1551
|
Abstract
MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
1552
|
Abstract
MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
1553
|
Abstract
The modification or degradation of RNAs including miRNAs may play vital roles in regulating RNA functions. The polyadenylation- and exosome-mediated RNA decay is involved in the degradation of plant RNAs including the primary miRNA processing intermediates. However, plant miRNA levels are not affected by exosome depletion. Here, we report the cloning of a large number of 5' and/or 3' truncated versions of the known miRNAs from various tissues of Populus trichocarpa (black cottonwood). It suggests that plant miRNAs may be degraded through either 5' to 3' or 3' to 5' exonucleolytic digestion. We also show that a significant portion of the isolated miRNAs contains, at the 3'-end, one or a few post-transcriptionally added adenylic acid residues, which are distinct in length from the polyadenylate tail added to other plant RNAs for exosome-mediated degradation. Using an in vitro miRNA degradation system, where synthesized miRNA oligos were degraded in extracts of P. trichocarpa cells, we revealed that the adenylated miRNAs were degraded slower than others without adenylation. It indicates that addition of adenylic acid residues on the 3'-end plays a negative role in miRNA degradation. Our results provide new information for understanding the mechanism of miRNA degradation.
Collapse
Affiliation(s)
- Shanfa Lu
- Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
1554
|
Chuck G, Candela H, Hake S. Big impacts by small RNAs in plant development. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:81-6. [PMID: 18980858 DOI: 10.1016/j.pbi.2008.09.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 09/12/2008] [Accepted: 09/17/2008] [Indexed: 05/09/2023]
Abstract
The identification and study of small RNAs, including microRNAs and trans-acting small interfering RNAs, have added a layer of complexity to the many pathways that regulate plant development. These molecules, which function as negative regulators of gene expression, are now known to have greatly expanded roles in a variety of developmental processes affecting all major plant structures, including meristems, leaves, roots, and inflorescences. Mutants with specific developmental phenotypes have also advanced our knowledge of the biogenesis and mode of action of these diverse small RNAs. In addition, previous models on the cell autonomy of microRNAs may have to be revised as more data accumulate supporting their long distance transport. As many of these small RNAs appear to be conserved across different species, knowledge gained from one species is expected to have general application. However, a few surprising differences in small RNA function seem to exist between monocots and dicots regarding meristem initiation and sex determination. Integrating these unique functions into the overall scheme for plant growth will give a more complete picture of how they have evolved as unique developmental systems.
Collapse
Affiliation(s)
- George Chuck
- Plant Gene Expression Center, United States Department of Agriculture-Agriculture Research Service and the University of California, Albany, CA 94710, USA.
| | | | | |
Collapse
|
1555
|
Ivashuta SI, Petrick JS, Heisel SE, Zhang Y, Guo L, Reynolds TL, Rice JF, Allen E, Roberts JK. Endogenous small RNAs in grain: semi-quantification and sequence homology to human and animal genes. Food Chem Toxicol 2009; 47:353-60. [PMID: 19068223 DOI: 10.1016/j.fct.2008.11.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/05/2008] [Accepted: 11/14/2008] [Indexed: 12/29/2022]
Abstract
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are effector molecules of RNA interference (RNAi), a highly conserved RNA-based gene suppression mechanism in plants, mammals and other eukaryotes. Endogenous RNAi-based gene suppression has been harnessed naturally and through conventional breeding to achieve desired plant phenotypes. The present study demonstrates that endogenous small RNAs, such as siRNAs and miRNAs, are abundant in soybean seeds, corn kernels, and rice grain, plant tissues that are traditionally used for food and feed. Numerous endogenous plant small RNAs were found to have perfect complementarity to human genes as well as those of other mammals. The abundance of endogenous small RNA molecules in grain from safely consumed food and feed crops such as soybean, corn, and rice and the homology of a number of these dietary small RNAs to human and animal genomes and transcriptomes establishes a history of safe consumption for dietary small RNAs.
Collapse
Affiliation(s)
- Sergey I Ivashuta
- Monsanto Company, 800N. Lindbergh Blvd., Mail Code O3F, St. Louis, MO 63167, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1556
|
Joung JG, Fei Z. Computational identification of condition-specific miRNA targets based on gene expression profiles and sequence information. BMC Bioinformatics 2009; 10 Suppl 1:S34. [PMID: 19208135 PMCID: PMC2648752 DOI: 10.1186/1471-2105-10-s1-s34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small and noncoding RNAs that play important roles in various biological processes. They regulate target mRNAs post-transcriptionally through complementary base pairing. Since the changes of miRNAs affect the expression of target genes, the expression levels of target genes in specific biological processes could be different from those of non-target genes. Here we demonstrate that gene expression profiles contain useful information in separating miRNA targets from non-targets. Results The gene expression profiles related to various developmental processes and stresses, as well as the sequences of miRNAs and mRNAs in Arabidopsis, were used to determine whether a given gene is a miRNA target. It is based on the model combining the support vector machine (SVM) classifier and the scoring method based on complementary base pairing between miRNAs and mRNAs. The proposed model yielded low false positive rate and retrieved condition-specific candidate targets through a genome-wide screening. Conclusion Our approach provides a novel framework into screening target genes by considering the gene regulation of miRNAs. It can be broadly applied to identify condition-specific targets computationally by embedding information of gene expression profiles.
Collapse
Affiliation(s)
- Je-Gun Joung
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
1557
|
Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK, Yeom KH, Yang WY, Haussler D, Blelloch R, Kim VN. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 2009; 136:75-84. [PMID: 19135890 DOI: 10.1016/j.cell.2008.10.053] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/04/2008] [Accepted: 10/29/2008] [Indexed: 02/09/2023]
Abstract
The Drosha-DGCR8 complex, also known as Microprocessor, is essential for microRNA (miRNA) maturation. Drosha functions as the catalytic subunit, while DGCR8 (also known as Pasha) recognizes the RNA substrate. Although the action mechanism of this complex has been intensively studied, it remains unclear how Drosha and DGCR8 are regulated and if these proteins have any additional role(s) apart from miRNA processing. Here, we report that Drosha and DGCR8 regulate each other posttranscriptionally. The Drosha-DGCR8 complex cleaves the hairpin structures embedded in the DGCR8 mRNA and thereby destabilizes the mRNA. We further find that DGCR8 stabilizes the Drosha protein via protein-protein interaction. This crossregulation between Drosha and DGCR8 may contribute to the homeostatic control of miRNA biogenesis. Furthermore, microarray analyses suggest that a number of mRNAs may be downregulated in a Microprocessor-dependent, miRNA-independent manner. Our study reveals a previously unsuspected function of Microprocessor in mRNA stability control.
Collapse
Affiliation(s)
- Jinju Han
- School of Biological Sciences and National Creative Research Center, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1558
|
Ding XC, Grosshans H. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J 2009; 28:213-22. [PMID: 19131968 DOI: 10.1038/emboj.2008.275] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/03/2008] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) repress target genes through a poorly defined antisense mechanism. Cell-free and cell-based assays have supported the idea that miRNAs repress their target mRNAs by blocking initiation of translation, whereas studies in animal models argued against this possibility. We examined endogenous targets of the let-7 miRNA, an important regulator of stem cell fates. We report that let-7 represses translation initiation in Caenorhabditis elegans, demonstrating this mode of action for the first time in an organism. Unexpectedly, although the lin-4 miRNA was previously reported to repress its targets at a step downstream of translation initiation, we also observe repression of translation initiation for this miRNA. This repressive mechanism, which frequently but not always coincides with transcript degradation, requires the GW182 proteins AIN-1 and AIN-2, and acts on several mRNAs targeted by different miRNAs. Our analysis of an expanded set of endogenous miRNA targets therefore indicates widespread repression of translation initiation under physiological conditions and establishes C. elegans as a genetic system for dissection of the underlying mechanisms.
