151
|
Qi MY, Li YH, Anpo M, Tang ZR, Xu YJ. Efficient Photoredox-Mediated C–C Coupling Organic Synthesis and Hydrogen Production over Engineered Semiconductor Quantum Dots. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04237] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming-Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, China
| | - Yue-Hua Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, China
| | - Masakazu Anpo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Zi-Rong Tang
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
152
|
Kong W, Xiang MH, Xia L, Zhang M, Kong RM, Qu F. In-situ synthesis of 3D Cu2O@Cu-based MOF nanobelt arrays with improved conductivity for sensitive photoelectrochemical detection of vascular endothelial growth factor 165. Biosens Bioelectron 2020; 167:112481. [DOI: 10.1016/j.bios.2020.112481] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
|
153
|
Sun K, Liu M, Pei J, Li D, Ding C, Wu K, Jiang H. Incorporating Transition‐Metal Phosphides Into Metal‐Organic Frameworks for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Meng Liu
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Junzhe Pei
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Dandan Li
- Institutes of Physics Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Chunmei Ding
- Dalian National Laboratory for Clean Energy State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Hai‐Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
154
|
Sun K, Liu M, Pei J, Li D, Ding C, Wu K, Jiang HL. Incorporating Transition-Metal Phosphides Into Metal-Organic Frameworks for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2020; 59:22749-22755. [PMID: 32896969 DOI: 10.1002/anie.202011614] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Metal-organic frameworks (MOFs) have been shown to be an excellent platform in photocatalysis. However, to suppress electron-hole recombination, a Pt cocatalyst is usually inevitable, especially in photocatalytic H2 production, which greatly limits practical application. Herein, for the first time, monodisperse, small-size, and noble-metal-free transitional-metal phosphides (TMPs; for example, Ni2 P, Ni12 P5 ), are incorporated into a representative MOF, UiO-66-NH2 , for photocatalytic H2 production. Compared with the parent MOF and their physical mixture, both TMPs@MOF composites display significantly improved H2 production rates. Thermodynamic and kinetic studies reveal that TMPs, behaving similar ability to Pt, greatly accelerate the linker-to-cluster charge transfer, promote charge separation, and reduce the activation energy of H2 production. Significantly, the results indicate that Pt is thermodynamically favorable, yet Ni2 P is kinetically preferred for H2 production, accounting for the higher activity of Ni2 P@UiO-66-NH2 than Pt@UiO-66-NH2 .
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Meng Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Junzhe Pei
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institutes of Physics Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Chunmei Ding
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
155
|
Yuan L, Li YH, Tang ZR, Gong J, Xu YJ. Defect-promoted visible light-driven C C coupling reactions pairing with CO2 reduction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
156
|
Keum Y, Kim B, Byun A, Park J. Synthesis and Photocatalytic Properties of Titanium‐Porphyrinic Aerogels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yesub Keum
- Department of Emerging Materials Science Daegu-Gyeongbuk Institute of Science & Technology Daegu 42988 Republic of Korea
| | - Bongkyeom Kim
- Department of Emerging Materials Science Daegu-Gyeongbuk Institute of Science & Technology Daegu 42988 Republic of Korea
| | - Asong Byun
- Department of Emerging Materials Science Daegu-Gyeongbuk Institute of Science & Technology Daegu 42988 Republic of Korea
| | - Jinhee Park
- Department of Emerging Materials Science Daegu-Gyeongbuk Institute of Science & Technology Daegu 42988 Republic of Korea
| |
Collapse
|
157
|
Keum Y, Kim B, Byun A, Park J. Synthesis and Photocatalytic Properties of Titanium‐Porphyrinic Aerogels. Angew Chem Int Ed Engl 2020; 59:21591-21596. [DOI: 10.1002/anie.202007193] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Yesub Keum
- Department of Emerging Materials Science Daegu-Gyeongbuk Institute of Science & Technology Daegu 42988 Republic of Korea
| | - Bongkyeom Kim
- Department of Emerging Materials Science Daegu-Gyeongbuk Institute of Science & Technology Daegu 42988 Republic of Korea
| | - Asong Byun
- Department of Emerging Materials Science Daegu-Gyeongbuk Institute of Science & Technology Daegu 42988 Republic of Korea
| | - Jinhee Park
- Department of Emerging Materials Science Daegu-Gyeongbuk Institute of Science & Technology Daegu 42988 Republic of Korea
| |
Collapse
|
158
|
Tang HL, Sun XJ, Zhang FM. Development of MOF-based heterostructures for photocatalytic hydrogen evolution. Dalton Trans 2020; 49:12136-12144. [PMID: 32840528 DOI: 10.1039/d0dt02309d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The construction of metal-organic framework (MOF) based heterostructures are a promising strategy to improve the photocatalytic hydrogen evolution activities of MOFs. For the intrinsic porosity, inorganic-organic hybrid nature and structural tunability of MOFs, a wide variety of MOF-based heterostructured photocatalysts with improved hydrogen evolution activities have been fabricated. In this frontier article, we present the latest advances in MOF-based heterostructures for photocatalytic hydrogen evolution. The opportunities and challenges related to MOF-based heterostructured photocatalysts are also presented.
