of rats playing hide-and-seek and show that it is possible to discover what aspects of the task are reflected in the recorded activity with a limited number of simultaneously recorded cells (≤ 31). Using hidden Markov models, we cluster population activity in the PFC into a set of neural states, each associated with a pattern of neural activity. Despite high variability in behavior, relating the inferred states to the events of the hide-and-seek game reveals neural states that consistently appear at the same phases of the game. Furthermore, we show that by applying the segmentation inferred from neural data to the animals' behavior, we can explore and discover novel correlations between neural activity and behavior. Finally, we replicate the results in a second dataset and show that population activity in the PFC displays distinct sets of states during playing hide-and-seek and observing others play the game. Overall, our results reveal robust, state-like representations in the rat PFC during unrestrained playful behavior and showcase the applicability of population analyses in naturalistic neuroscience.
Collapse
Affiliation(s)
- Bence Bagi
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Department of Bioengineering, Imperial College London, London, UK
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juan Ignacio Sanguinetti-Scheck
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
143
|
Ghosh S, Maunsell JHR. Neuronal correlates of selective attention and effort in visual area V4 are invariant of motivational context. SCIENCE ADVANCES 2022; 8:eabc8812. [PMID: 35687684 PMCID: PMC9187239 DOI: 10.1126/sciadv.abc8812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Task demands can differentially engage two fundamental attention components: selectivity (spatial bias) and effort (total nonselective attentional intensity). The relative contributions and interactions of these components in modulating neuronal signals remain unknown. We recorded V4 neurons while monkeys' spatially selective attention and effort were independently controlled by adjusting either task difficulty or reward size at two locations. Neurons were robustly modulated by either selective attention or effort. Notably, increasing overall effort to improve performance at a distant site reduced neuronal responses even when performance was unchanged for receptive field stimuli. This interaction between attentional selectivity and effort was evident in single-trial spiking and can be explained by divisive normalization of spatially distributed behavioral performance at the single-neuron level. Changing motivation using task difficulty or reward produced indistinguishable effects. These results provide a cellular-level mechanism of how attention components integrate to modulate sensory processing in different motivational contexts.
Collapse
|
144
|
Wan Q, Menendez JA, Postle BR. Priority-based transformations of stimulus representation in visual working memory. PLoS Comput Biol 2022; 18:e1009062. [PMID: 35653404 PMCID: PMC9197029 DOI: 10.1371/journal.pcbi.1009062] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
How does the brain prioritize among the contents of working memory (WM) to appropriately guide behavior? Previous work, employing inverted encoding modeling (IEM) of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) datasets, has shown that unprioritized memory items (UMI) are actively represented in the brain, but in a "flipped", or opposite, format compared to prioritized memory items (PMI). To acquire independent evidence for such a priority-based representational transformation, and to explore underlying mechanisms, we trained recurrent neural networks (RNNs) with a long short-term memory (LSTM) architecture to perform a 2-back WM task. Visualization of LSTM hidden layer activity using Principal Component Analysis (PCA) confirmed that stimulus representations undergo a representational transformation-consistent with a flip-while transitioning from the functional status of UMI to PMI. Demixed (d)PCA of the same data identified two representational trajectories, one each within a UMI subspace and a PMI subspace, both undergoing a reversal of stimulus coding axes. dPCA of data from an EEG dataset also provided evidence for priority-based transformations of the representational code, albeit with some differences. This type of transformation could allow for retention of unprioritized information in WM while preventing it from interfering with concurrent behavior. The results from this initial exploration suggest that the algorithmic details of how this transformation is carried out by RNNs, versus by the human brain, may differ.
Collapse
Affiliation(s)
- Quan Wan
- Department of Psychology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jorge A. Menendez
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Bradley R. Postle
- Department of Psychology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Psychiatry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
145
|
Abstract
Non-human primates, especially rhesus macaques, have been a dominant model to study sensorimotor control of the upper limbs. Indeed, human and macaques have similar hands and homologous neural circuits to mediate manual behavior. However, few studies have systematically and quantitatively compared the manual behaviors of the two species. Such comparison is critical for assessing the validity of using the macaque sensorimotor system as a model of its human counterpart. In this study, we systematically compared the prehensile behaviors of humans and rhesus macaques using an identical experimental setup. We found human and macaque prehension kinematics to be generally similar with a few subtle differences. While the structure of the pre-shaping hand postures is similar in humans and macaques, human postures are more object-specific and human joints are less intercorrelated. Conversely, monkeys demonstrate more stereotypical pre-shaping behaviors that are common across all objects and more variability in their postures across repeated presentations of the same object. Despite these subtle differences in manual behavior between humans and monkeys, our results bolster the use of the macaque model to understand the neural mechanisms of manual dexterity in humans.