Collapse
Affiliation(s)
- Xavier C Ding
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | |
Collapse
|
1559
|
Nogueira FTS, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MCP. Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet 2009; 5:e1000320. [PMID: 19119413 PMCID: PMC2602737 DOI: 10.1371/journal.pgen.1000320] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/26/2008] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) and trans-acting siRNAs (ta-siRNAs) are essential to the establishment of adaxial–abaxial (dorsoventral) leaf polarity. Tas3-derived ta-siRNAs define the adaxial side of the leaf by restricting the expression domain of miRNA miR166, which in turn demarcates the abaxial side of leaves by restricting the expression of adaxial determinants. To investigate the regulatory mechanisms that allow for the precise spatiotemporal accumulation of these polarizing small RNAs, we used laser-microdissection coupled to RT-PCR to determine the expression profiles of their precursor transcripts within the maize shoot apex. Our data reveal that the pattern of mature miR166 accumulation results, in part, from intricate transcriptional regulation of its precursor loci and that only a subset of mir166 family members contribute to the establishment of leaf polarity. We show that miR390, an upstream determinant in leaf polarity whose activity triggers tas3 ta-siRNA biogenesis, accumulates adaxially in leaves. The polar expression of miR390 is established and maintained independent of the ta-siRNA pathway. The comparison of small RNA localization data with the expression profiles of precursor transcripts suggests that miR166 and miR390 accumulation is also regulated at the level of biogenesis and/or stability. Furthermore, mir390 precursors accumulate exclusively within the epidermal layer of the incipient leaf, whereas mature miR390 accumulates in sub-epidermal layers as well. Regulation of miR390 biogenesis, stability, or even discrete trafficking of miR390 from the epidermis to underlying cell layers provide possible mechanisms that define the extent of miR390 accumulation within the incipient leaf, which patterns this small field of cells into adaxial and abaxial domains via the production of tas3-derived ta-siRNAs. Small RNAs regulate many key developmental processes. Consistent with a prominent role in development, miRNAs exhibit complex and distinctive expression patterns. In this study, we identify regulatory mechanisms that allow for the precise spatial accumulation of developmentally important small RNAs in plants. Plants generate new leaves throughout their lifetime. These arise on the flank of a specialized stem cell niche, termed meristem, at the plant's growing tip. Each newly formed leaf becomes polarized and develops distinct adaxial (top) and abaxial (bottom) sides. The establishment of adaxial–abaxial polarity requires a complex genetic network, including miRNAs and trans-acting siRNAs. We used a focused laser to microdissect regions of the shoot apical meristem and developing leaves of maize to analyze the expression profiles of the small RNA precursor molecules. By comparing these expression profiles to the accumulation patterns of the mature small RNAs, we show that precursor genes are subject to tissue-specific regulation and exhibit diverse expression patterns during leaf development. Our findings suggest that mechanisms exist to regulate the biogenesis, stability, and possibly even the intercellular movement of small RNAs. Such regulation should be considered when designing artificial miRNAs and has implications for the roles miRNAs play during plant and animal development.
Collapse
Affiliation(s)
- Fabio T. S. Nogueira
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Daniel H. Chitwood
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Watson School of Biological Sciences, Cold Spring Harbor, New York, United States of America
| | - Shahinez Madi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Kazuhiro Ohtsu
- Center for Plant Genomics, Roy J. Carver Co-Laboratory, Iowa State University, Ames, Iowa, United States of America
| | - Patrick S. Schnable
- Center for Plant Genomics, Roy J. Carver Co-Laboratory, Iowa State University, Ames, Iowa, United States of America
| | - Michael J. Scanlon
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Marja C. P. Timmermans
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Watson School of Biological Sciences, Cold Spring Harbor, New York, United States of America
- * E-mail:
| |
Collapse
|
1560
|
Abstract
Viroids are single-stranded, circular, and noncoding RNAs that infect plants. They replicate in the nucleus or chloroplast and then traffic cell-to-cell through plasmodesmata and long distance through the phloem to establish systemic infection. They also cause diseases in certain hosts. All functions are mediated directly by the viroid RNA genome or genome-derived RNAs. I summarize recent advances in the understanding of viroid structures and cellular factors enabling these functions, emphasizing conceptual developments, major knowledge gaps, and future directions. Newly emerging experimental systems and research tools are discussed that are expected to enable significant progress in a number of key areas. I highlight examples of groundbreaking contributions of viroid research to the development of new biological principles and offer perspectives on using viroid models to continue advancing some frontiers of life science.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
1561
|
Heil M, Walters DR. Chapter 15 Ecological Consequences of Plant Defence Signalling. ADVANCES IN BOTANICAL RESEARCH 2009. [PMID: 0 DOI: 10.1016/s0065-2296(09)51015-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
1562
|
Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:485-510. [PMID: 19519217 DOI: 10.1146/annurev.arplant.043008.092111] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A multitude of small RNAs (sRNAs, 18-25 nt in length) accumulate in plant tissues. Although heterogeneous in size, sequence, genomic distribution, biogenesis, and action, most of these molecules mediate repressive gene regulation through RNA silencing. Besides their roles in developmental patterning and maintenance of genome integrity, sRNAs are also integral components of plant responses to adverse environmental conditions, including biotic stress. Until recently, antiviral RNA silencing was considered a paradigm of the interactions linking RNA silencing to pathogens: Virus-derived sRNAs silence viral gene expression and, accordingly, viruses produce suppressor proteins that target the silencing mechanism. However, increasing evidence shows that endogenous, rather than pathogen-derived, sRNAs also have broad functions in regulating plant responses to various microbes. In turn, microbes have evolved ways to inhibit, avoid, or usurp cellular silencing pathways, thereby prompting the deployment of counter-defensive measures by plants, a compelling illustration of the never-ending molecular arms race between hosts and parasites.
Collapse
Affiliation(s)
- Virginia Ruiz-Ferrer
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
1563
|
Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:313-21. [PMID: 18801012 DOI: 10.1111/j.1365-313x.2008.03690.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants play an important role in the global sulphur cycle because they assimilate sulphur from the environment and build it into methionine and cysteine. Several genes of the sulphur assimilation pathway are regulated by microRNA-395 (miR395) that is itself induced by a low-sulphur (-S) environment. Here, we show that the six Arabidopsis miR395 loci are induced differently. We find that MIR395 loci are expressed in the vascular system of roots and leaves and root tips. Induction of miR395 by a -S environment in both roots and leaves suggests that translocation of miR395 from leaves to roots through the phloem is not necessary for plants growing on -S soil/medium. We also demonstrate that induction of miR395 is controlled by SLIM1, a key transcription factor in the sulphur assimilation pathway. Unexpectedly, the mRNA level of a miR395 target gene, SULTR2;1, strongly increases during miR395 induction in roots. We show that the spatial expression pattern of MIR395 transcripts in the vascular system does not appear to overlap with the expression pattern previously reported for SULTR2;1 mRNA. These results illustrate that negative temporal correlation between the expression level of a miRNA and its target gene in a complex tissue cannot be a requirement for target gene validation.
Collapse
|
1564
|
Simon SA, Zhai J, Nandety RS, McCormick KP, Zeng J, Mejia D, Meyers BC. Short-read sequencing technologies for transcriptional analyses. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:305-33. [PMID: 19575585 DOI: 10.1146/annurev.arplant.043008.092032] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The technological advances in DNA sequencing over the past five years have changed our approaches to gene expression analysis, fundamentally altering the basic methods used and in most cases driving a shift from hybridization-based approaches to sequencing-based approaches. Quantitative, tag-based studies of gene expression were one of the earliest applications of these next-generation technologies, but the tremendous depth of sequencing facilitates de novo transcript discovery, which replaces traditional expressed sequence tag (EST) sequencing. In addition, these technologies have created new opportunities for understanding the generation, stability, and decay of RNA and the impacts of chromatin differences on gene expression. As we review the impact of these methods on plant biology, we also mention published studies from animal systems when the methods are broadly applicable. We can anticipate that the published work over the past few years is a harbinger of much broader studies that are yet to be published and are sure to further advance our understanding of plant genomes in a field changing at a dizzying pace.
Collapse
Affiliation(s)
- Stacey A Simon
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | | | | | | | | | | | | |
Collapse
|
1565
|
Abstract
Transposable elements make up a substantial proportion of most plant genomes. Because they are potentially highly mutagenic, transposons are controlled by a set of mechanisms whose function is to recognize and epigenetically silence them. Under most circumstances this process is highly efficient, and the vast majority of transposons are inactive. Nevertheless, transposons are activated by a variety of conditions likely to be encountered by natural populations, and even closely related species can have dramatic differences in transposon copy number. Transposon silencing has proved to be closely related to other epigenetic phenomena, and transposons are known to contribute directly and indirectly to regulation of host genes. Together, these observations suggest that naturally occurring changes in transposon activity may have had an important impact on the causes and consequences of epigenetic silencing in plants.
Collapse
Affiliation(s)
- Damon Lisch
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
1566
|
Abstract
Small RNAs (sRNAs) are common and effective modulators of gene expression in eukaryotic organisms. To characterize the sRNAs expressed during rice seed development, massively parallel signature sequencing (MPSS) was performed, resulting in the obtainment of 797 399 22-nt sequence signatures, of which 111 161 are distinct ones. Analysis on the distributions of sRNAs on chromosomes showed that most sRNAs originate from interspersed repeats that mainly consist of transposable elements, suggesting the major function of sRNAs in rice seeds is transposon silencing. Through integrative analysis, 26 novel miRNAs and 12 miRNA candidates were identified. Further analysis on the expression profiles of the known and novel miRNAs through hybridizing the generated chips revealed that most miRNAs were expressed preferentially in one or two rice tissues. Detailed comparison of the expression patterns of miRNAs and corresponding target genes revealed the negative correlation between them, while few of them are positively correlated. In addition, differential accumulations of miRNAs and corresponding miRNA*s suggest the functions of miRNA*s other than being passenger strands of mature miRNAs, and in regulating the miRNA functions.
Collapse
Affiliation(s)
| | | | - Hong-Wei Xue
- *To whom correspondence should be addressed. Tel: +86 21 54924059; Fax: +86 2154924060;
| |
Collapse
|
1567
|
Cho SH, Addo-Quaye C, Coruh C, Arif MA, Ma Z, Frank W, Axtell MJ. Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development. PLoS Genet 2008; 4:e1000314. [PMID: 19096705 PMCID: PMC2600652 DOI: 10.1371/journal.pgen.1000314] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022] Open
Abstract
Endogenous 24 nt short interfering RNAs (siRNAs), derived mostly from intergenic and repetitive genomic regions, constitute a major class of endogenous small RNAs in flowering plants. Accumulation of Arabidopsis thaliana 24 nt siRNAs requires the Dicer family member DCL3, and clear homologs of DCL3 exist in both flowering and non-flowering plants. However, the absence of a conspicuous 24 nt peak in the total RNA populations of several non-flowering plants has raised the question of whether this class of siRNAs might, in contrast to the ancient 21 nt microRNAs (miRNAs) and 21–22 nt trans-acting siRNAs (tasiRNAs), be an angiosperm-specific innovation. Analysis of non-miRNA, non-tasiRNA hotspots of small RNA production within the genome of the moss Physcomitrella patens revealed multiple loci that consistently produced a mixture of 21–24 nt siRNAs with a peak at 23 nt. These Pp23SR loci were significantly enriched in transposon content, depleted in overlap with annotated genes, and typified by dense concentrations of the 5-methyl cytosine (5 mC) DNA modification. Deep sequencing of small RNAs from two independent Ppdcl3 mutants showed that the P. patens DCL3 homolog is required for the accumulation of 22–24 nt siRNAs, but not 21 nt siRNAs, at Pp23SR loci. The 21 nt component of Pp23SR-derived siRNAs was also unaffected by a mutation in the RNA-dependent RNA polymerase mutant Pprdr6. Transcriptome-wide, Ppdcl3 mutants failed to accumulate 22–24 nt small RNAs from repetitive regions while transcripts from two abundant families of long terminal repeat (LTR) retrotransposon-associated reverse transcriptases were up-regulated. Ppdcl3 mutants also displayed an acceleration of leafy gametophore production, suggesting that repetitive siRNAs may play a role in the development of P. patens. We conclude that intergenic/repeat-derived siRNAs are indeed a broadly conserved, distinct class of small regulatory RNAs within land plants. Very small RNAs (between ∼21 and ∼30 single-stranded bases) are a ubiquitous component of gene regulation in nearly all eukaryotic organisms. The small RNA repertoire of angiosperms (the flowering plants) is exceptionally diverse and includes conspicuous populations of 21 nt microRNAs, as well a diverse set of 24 nt short, interfering RNAs (siRNAs). The 24 nt siRNAs have well-documented roles in enforcing the silence of parasitic regions of the genome, but are not readily apparent in the small RNA populations of several lineages of ancient, non-flowering plants. We found numerous “hotspots” of small RNA production from the genome of the moss P. patens that produced a mix of 21–24 nt siRNAs. Except for their broad mix of sizes, these hotspots were reminiscent of the 24 nt siRNA loci of angiosperms: they tended to associate with decayed transposons, to avoid annotated genes, and to be densely modified with the epigenetic mark 5-methyl cytosine. Deletion of a P. patens Dicer gene abolished production of 22–24 nt siRNAs both from these loci and transcriptome-wide, especially from repetitive regions. We conclude that both microRNAs and intergenic/repeat-associated siRNAs are ancient small RNA regulators in plants, but that the sizes of the siRNAs themselves have drifted over time.
Collapse
Affiliation(s)
- Sung Hyun Cho
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Charles Addo-Quaye
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ceyda Coruh
- Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - M. Asif Arif
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Zhaorong Ma
- Integrative Biosciences Graduate Program in Bioinformatics and Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Wolfgang Frank
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael J. Axtell
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Integrative Biosciences Graduate Program in Bioinformatics and Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
1568
|
|
1569
|
Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MPS, Moulton V, Dalmay T. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 2008. [PMID: 19068109 DOI: 10.1186/1471‐2164‐9‐593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-throughput sequencing technology is capable to identify novel short RNAs in plant species. We used Solexa sequencing to find new microRNAs in one of the model legume species, barrel medic (Medicago truncatula). RESULTS 3,948,871 reads were obtained from two separate short RNA libraries generated from total RNA extracted from M. truncatula leaves, representing 1,563,959 distinct sequences. 2,168,937 reads were mapped to the available M. truncatula genome corresponding to 619,175 distinct sequences. 174,504 reads representing 25 conserved miRNA families showed perfect matches to known miRNAs. We also identified 26 novel miRNA candidates that were potentially generated from 32 loci. Nine of these loci produced eight distinct sequences, for which the miRNA* sequences were also sequenced. These sequences were not described in other plant species and accumulation of these eight novel miRNAs was confirmed by Northern blot analysis. Potential target genes were predicted for most conserved and novel miRNAs. CONCLUSION Deep sequencing of short RNAs from M. truncatula leaves identified eight new miRNAs indicating that specific miRNAs exist in legume species.
Collapse
Affiliation(s)
- Gyorgy Szittya
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
1570
|
Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MPS, Moulton V, Dalmay T. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 2008; 9:593. [PMID: 19068109 PMCID: PMC2621214 DOI: 10.1186/1471-2164-9-593] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 12/09/2008] [Indexed: 11/24/2022] Open
Abstract
Background High-throughput sequencing technology is capable to identify novel short RNAs in plant species. We used Solexa sequencing to find new microRNAs in one of the model legume species, barrel medic (Medicago truncatula). Results 3,948,871 reads were obtained from two separate short RNA libraries generated from total RNA extracted from M. truncatula leaves, representing 1,563,959 distinct sequences. 2,168,937 reads were mapped to the available M. truncatula genome corresponding to 619,175 distinct sequences. 174,504 reads representing 25 conserved miRNA families showed perfect matches to known miRNAs. We also identified 26 novel miRNA candidates that were potentially generated from 32 loci. Nine of these loci produced eight distinct sequences, for which the miRNA* sequences were also sequenced. These sequences were not described in other plant species and accumulation of these eight novel miRNAs was confirmed by Northern blot analysis. Potential target genes were predicted for most conserved and novel miRNAs. Conclusion Deep sequencing of short RNAs from M. truncatula leaves identified eight new miRNAs indicating that specific miRNAs exist in legume species.
Collapse
Affiliation(s)
- Gyorgy Szittya
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
1571
|
Abstract
MicroRNA (miRNA)-guided cleavage initiates entry of primary transcripts into the transacting siRNA (tasiRNA) biogenesis pathway involving RNA-DEPENDENT RNA POLYMERASE6, DICER-LIKE4, and SUPPRESSOR OF GENE SILENCING3. Arabidopsis thaliana TAS1 and TAS2 families yield tasiRNA that form through miR173-guided initiation-cleavage of primary transcripts and target several transcripts encoding pentatricopeptide repeat proteins and proteins of unknown function. Here, the TAS1c locus was modified to produce synthetic (syn) tasiRNA to target an endogenous transcript encoding PHYTOENE DESATURASE and used to analyze the role of miR173 in routing of transcripts through the tasiRNA pathway. miR173 was unique from other miRNAs in its ability to initiate TAS1c-based syn-tasiRNA formation. A single miR173 target site was sufficient to route non-TAS transcripts into the pathway to yield phased siRNA. We also show that miR173 functions in association with ARGONAUTE 1 (AGO1) during TAS1 and TAS2 tasiRNA formation, and we provide data indicating that the miR173-AGO1 complex possesses unique functionality that many other miRNA-AGO1 complexes lack.