Collapse
Affiliation(s)
- Yuke Yan
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| |
Collapse
|
146
|
McFadyen JR, Heider B, Karkhanis AN, Cloherty SL, Muñoz F, Siegel RM, Morris AP. Robust Coding of Eye Position in Posterior Parietal Cortex despite Context-Dependent Tuning. J Neurosci 2022; 42:4116-4130. [PMID: 35410881 PMCID: PMC9121829 DOI: 10.1523/jneurosci.0674-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Neurons in posterior parietal cortex (PPC) encode many aspects of the sensory world (e.g., scene structure), the posture of the body, and plans for action. For a downstream computation, however, only some of these dimensions are relevant; the rest are "nuisance variables" because their influence on neural activity changes with sensory and behavioral context, potentially corrupting the read-out of relevant information. Here we show that a key postural variable for vision (eye position) is represented robustly in male macaque PPC across a range of contexts, although the tuning of single neurons depended strongly on context. Contexts were defined by different stages of a visually guided reaching task, including (1) a visually sparse epoch, (2) a visually rich epoch, (3) a "go" epoch in which the reach was cued, and (4) during the reach itself. Eye position was constant within trials but varied across trials in a 3 × 3 grid spanning 24° × 24°. Using demixed principal component analysis of neural spike-counts, we found that the subspace of the population response encoding eye position is orthogonal to that encoding task context. Accordingly, a context-naive (fixed-parameter) decoder was nevertheless able to estimate eye position reliably across contexts. Errors were small given the sample size (∼1.78°) and would likely be even smaller with larger populations. Moreover, they were comparable to that of decoders that were optimized for each context. Our results suggest that population codes in PPC shield encoded signals from crosstalk to support robust sensorimotor transformations across contexts.SIGNIFICANCE STATEMENT Neurons in posterior parietal cortex (PPC) which are sensitive to gaze direction are thought to play a key role in spatial perception and behavior (e.g., reaching, navigation), and provide a potential substrate for brain-controlled prosthetics. Many, however, change their tuning under different sensory and behavioral contexts, raising the prospect that they provide unreliable representations of egocentric space. Here, we analyze the structure of encoding dimensions for gaze direction and context in PPC during different stages of a visually guided reaching task. We use demixed dimensionality reduction and decoding techniques to show that the coding of gaze direction in PPC is mostly invariant to context. This suggests that PPC can provide reliable spatial information across sensory and behavioral contexts.
Collapse
Affiliation(s)
- Jamie R McFadyen
- Neuroscience Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Barbara Heider
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102
| | - Anushree N Karkhanis
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102
| | - Shaun L Cloherty
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Fabian Muñoz
- Department of Neuroscience, Columbia University, New York, NY, 10027
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Ralph M Siegel
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102
| | - Adam P Morris
- Neuroscience Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
- Monash Data Futures Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
147
|
Fu Z, Beam D, Chung JM, Reed CM, Mamelak AN, Adolphs R, Rutishauser U. The geometry of domain-general performance monitoring in the human medial frontal cortex. Science 2022; 376:eabm9922. [PMID: 35511978 DOI: 10.1126/science.abm9922] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Controlling behavior to flexibly achieve desired goals depends on the ability to monitor one's own performance. It is unknown how performance monitoring can be both flexible, to support different tasks, and specialized, to perform each task well. We recorded single neurons in the human medial frontal cortex while subjects performed two tasks that involve three types of cognitive conflict. Neurons encoding conflict probability, conflict, and error in one or both tasks were intermixed, forming a representational geometry that simultaneously allowed task specialization and generalization. Neurons encoding conflict retrospectively served to update internal estimates of conflict probability. Population representations of conflict were compositional. These findings reveal how representations of evaluative signals can be both abstract and task-specific and suggest a neuronal mechanism for estimating control demand.
Collapse
Affiliation(s)
- Zhongzheng Fu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Danielle Beam
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ralph Adolphs
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
148
|
Gmaz JM, van der Meer MAA. Context coding in the mouse nucleus accumbens modulates motivationally relevant information. PLoS Biol 2022; 20:e3001338. [PMID: 35486662 PMCID: PMC9094556 DOI: 10.1371/journal.pbio.3001338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/11/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Neural activity in the nucleus accumbens (NAc) is thought to track fundamentally value-centric quantities linked to reward and effort. However, the NAc also contributes to flexible behavior in ways that are difficult to explain based on value signals alone, raising the question of if and how nonvalue signals are encoded in NAc. We recorded NAc neural ensembles while head-fixed mice performed an odor-based biconditional discrimination task where an initial discrete cue modulated the behavioral significance of a subsequently presented reward-predictive cue. We extracted single-unit and population-level correlates related to the cues and found value-independent coding for the initial, context-setting cue. This context signal occupied a population-level coding space orthogonal to outcome-related representations and was predictive of subsequent behaviorally relevant responses to the reward-predictive cues. Together, these findings support a gating model for how the NAc contributes to behavioral flexibility and provide a novel population-level perspective from which to view NAc computations.