Collapse
|
1572
|
Joung JG, Fei Z. Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model. ACTA ACUST UNITED AC 2008; 25:387-93. [PMID: 19056778 DOI: 10.1093/bioinformatics/btn626] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MOTIVATION MicroRNAs miRNAs play important roles in gene regulation and are regarded as key components in gene regulatory pathways. Systematically understanding functional roles of miRNAs is essential to define core transcriptional units regulating key biological processes. Here, we propose a method based on the probabilistic graphical model to identify the regulatory modules of miRNAs and the core regulatory motifs involved in their ability to regulate gene expression. RESULTS We applied our method to datasets of different sources from Arabidopsis consisting of miRNA-target pair information, upstream sequences of miRNAs, transcriptional regulatory motifs and gene expression profiles. The graphical model used in this study can efficiently capture the relationship between miRNAs and diverse conditions such as various developmental processes, thus allowing us to detect functionally correlated miRNA regulatory modules involved in specific biological processes. Furthermore, this approach can reveal core transcriptional elements associated with their miRNAs. The proposed method found clusters of miRNAs, as well as putative regulators controlling the expression of miRNAs, which were highly related to diverse developmental processes of Arabidopsis. Consequently, our method can provide hypothetical miRNA regulatory circuits for functional testing that represent transcriptional events of miRNAs and transcriptional factors involved in gene regulatory pathways.
Collapse
Affiliation(s)
- Je-Gun Joung
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
1573
|
Lacombe S, Nagasaki H, Santi C, Duval D, Piégu B, Bangratz M, Breitler JC, Guiderdoni E, Brugidou C, Hirsch J, Cao X, Brice C, Panaud O, Karlowski WM, Sato Y, Echeverria M. Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice. BMC PLANT BIOLOGY 2008; 8:123. [PMID: 19055717 PMCID: PMC2607281 DOI: 10.1186/1471-2229-8-123] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 12/02/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND The plant miRNAs represent an important class of endogenous small RNAs that guide cleavage of an mRNA target or repress its translation to control development and adaptation to stresses. MiRNAs are nuclear-encoded genes transcribed by RNA polymerase II, producing a primary precursor that is subsequently processed by DCL1 an RNase III Dicer-like protein. In rice hundreds of miRNAs have been described or predicted, but little is known on their genes and precursors which are important criteria to distinguish them from siRNAs. Here we develop a combination of experimental approaches to detect novel miRNAs in rice, identify their precursor transcripts and genes and predict or validate their mRNA targets. RESULTS We produced four cDNA libraries from small RNA fractions extracted from distinct rice tissues. By in silico analysis we selected 6 potential novel miRNAs, and confirmed that their expression requires OsDCL1. We predicted their targets and used 5'RACE to validate cleavage for three of them, targeting a PPR, an SPX domain protein and a GT-like transcription factor respectively. In addition, we identified precursor transcripts for the 6 miRNAs expressed in rice, showing that these precursors can be efficiently processed using a transient expression assay in transfected Nicotiana benthamiana leaves. Most interestingly, we describe two precursors producing tandem miRNAs, but in distinct arrays. We focus on one of them encoding osa-miR159a.2, a novel miRNA produced from the same stem-loop structure encoding the conserved osa-miR159a.1. We show that this dual osa-miR159a.2-osa-miR159a.1 structure is conserved in distant rice species and maize. Finally we show that the predicted mRNA target of osa-miR159a.2 encoding a GT-like transcription factor is cleaved in vivo at the expected site. CONCLUSION The combination of approaches developed here identified six novel miRNAs expressed in rice which can be clearly distinguished from siRNAs. Importantly, we show that two miRNAs can be produced from a single precursor, either from tandem stem-loops or tandemly arrayed in a single stem-loop. This suggests that processing of these precursors could be an important regulatory step to produce one or more functional miRNAs in plants and perhaps coordinate cleavage of distinct targets in the same plant tissue.
Collapse
Affiliation(s)
- Séverine Lacombe
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Hiroshi Nagasaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Carole Santi
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - David Duval
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Benoît Piégu
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Martine Bangratz
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Jean-Christophe Breitler
- DAP, UMR 1098, Université de Montpellier II-CIRAD-INRA-SUPAGRO 2477 Avenue Agropolis, F-34398 Montpellier Cedex 5, France
| | - Emmanuel Guiderdoni
- DAP, UMR 1098, Université de Montpellier II-CIRAD-INRA-SUPAGRO 2477 Avenue Agropolis, F-34398 Montpellier Cedex 5, France
| | - Christophe Brugidou
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Judith Hirsch
- INRA-SUPAGRO, UMR BGPI, Campus Baillarguet, F-34398 Montpellier Cedex 05, France
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Claire Brice
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Wojciech M Karlowski
- Bioinformatic Laboratory, A. Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Yutaka Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Manuel Echeverria
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| |
Collapse
|
1574
|
Valdés-López O, Arenas-Huertero C, Ramírez M, Girard L, Sánchez F, Vance CP, Luis Reyes J, Hernández G. Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. PLANT, CELL & ENVIRONMENT 2008; 31:1834-43. [PMID: 18771575 DOI: 10.1111/j.1365-3040.2008.01883.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phosphorus (P), an essential element for plants, is one of the most limiting nutrients for plant growth. A few transcription factor (TF) genes involved in P-starvation signalling have been characterized for Arabidopsis thaliana and rice. Crop production of common bean (Phaseolus vulgaris L.), the most important legume for human consumption, is often limited by low P in the soil. Despite its agronomic importance, nothing is known about transcriptional regulation in P-deficient bean plants. We functionally characterized the P-deficiency-induced MYB TF TC3604 (Dana Farber Cancer Institute, Common Bean Gene Index v.2.0), ortholog to AtPHR1 (PvPHR1). For its study, we applied RNAi technology in bean composite plants. PvPHR1 is a positive regulator of genes implicated in P transport, remobilization and homeostasis. Although there are no reports on the regulatory roles of microRNAs (miRNA) in bean, we demonstrated that PvmiR399 is an essential component of the PvPHR1 signalling pathway. The analysis of DICER-like1 (PvDCL1) silenced bean composite plants suppressed for accumulation of PvmiR399 and other miRNAs suggested that miR399 is a negative regulator of the ubiquitin E2 conjugase: PvPHO2 expression. Our results set the basis for understanding the signalling for P-starvation responses in common bean and may contribute to crop improvement.
Collapse
Affiliation(s)
- Oswaldo Valdés-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor. México
| | | | | | | | | | | | | | | |
Collapse
|
1575
|
Hewezi T, Howe P, Maier TR, Baum TJ. Arabidopsis small RNAs and their targets during cyst nematode parasitism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1622-34. [PMID: 18986258 DOI: 10.1094/mpmi-21-12-1622] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-parasitic cyst nematodes induce the formation of specialized feeding cells in infected roots, which involves plant developmental processes that have been shown to be influenced by microRNAs (miRNAs) and other small RNAs. This observation provided the foundation to investigate the potential involvement of small RNAs in plant-cyst nematode interactions. First, we examined the susceptibilities of Arabidopsis DICER-like (dcl) and RNA-dependent RNA polymerase (rdr) mutants to the sugar beet cyst nematode Heterodera schachtii. The examined mutants exhibited a trend of decreased susceptibility, suggesting a role of small RNAs mediating gene regulation processes during the plant-nematode interaction. Second, we generated two small RNA libraries from aseptic Arabidopsis roots harvested at 4 and 7 days after infection with surface-sterilized H. schachtii. Sequences of known miRNAs as well as novel small interfering (si)RNAs were identified. Following this discovery, we used real-time reverse-transcriptase polymerase chain reaction to quantify a total of 15 Arabidopsis transcripts that are known targets of six of the different miRNA families found in our study (miR160, miR164, miR167, miR171, miR396, and miR398) in inoculated and noninoculated Arabidopsis roots. Our analyses showed mostly negative correlations between miRNA accumulation and target gene mRNA abundance, suggesting regulatory roles of these miRNAs during parasitism. Also, we identified a total of 125 non-miRNA siRNAs. Some of these siRNAs perfectly complement protein-coding mRNAs or match transposon or retrotransposon sequences in sense or antisense orientations. We further quantified a group of siRNAs in H. schachtii-inoculated roots. The examined siRNAs exhibited distinct expression patterns in infected and noninfected roots, providing additional evidence for the implication of small RNAs in cyst nematode parasitism. These data lay the foundation for detailed analyses of the functions of small RNAs during phytonematode parasitism.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Pathology, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
1576
|
Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, Ojo T, Hafner M, Zavolan M, Tuschl T. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA (NEW YORK, N.Y.) 2008; 14:2580-96. [PMID: 18978028 PMCID: PMC2590962 DOI: 10.1261/rna.1351608] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/15/2008] [Indexed: 05/18/2023]
Abstract
microRNAs (miRNAs) regulate the expression of mRNAs in animals and plants through miRNA-containing ribonucleoprotein particles (RNPs). At the core of these miRNA silencing effector complexes are the Argonaute (AGO) proteins that bind miRNAs and mediate target mRNA recognition. We generated HEK293 cell lines stably expressing epitope-tagged human AGO proteins and other RNA silencing-related proteins and used these cells to purify miRNA-containing RNPs. Mass spectrometric analyses of the proteins associated with different AGO proteins revealed a common set of helicases and mRNA-binding proteins, among them the three trinucleotide repeat containing proteins 6 (TNRC6A,-B,-C). mRNA microarray analyses of these miRNA-associated RNPs revealed that AGO and TNRC6 proteins bind highly similar sets of transcripts enriched in binding sites for highly expressed endogenous miRNAs, indicating that the TNRC6 proteins are a component of the mRNA-targeting miRNA silencing complex. Together with the very similar proteomic composition of each AGO complex, this result suggests substantial functional redundancy within families of human AGO and TNRC6 proteins. Our results further demonstrate that we have developed an effective biochemical approach to identify physiologically relevant human miRNA targets.
Collapse
Affiliation(s)
- Markus Landthaler
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1577
|
Felippes FFD, Schneeberger K, Dezulian T, Huson DH, Weigel D. Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA (NEW YORK, N.Y.) 2008; 14:2455-9. [PMID: 18952822 PMCID: PMC2590950 DOI: 10.1261/rna.1149408] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
One mechanism for the origin of new plant microRNAs (miRNAs) is from inverted duplications of transcribed genes. However, even though many young MIRNA genes have recently been identified in Arabidopsis thaliana, only a subset shows evidence for having evolved by this route. We propose that the hundreds of thousands of partially self-complementary foldback sequences found in a typical plant genome provide an alternative path for miRNA evolution. Our genome-wide analyses of young MIRNA genes suggest that some arose from DNA that either has self-complementarity by chance or that represents a highly eroded inverted duplication. These observations are compatible with the idea that, following capture of transcriptional regulatory sequences, random foldbacks can occasionally spawn new miRNAs. Subsequent stabilization through coevolution with initially fortuitous targets may lead to fixation of a small subset of these proto-miRNA genes.
Collapse
|
1578
|
Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 2008; 9:831-42. [PMID: 18852696 DOI: 10.1038/nrg2455] [Citation(s) in RCA: 617] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulation of gene activity by microRNAs is critical to myriad aspects of eukaryotic development and physiology. Amidst an extensive regulatory web that is predicted to involve thousands of transcripts, emergent themes are now beginning to illustrate how microRNAs have been incorporated into diverse settings. These include potent inhibition of individual key targets, fine-tuning of target activity, the coordinated regulation of target batteries, and the reversibility of some aspects of microRNA-mediated repression. Such themes may reflect some of the inherent advantages of exploiting microRNA control in biological circuits, and provide insight into the consequences of microRNA dysfunction in disease.
Collapse
|
1579
|
Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 2008; 6:e230. [PMID: 18816164 PMCID: PMC2553836 DOI: 10.1371/journal.pbio.0060230] [Citation(s) in RCA: 572] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 08/13/2008] [Indexed: 01/09/2023] Open
Abstract
Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate. Short, single-stranded RNA molecules called microRNAs (miRNAs) regulate gene expression by negatively controlling both the stability and translation of target messenger RNAs that they recognize through sequence complementarity. In plants, miRNAs mostly regulate other regulators, the DNA-binding transcription factors. We investigated the downstream events regulated by five TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factors that are controlled by the microRNA miR319 in Arabidopsis thaliana. The miR319-regulated TCPs were previously known to be important for limiting the growth of leaves. By applying a combination of genome-wide, biochemical, and genetic studies, we identified new TCP targets that include enzymes responsible for the synthesis of the hormone jasmonic acid. Our analysis of leaf extracts from plants with increased activity of miR319 confirms that altered expression of the biosynthetic genes leads to changed jasmonic acid levels. These plants show also an altered senescence behavior that becomes more normal again when the plants are treated with jasmonate. We propose that the miR319-regulated TCP factors thus coordinate different aspects of leaf development and physiology: growth, which they negatively regulate, and aging, which they positively regulate. A plant microRNA and its targets turn out to regulate both early and late stages of leaf development: early on, they inhibit growth, while later on, they promote the onset of senescence.
Collapse
Affiliation(s)
- Carla Schommer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Javier F Palatnik
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Pooja Aggarwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Aurore Chételat
- Gene Expression Laboratory, Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pilar Cubas
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Edward E Farmer
- Gene Expression Laboratory, Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1580
|
Ben Amor B, Wirth S, Merchan F, Laporte P, d'Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 2008; 19:57-69. [PMID: 18997003 DOI: 10.1101/gr.080275.108] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Long non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles. Numerous 24-nt siRNA matched to five different npcRNAs, suggesting that these npcRNAs are precursors of this type of siRNA. Expression analyses of the 76 npcRNAs identified a novel npcRNA that accumulates in a dcl1 mutant but does not appear to produce trans-acting siRNA or miRNA. Additionally, another npcRNA was the precursor of miR869 and shown to be up-regulated in dcl4 but not in dcl1 mutants, indicative of a young miRNA gene. Abiotic stress altered the accumulation of 22 npcRNAs among the 76, a fraction significantly higher than that observed for the RNA binding protein-coding fraction of the transcriptome. Overexpression analyses in Arabidopsis identified two npcRNAs as regulators of root growth during salt stress and leaf morphology, respectively. Hence, together with small RNAs, long npcRNAs encompass a sensitive component of the transcriptome that have diverse roles during growth and differentiation.
Collapse
Affiliation(s)
- Besma Ben Amor
- Institut des Sciences du Végétal (ISV), CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1581
|
Taufer M, Licon A, Araiza R, Mireles D, van Batenburg FHD, Gultyaev AP, Leung MY. PseudoBase++: an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. Nucleic Acids Res 2008; 37:D127-35. [PMID: 18988624 PMCID: PMC2686561 DOI: 10.1093/nar/gkn806] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pseudoknots have been recognized to be an important type of RNA secondary structures responsible for many biological functions. PseudoBase, a widely used database of pseudoknot secondary structures developed at Leiden University, contains over 250 records of pseudoknots obtained in the past 25 years through crystallography, NMR, mutational experiments and sequence comparisons. To promptly address the growing analysis requests of the researchers on RNA structures and bring together information from multiple sources across the Internet to a single platform, we designed and implemented PseudoBase++, an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. PseudoBase++ (http://pseudobaseplusplus.utep.edu) maps the PseudoBase dataset into a searchable relational database including additional functionalities such as pseudoknot type. PseudoBase++ links each pseudoknot in PseudoBase to the GenBank record of the corresponding nucleotide sequence and allows scientists to automatically visualize RNA secondary structures with PseudoViewer. It also includes the capabilities of fine-grained reference searching and collecting new pseudoknot information.
Collapse
Affiliation(s)
- Michela Taufer
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware 19716, USA.
| | | | | | | | | | | | | |
Collapse
|
1582
|
Jain M, Khurana JP. Small RNA regulation of rice homeobox genes. PLANT SIGNALING & BEHAVIOR 2008; 3:1024-1025. [PMID: 19704442 PMCID: PMC2633765 DOI: 10.4161/psb.6770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/12/2008] [Indexed: 05/28/2023]
Abstract
Recently, we reported the genome-wide identification of 107 homeobox genes in rice and classified them into ten distinct subfamilies based upon their domain composition and phylogenetic analysis. Microarray analysis revealed the tissue-specific and overlapping expression profiles of these genes during various stages of floral transition, panicle development and seed set. Several homeobox genes were also found to be differentially expressed under abiotic stress conditions. Based on massively parallel signature sequencing (MPSS) data analysis, we report here that a large number of small RNA signatures are associated with rice homeobox genes, which may be involved in their tissue-specific/developmental regulation and stress responses. The association of a very large number of small RNA signatures suggested an unusually high degree of regulation of homeobox genes by small RNAs during inflorescence development.