Collapse
Affiliation(s)
- Jimmie M. Gmaz
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States of America
| | - Matthijs A. A. van der Meer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States of America
- * E-mail:
| |
Collapse
|
149
|
Avila E, Flierman NA, Holland PJ, Roelfsema PR, Frens MA, Badura A, De Zeeuw CI. Purkinje Cell Activity in the Medial and Lateral Cerebellum During Suppression of Voluntary Eye Movements in Rhesus Macaques. Front Cell Neurosci 2022; 16:863181. [PMID: 35573834 PMCID: PMC9096024 DOI: 10.3389/fncel.2022.863181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Volitional suppression of responses to distracting external stimuli enables us to achieve our goals. This volitional inhibition of a specific behavior is supposed to be mainly mediated by the cerebral cortex. However, recent evidence supports the involvement of the cerebellum in this process. It is currently not known whether different parts of the cerebellar cortex play differential or synergistic roles in the planning and execution of this behavior. Here, we measured Purkinje cell (PC) responses in the medial and lateral cerebellum in two rhesus macaques during pro- and anti-saccade tasks. During an antisaccade trial, non-human primates (NHPs) were instructed to make a saccadic eye movement away from a target, rather than toward it, as in prosaccade trials. Our data show that the cerebellum plays an important role not only during the execution of the saccades but also during the volitional inhibition of eye movements toward the target. Simple spike (SS) modulation during the instruction and execution periods of pro- and anti-saccades was prominent in PCs of both the medial and lateral cerebellum. However, only the SS activity in the lateral cerebellar cortex contained information about stimulus identity and showed a strong reciprocal interaction with complex spikes (CSs). Moreover, the SS activity of different PC groups modulated bidirectionally in both of regions, but the PCs that showed facilitating and suppressive activity were predominantly associated with instruction and execution, respectively. These findings show that different cerebellar regions and PC groups contribute to goal-directed behavior and volitional inhibition, but with different propensities, highlighting the rich repertoire of the cerebellar control in executive functions.
Collapse
Affiliation(s)
- Eric Avila
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Nico A. Flierman
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Peter J. Holland
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Pieter R. Roelfsema
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, VU University, Amsterdam, Netherlands
- Department of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
| | | | - Aleksandra Badura
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Aleksandra Badura,
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Chris I. De Zeeuw,
| |
Collapse
|
150
|
Boran E, Hilfiker P, Stieglitz L, Sarnthein J, Klaver P. Persistent neuronal firing in the medial temporal lobe supports performance and workload of visual working memory in humans. Neuroimage 2022; 254:119123. [PMID: 35321857 DOI: 10.1016/j.neuroimage.2022.119123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022] Open
Abstract
The involvement of the medial temporal lobe (MTL) in working memory is controversially discussed. Recent findings suggest that persistent neural firing in the hippocampus during maintenance in verbal working memory is associated with workload. Here, we recorded single neuron firing in 13 epilepsy patients (7 male) while they performed a visual working memory task. The number of coloured squares in the stimulus set determined the workload of the trial. Performance was almost perfect for low workload (1 and 2 squares) and dropped at high workload (4 and 6 squares), suggesting that high workload exceeded working memory capacity. We identified maintenance neurons in MTL neurons that showed persistent firing during the maintenance period. More maintenance neurons were found in the hippocampus for trials with correct compared to incorrect performance. Maintenance neurons increased and decreased firing in the hippocampus and increased firing in the entorhinal cortex for high compared to low workload. Population firing predicted workload particularly during the maintenance period. Prediction accuracy of workload based on single-trial activity during maintenance was strongest for neurons in the entorhinal cortex and hippocampus. The data suggest that persistent neural firing in the MTL reflects a domain-general process of maintenance supporting performance and workload of multiple items in working memory below and beyond working memory capacity. Persistent neural firing during maintenance in the entorhinal cortex may be associated with its preference to process visual-spatial arrays.
Collapse
Affiliation(s)
- Ece Boran
- Department of Neurosurgery, University Hospital Zurich (USZ), University of Zurich, 8091 Zurich, Switzerland
| | | | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich (USZ), University of Zurich, 8091 Zurich, Switzerland
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich (USZ), University of Zurich, 8091 Zurich, Switzerland; Neuroscience Center Zurich, ETH Zurich, 8057 Zurich, Switzerland.
| | - Peter Klaver
- University of Teacher Education in Special Needs, 8050 Zurich, Switzerland; Institute of Psychology, University of Zurich, 8050 Zurich, Switzerland; School of Psychology, University of Surrey, GU2 7XH Guildford, UK.
| |
Collapse
|