Collapse
Affiliation(s)
- Mukesh Jain
- National Institute for Plant Genome Research (NIPGR); Aruna Asaf Ali Marg; New Delhi India
| | - Jitendra P Khurana
- Department of Plant Molecular Biology; University of Delhi South Campus; New Delhi India
| |
Collapse
|
1583
|
Yang X, Kalluri UC, Jawdy S, Gunter LE, Yin T, Tschaplinski TJ, Weston DJ, Ranjan P, Tuskan GA. The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. PLANT PHYSIOLOGY 2008; 148:1189-200. [PMID: 18775973 PMCID: PMC2577272 DOI: 10.1104/pp.108.121921] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 08/24/2008] [Indexed: 05/20/2023]
Abstract
F-box proteins are generally responsible for substrate recognition in the Skp1-Cullin-F-box complexes that are involved in protein degradation via the ubiquitin-26S proteasome pathway. In plants, F-box genes influence a variety of biological processes, such as leaf senescence, branching, self-incompatibility, and responses to biotic and abiotic stresses. The number of F-box genes in Populus (Populus trichocarpa; approximately 320) is less than half that found in Arabidopsis (Arabidopsis thaliana; approximately 660) or Oryza (Oryza sativa; approximately 680), even though the total number of genes in Populus is equivalent to that in Oryza and 1.5 times that in Arabidopsis. We performed comparative genomics analysis between the woody perennial plant Populus and the herbaceous annual plants Arabidopsis and Oryza in order to explicate the functional implications of this large gene family. Our analyses reveal interspecific differences in genomic distribution, orthologous relationship, intron evolution, protein domain structure, and gene expression. The set of F-box genes shared by these species appear to be involved in core biological processes essential for plant growth and development; lineage-specific differences primarily occurred because of an expansion of the F-box genes via tandem duplications in Arabidopsis and Oryza. The number of F-box genes in the newly sequenced woody species Vitis (Vitis vinifera; 156) and Carica (Carica papaya; 139) is similar to that in Populus, supporting the hypothesis that the F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. This study provides insights into the relationship between the structure and composition of the F-box gene family in herbaceous and woody species and their associated developmental and physiological features.
Collapse
Affiliation(s)
- Xiaohan Yang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1584
|
Zhou X, Sunkar R, Jin H, Zhu JK, Zhang W. Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Res 2008; 19:70-8. [PMID: 18971307 DOI: 10.1101/gr.084806.108] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural antisense transcripts (NATs) have been shown to play important roles in post-transcriptional regulation through the RNA interference pathway. We have combined pyrophosphate-based high-throughput sequencing and computational analysis to identify and analyze, in genome scale, cis-NAT and trans-NAT small RNAs that are derived under normal conditions and in response to drought and salt stresses in the staple plant Oryza sativa. Computationally, we identified 344 cis-NATs and 7,142 trans-NATs that are formed by protein-coding genes. From the deep sequencing data, we found 108 cis-NATs and 7,141 trans-NATs that gave rise to small RNAs from their overlapping regions. Consistent with early findings, the majority of these 108 cis-NATs seem to be associated with specific conditions or developmental stages. Our analyses also revealed several interesting results. The overlapping regions of the cis-NATs and trans-NATs appear to be more enriched with small RNA loci than non-overlapping regions. The small RNAs generated from cis-NATs and trans-NATs have a length bias of 21 nt, even though their lengths spread over a large range. Furthermore, >40% of the small RNAs from cis-NATs and trans-NATs carry an A as their 5'-terminal nucleotides. A substantial portion of the transcripts are involved in both cis-NATs and trans-NATs, and many trans-NATs can form many-to-many relationships, indicating that NATs may form complex regulatory networks in O. sativa. This study is the first genome-wide investigation of NAT-derived small RNAs in O. sativa. It reveals the importance of NATs in biogenesis of small RNAs and broadens our understanding of the roles of NAT-derived small RNAs in gene regulation, particularly in response to environmental stimuli.
Collapse
Affiliation(s)
- Xuefeng Zhou
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA
| | | | | | | | | |
Collapse
|
1585
|
Abstract
Plant pathogenic bacteria encounter host defenses mediated by a variety of small RNAs. Bacterial suppressors of silencing that inhibit multiple steps of plant microRNA biogenesis and function have recently been identified.
Collapse
|
1586
|
Bülow L, Engelmann S, Schindler M, Hehl R. AthaMap, integrating transcriptional and post-transcriptional data. Nucleic Acids Res 2008; 37:D983-6. [PMID: 18842622 PMCID: PMC2686474 DOI: 10.1093/nar/gkn709] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403 173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/.
Collapse
Affiliation(s)
- Lorenz Bülow
- Institut für Genetik,Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | | | | | | |
Collapse
|
1587
|
Abstract
Non-protein-coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static. Most of the mammalian genome and indeed that of all eukaryotes is expressed in a cell- and tissue-specific manner, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development. Different classes of small and large noncoding RNAs (ncRNAs) have been shown to regulate almost every level of gene expression, including the activation and repression of homeotic genes and the targeting of chromatin-remodeling complexes. ncRNAs are involved in developmental processes in both simple and complex eukaryotes, and we illustrate this in the latter by focusing on the animal germline, brain, and eye. While most have yet to be systematically studied, the emerging evidence suggests that there is a vast hidden layer of regulatory ncRNAs that constitutes the majority of the genomic programming of multicellular organisms and plays a major role in controlling the epigenetic trajectories that underlie their ontogeny.
Collapse
|
1588
|
Ehrenreich IM, Purugganan M. MicroRNAs in plants: Possible contributions to phenotypic diversity. PLANT SIGNALING & BEHAVIOR 2008; 3:829-30. [PMID: 19704512 PMCID: PMC2634387 DOI: 10.4161/psb.3.10.5914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 03/17/2008] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) are important posttranscriptional regulators of gene expression in eukaryotes. In plants, most miRNAs exist in multiple copies throughout the genome and many of these miRNAs target multiple messenger RNA (mRNA) transcripts. Mutations at miRNAs in natural populations could facilitate evolutionary changes within and between species because of their positions at critical positions in gene regulatory networks. Dissecting the contribution of miRNAs to plant evolution requires the identification of potentially functional mutations at miRNAs within and between species. Recently, we and others have published papers focused on this topic, laying the foundation for studying the contributions of miRNAs to the phenotypic diversification of plants.
Collapse
Affiliation(s)
- Ian M Ehrenreich
- Department of Biology and Center for Genomics and Systems Biology; New York University; New York, New York USA
| | | |
Collapse
|
1589
|
Chinnusamy V, Gong Z, Zhu JK. Abscisic acid-mediated epigenetic processes in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1187-95. [PMID: 19017106 PMCID: PMC2862557 DOI: 10.1111/j.1744-7909.2008.00727.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Abscisic acid (ABA) regulates diverse plant processes, growth and development under non-stress conditions and plays a pivotal role in abiotic stress tolerance. Although ABA-regulated genetic processes are well known, recent discoveries reveal that epigenetic processes are an integral part of ABA-regulated processes. Epigenetic mechanisms, namely, histone modifications and cytosine DNA methylation-induced modification of genome give rise to epigenomes, which add diversity and complexity to the genome of organisms. Histone monoubiquitination appears to regulate ABA levels in developing seeds through histone H2B monoubiquitination. ABA and H2B ubiquitination dependent chromatin remodeling regulate seed dormancy. Transcription factor networks necessary for seed maturation are repressed by histone deacetylases (HDACs)-dependent and PICKLE chromatin remodeling complexes (CRCs), whereas ABA induces the expression of these genes directly or through repression of HDACs. Abiotic stress-induced ABA regulates stomatal response and stress-responsive gene expression through HDACs and HOS15-dependent histone deacetylation, as well as through the ATP-dependent SWITCH/SUCROSE NONFERMENTING CRC. ABA also probably regulates the abiotic stress response through DNA methylation and short interfering RNA pathways. Further studies on ABA-regulated epigenome will be of immense use to understand the plant development, stress adaptation and stress memory.
Collapse
Affiliation(s)
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Jian-Kang Zhu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
1590
|
Flores T, Karpova O, Su X, Zeng P, Bilyeu K, Sleper DA, Nguyen HT, Zhang ZJ. Silencing of GmFAD3 gene by siRNA leads to low alpha-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res 2008; 17:839-50. [PMID: 18256901 DOI: 10.1007/s11248-008-9167-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Accepted: 01/19/2008] [Indexed: 11/24/2022]
Abstract
RNA interference (RNAi) has been recently employed as an effective experimental tool for both basic and applied biological studies in various organisms including plants. RNAi deploys small RNAs, mainly small interfering RNAs (siRNAs), to mediate the degradation of mRNA for regulating gene expression in plants. Here we report an efficient siRNA-mediated gene silencing of the omega-3 fatty acid desaturase (FAD3) gene family in a complex genome, the soybean (Glycine max). The FAD3 enzyme is responsible for the synthesis of alpha-linolenic acids (18:3) in the polyunsaturated fatty acid pathway. It is this fatty acid that contributes mostly to the instability of soybean and other seed oils. Therefore, a significant reduction of this fatty acid will increase the stability of the seed oil, enhancing the seed agronomical value. A conserved nucleotide sequence, 318-nt in length, common to the three gene family members was used as an inverted repeat for RNA interference. The RNAi expression cassette was driven by a seed-specific promoter. We show that the transgene-produced siRNA caused silencing of FAD3 that was comparable to the fad3 mutant phenotype and, furthermore, that such a silencing is stably inherited in engineered soybean lines. Since the pool size of the alpha-linolenic acids is small relative to the other polyunsaturated fatty acids in soybean, the significant reduction of this fatty acid suggests a role and great potential for the siRNA strategy in silencing gene families in a complex genome.
Collapse
Affiliation(s)
- Teresita Flores
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, 1-31 Agriculture Building, Columbia, MO, 65211-7140, USA
| | | | | | | | | | | | | | | |
Collapse
|
1591
|
Valdés-López O, Hernández G. Transcriptional regulation and signaling in phosphorus starvation: what about legumes? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1213-22. [PMID: 19017108 DOI: 10.1111/j.1744-7909.2008.00758.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The availability of soil phosphorus (P), an essential element, is one of the most important requirements for plant growth and crop production. The morphological and physiological adaptations evolved by plants to cope with P starvation have been well characterized. Several P deficiency plant responses are regulated at the transcriptional level. Microarray analysis has generated valuable information on global gene expression in Arabidopsis thaliana grown under P-stress. Despite the identification of P responsive genes, little is known about the regulation of gene expression changes. Four transcription factors, PHR1, WRKY75, ZAT6 and BHLH32, involved in P starvation signaling have been characterized in Arabidopsis, and signaling pathways are deciphered. This review analyzes the current knowledge of transcriptional regulation of P starvation responses in Arabidopsis vis-à-vis legumes such as lupine, common bean and Medicago truncatula. The knowledge on regulatory and signaling mechanisms involved in P acquisition and use in legumes will be useful for improvement of these crops, which account for a large proportion of the world's crop production, providing good nutritional quality feed and food.
Collapse
Affiliation(s)
- Oswaldo Valdés-López
- Centro de Ciencias Genómicas Centre for Genomic Sciences, Universidad Nacional Autónoma de México National University of Mexico, Cuernavaca, Morelos 62210, México
| | | |
Collapse
|
1592
|
Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, Nikiforova VJ, Fernie AR, Aharoni A. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. PLANT PHYSIOLOGY 2008; 148:730-50. [PMID: 18715960 PMCID: PMC2556830 DOI: 10.1104/pp.108.120691] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 08/10/2008] [Indexed: 05/18/2023]
Abstract
The anatomy of strawberry (Fragaria x ananassa) fruit, in which the achene is found on the outer part of the fruit, makes it an excellent species for studying the regulation of fruit development. It can provide a model for the cross talk between primary and secondary metabolism, whose role is of pivotal importance in the process. By combining gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry with the aim of addressing the metabolic regulation underlying fruit seed development, we simultaneously analyzed the composition of primary and secondary metabolites, separately, in achene and receptacle during fruit ripening of strawberry cultivar Herut. The results from these analyses suggest that changes in primary and secondary metabolism reflect organ and developmental specificities. For instance, the receptacle was characterized by increases in sugars and their direct derivatives, while the achene was characterized by a major decrease in the levels of carbon- and nitrogen-rich compounds, with the exception of storage-related metabolites (e.g. raffinose). Furthermore, the receptacle, and to a lesser extent the achene, exhibited dynamic fluctuations in the levels and nature of secondary metabolites across the ripening process. In the receptacle, proanthocyanidins and flavonol derivatives characterized mainly early developmental stages, while anthocyanins were abundant in the mature red stage; in the achene, ellagitannin and flavonoids were abundant during early and late development, respectively. Correlation-based network analysis suggested that metabolism is substantially coordinated during early development in either organ. Nonetheless, a higher degree of connectivity within and between metabolic pathways was measured in the achenes. The data are discussed within the context of current models both of the interaction of primary and secondary metabolism and of the metabolic interaction between the different plant organs.
Collapse
Affiliation(s)
- Aaron Fait
- Abteilung Willmitzer, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
1593
|
Doerner P. Phosphate starvation signaling: a threesome controls systemic P(i) homeostasis. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:536-40. [PMID: 18614391 DOI: 10.1016/j.pbi.2008.05.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 05/03/2023]
Abstract
Systemic signaling between roots and shoots is required to maintain mineral nutrient homeostasis for optimal metabolism under varying environmental conditions. Recent work has revealed molecular components of a signaling module that controls systemic phosphate homeostasis, modulates uptake and transport in Arabidopsis. This module comprises PHO2, a protein that controls protein stability, the phloem-mobile microRNA-399 and a ribo-regulator that squelches the activity of miR399 towards PHO2 by a novel mechanism. This advance is a significant step for the design of future rational approaches to improve crop phosphate use efficiency.
Collapse
Affiliation(s)
- Peter Doerner
- Institute of Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3JH, Scotland, United Kingdom.
| |
Collapse
|
1594
|
Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. PLANT PHYSIOLOGY 2008; 148:684-93. [PMID: 18753280 PMCID: PMC2556843 DOI: 10.1104/pp.108.128025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 08/22/2008] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are approximately 21-nucleotide-long RNAs processed from nuclear-encoded transcripts, which include a characteristic hairpin-like structure. MiRNAs control the expression of target transcripts by binding to reverse complementary sequences directing cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA* sequence within miRNA precursor genes, while maintaining the pattern of matches and mismatches in the foldback. Thus, for functional gene analysis, amiRNAs can be designed to target any gene of interest. The moss Physcomitrella patens exhibits the unique feature of a highly efficient homologous recombination mechanism, which allows for the generation of targeted gene knockout lines. However, the completion of the Physcomitrella genome necessitates the development of alternative techniques to speed up reverse genetics analyses and to allow for more flexible inactivation of genes. To prove the adaptability of amiRNA expression in Physcomitrella, we designed two amiRNAs, targeting the gene PpFtsZ2-1, which is indispensable for chloroplast division, and the gene PpGNT1 encoding an N-acetylglucosaminyltransferase. Both amiRNAs were expressed from the Arabidopsis (Arabidopsis thaliana) miR319a precursor fused to a constitutive promoter. Transgenic Physcomitrella lines harboring the overexpression constructs showed precise processing of the amiRNAs and an efficient knock down of the cognate target mRNAs. Furthermore, chloroplast division was impeded in PpFtsZ2-1-amiRNA lines that phenocopied PpFtsZ2-1 knockout mutants. We also provide evidence for the amplification of the initial amiRNA signal by secondary transitive small interfering RNAs, although these small interfering RNAs do not seem to have a major effect on sequence-related mRNAs, confirming specificity of the amiRNA approach.
Collapse
Affiliation(s)
- Basel Khraiwesh
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
1595
|
Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 2008; 455:1193-7. [PMID: 18830242 DOI: 10.1038/nature07415] [Citation(s) in RCA: 516] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/12/2008] [Indexed: 12/21/2022]
Abstract
In bilaterian animals, such as humans, flies and worms, hundreds of microRNAs (miRNAs), some conserved throughout bilaterian evolution, collectively regulate a substantial fraction of the transcriptome. In addition to miRNAs, other bilaterian small RNAs, known as Piwi-interacting RNAs (piRNAs), protect the genome from transposons. Here we identify small RNAs from animal phyla that diverged before the emergence of the Bilateria. The cnidarian Nematostella vectensis (starlet sea anemone), a close relative to the Bilateria, possesses an extensive repertoire of miRNA genes, two classes of piRNAs and a complement of proteins specific to small-RNA biology comparable to that of humans. The poriferan Amphimedon queenslandica (sponge), one of the simplest animals and a distant relative of the Bilateria, also possesses miRNAs, both classes of piRNAs and a full complement of the small-RNA machinery. Animal miRNA evolution seems to have been relatively dynamic, with precursor sizes and mature miRNA sequences differing greatly between poriferans, cnidarians and bilaterians. Nonetheless, miRNAs and piRNAs have been available as classes of riboregulators to shape gene expression throughout the evolution and radiation of animal phyla.
Collapse
|
1596
|
Mallory AC, Elmayan T, Vaucheret H. MicroRNA maturation and action--the expanding roles of ARGONAUTEs. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:560-6. [PMID: 18691933 DOI: 10.1016/j.pbi.2008.06.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/02/2008] [Accepted: 06/17/2008] [Indexed: 05/19/2023]
Abstract
MicroRNAs are endogenously produced 21-nt riboregulators that associate with ARGONAUTE (AGO) proteins to direct mRNA cleavage or repress translation of complementary RNAs. In addition to protein-coding gene repression, miRNA-directed regulation of non-protein-coding transcripts can incite production of trans-acting siRNA (tasiRNA) populations that themselves direct mRNA repression. Arabidopsis encodes 10 AGO proteins among which, AGO1, AGO7, and AGO10 have been implicated in miRNA-guided gene repression in vivo. Recent work has shown that AGO proteins discriminate their associated small RNA populations on the basis of size and 5'-terminal nucleotide identity, extending the roles of AGO proteins beyond small RNA action. Our expanding appreciation of miRNA-directed regulation during plant development and stress adaptations has placed miRNAs at the forefront of plant biology.
Collapse
Affiliation(s)
- Allison C Mallory
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, 78026 Versailles Cedex, France.
| | | | | |
Collapse
|
1597
|
Meng C, Chen J, Ding SW, Peng J, Wong SM. Hibiscus chlorotic ringspot virus coat protein inhibits trans-acting small interfering RNA biogenesis in Arabidopsis. J Gen Virol 2008; 89:2349-2358. [PMID: 18753245 DOI: 10.1099/vir.0.2008/002170-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many plant and animal viruses have evolved suppressor proteins to block host RNA silencing at various stages of the RNA silencing pathways. Hibiscus chlorotic ringspot virus (HCRSV) coat protein (CP) is capable of suppressing the transiently expressed sense-RNA-induced post-transcriptional gene silencing (PTGS) in Nicotiana benthamiana. Here, constitutively expressed HCRSV CP from transgenic Arabidopsis was found to be able to rescue expression of the silenced GUS transgene. The HCRSV CP-transgenic Arabidopsis (line CP6) displayed several developmental abnormalities: elongated, downward curled leaves and a lack of coordination between stamen and carpel, resulting in reduced seed set. These abnormalities are similar to those observed in mutations of the genes of Arabidopsis RNA-dependent polymerase 6 (rdr6), suppressor of gene silencing 3 (sgs3), ZIPPY (zip) and dicer-like 4 (dcl4). The accumulation of microRNA (miRNA) miR173 remained stable; however, the downstream trans-acting small interfering RNA (ta-siRNA) siR255 was greatly reduced. Real-time PCR analysis showed that expression of the ta-siRNA-targeted At4g29770, At5g18040, PPR and ARF3 genes increased significantly, especially in the inflorescences. Genetic crossing of CP6 with an amplicon-silenced line (containing a potato virus X-green fluorescent protein transgene under the control of the 35S cauliflower mosaic virus promoter) suggested that HCRSV CP probably interfered with gene silencing at a step after RDR6. The reduced accumulation of ta-siRNA might result from the interference of HCRSV CP with Dicer-like protein(s), responsible for the generation of dsRNA in ta-siRNA biogenesis.
Collapse
Affiliation(s)
- Chunying Meng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117545 Singapore
| | - Jun Chen
- Functional Genomics Laboratory, Institute of Molecular and Cell Biology, 138673 Singapore
| | - Shou-Wei Ding
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Jinrong Peng
- Functional Genomics Laboratory, Institute of Molecular and Cell Biology, 138673 Singapore
| | - Sek-Man Wong
- Adjunct Investigator, Temasek Life Sciences Laboratory, 1 Research Link, 117604 Singapore.,Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117545 Singapore
| |
Collapse
|
1598
|
Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc Natl Acad Sci U S A 2008; 105:14885-90. [PMID: 18815376 DOI: 10.1073/pnas.0803169105] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Messenger RNA molecules are tightly regulated, mostly through interactions with proteins and other RNAs, but the mechanisms that confer the specificity of such interactions are poorly understood. It is clear, however, that this specificity is determined by both the nucleotide sequence and secondary structure of the mRNA. Here, we develop RNApromo, an efficient computational tool for identifying structural elements within mRNAs that are involved in specifying posttranscriptional regulations. By analyzing experimental data on mRNA decay rates, we identify common structural elements in fast-decaying and slow-decaying mRNAs and link them with binding preferences of several RNA binding proteins. We also predict structural elements in sets of mRNAs with common subcellular localization in mouse neurons and fly embryos. Finally, by analyzing pre-microRNA stem-loops, we identify structural differences between pre-microRNAs of animals and plants, which provide insights into the mechanism of microRNA biogenesis. Together, our results reveal unexplored layers of posttranscriptional regulations in groups of RNAs and are therefore an important step toward a better understanding of the regulatory information conveyed within RNA molecules. Our new RNA motif discovery tool is available online.
Collapse
|
1599
|
Dryanova A, Zakharov A, Gulick PJ. Data mining for miRNAs and their targets in the Triticeae. Genome 2008; 51:433-43. [PMID: 18521122 DOI: 10.1139/g08-025] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) and the mRNA targets of miRNAs were identified by sequence complementarity within a DNA sequence database for species of the Triticeae. Data screening identified 28 miRNA precursor sequences from 15 miRNA families that contained conserved mature miRNA sequences within predicted stem-loop structures. In addition, the identification of 337 target sequences among Triticeae genes provided further evidence of the existence of 26 miRNA families in the cereals. MicroRNA targets included genes that are homologous to known targets in diverse model species as well as novel targets. MicroRNA precursors and targets were identified in 10 related species, though the great majority of them were identified in bread wheat, Triticum aestivum, and barley, Hordeum vulgare, the two species with the largest EST data sets among the Triticeae.
Collapse
Affiliation(s)
- Ani Dryanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B1R6, Canada.
| | | | | |
Collapse
|
1600
|
Lin SI, Chiou TJ. Long-distance movement and differential targeting of microRNA399s. PLANT SIGNALING & BEHAVIOR 2008; 3:730-2. [PMID: 19704842 PMCID: PMC2634573 DOI: 10.4161/psb.3.9.6488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 06/23/2008] [Indexed: 05/21/2023]
Abstract
We have previously demonstrated that miR399s control phosphate (Pi) homeostasis by regulating the expression of a ubiquitin-conjugating E2 enzyme (UBC24/PHO2) in Arabidopsis. Changes in miR399-dependent PHO2 gene expression modulate Pi uptake, allocation and remobilization. More recently, we provided evidence that miR399s are able to move in the phloem stream and across grafting junctions from the scions overexpressing miR399 to the wild-type rootstocks. Movement of miR399s serves as a long-distance signal to report and balance the Pi status between shoots and roots. Of note, results from grafting experiments indicate that miR399b is less efficient in cleaving the PHO2 mRNA than is miR399f, despite the similar mobility of the two miR399s. We propose that nucleotide 13 of miR399s, which gives rise to the sequence variation among different miR399 species, could be involved in regulating the abundance of PHO2 mRNA through sequence complementarity to the target sequences of PHO2 mRNA and mimicking target sequence of At4/IPS1 noncoding RNAs.
Collapse
Affiliation(s)
- Shu-I Lin
- Graduate Institute of Life Sciences; National Defense Medical Center; and Agricultural Biotechnology Research Center; Academia Sinica; Taipei, Taiwan, Republic of China
| | | |
Collapse
|