Collapse
Affiliation(s)
- Hong-Liang Tang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin 150040, China.
| | | | | |
Collapse
|
159
|
Zhong Y, Wang R, Wang X, Lin Z, Jiang G, Yang M, Xu D. A Ti-MOF Decorated With a Pt Nanoparticle Cocatalyst for Efficient Photocatalytic H 2 Evolution: A Theoretical Study. Front Chem 2020; 8:660. [PMID: 32850672 PMCID: PMC7427410 DOI: 10.3389/fchem.2020.00660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/25/2020] [Indexed: 12/03/2022] Open
Abstract
Pt nanoparticles (NPs) are often used as cocatalysts to enhance the photocatalytic hydrogen production catalyzed by the metal organic framework (MOF) materials. The catalytic efficiency of many Pt/MOF systems can be greatly improved when Pt NPs are used as cocatalysts. In this work, the Pt/20%-MIL-125-(SCH3)2 was chosen as the template material to understand the functional role of a Pt metal cocatalyst in the catalytic process. Experimentally, the catalytic activity of Pt/20%-MIL-125-(SCH3)2 is more than 100 times that of the system without the help of Pt NPs. Firstly, we proposed a searching algorithm, which is based on the combined Monte Carlo (MC) method and principal component analysis (PCA) algorithm, to find that the most probable adsorption site of the Pt13 nanocluster loaded on the (001) surface of 20%-MIL-125-(SCH3)2. Next, by using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, we revealed that the accumulation of some positive charges on the Pt13 cluster and proton adsorbed on the Pt13 cluster, which can promote the separation of photogenerated electrons and holes, thus improving the photocatalytic efficiency. This work not only provides a method to obtain the adsorption configuration of metal clusters on various MOFs but also provides a new insight into increasing photocatalytic efficiency for H2 production in Pt/MOF systems.
Collapse
Affiliation(s)
- Yeshuang Zhong
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Ruihan Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Zhien Lin
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, MOE Key Laboratory of High Energy Density Physics and Technology, Sichuan University, Chengdu, China
| | - Mingli Yang
- Institute of Atomic and Molecular Physics, MOE Key Laboratory of High Energy Density Physics and Technology, Sichuan University, Chengdu, China.,Research Center for Material Genome Engineering, Sichuan University, Chengdu, China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China.,Research Center for Material Genome Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
160
|
Wang W, Wang Y, Yang R, Wen Q, Liu Y, Jiang Z, Li H, Zhai T. Vacancy‐Rich Ni(OH)
2
Drives the Electrooxidation of Amino C−N Bonds to Nitrile C≡N Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Yutang Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Ruoou Yang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Qunlei Wen
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Youwen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| |
Collapse
|
161
|
Wang W, Wang Y, Yang R, Wen Q, Liu Y, Jiang Z, Li H, Zhai T. Vacancy‐Rich Ni(OH)
2
Drives the Electrooxidation of Amino C−N Bonds to Nitrile C≡N Bonds. Angew Chem Int Ed Engl 2020; 59:16974-16981. [DOI: 10.1002/anie.202005574] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/22/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Yutang Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Ruoou Yang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Qunlei Wen
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Youwen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| |
Collapse
|
162
|
Huang HB, Yu K, Zhang N, Xu JY, Yu XT, Liu HX, Cao HL, Lü J, Cao R. Localized surface plasmon resonance enhanced visible-light-driven CO 2 photoreduction in Cu nanoparticle loaded ZnInS solid solutions. NANOSCALE 2020; 12:15169-15174. [PMID: 32662483 DOI: 10.1039/d0nr01801e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Visible-light-driven photocatalysts have shown tremendous prospects in solving the energy crisis and environmental problems, thanks to their wide spectral response and high quantum efficiency. Several strategies including the expansion of visible light response and the improvement of solar energy utilization and photocatalytic quantum efficiency via more effective separation of photogenerated carriers are the current focuses of research that direct the design and fabrication of viable photocatalysts. Herein, a series of composite photocatalysts assembled from plasmonic Cu nanoparticles (NPs) and Zn3In2S6 (ZIS) solid solutions were synthesized by means of a simple solvothermal method. In comparison with the pristine ZIS semiconductor, Cu NP loaded ZIS solid solutions showed greatly enhanced photocatalytic activity, selectivity and stability towards CO2 reduction under visible irradiation. Of note was that the optimized ZIS-Cu2 exhibited an enhanced CH4 production rate of ca. 292 μL g-1 h-1 and a selectivity of ca. 71.1%, which were among the highest numbers reported hitherto. The localized surface plasmon resonance (LSPR) effect, shown by surface Cu NPs, was believed to play a critical role in the enhanced CO2 photoreduction efficiency. More importantly, the introduction of plasmonic Cu NPs could restrain the recombination of photogenerated electron-hole pairs and promote the migration of photogenerated electrons to better participate in the photocatalytic CO2 reduction in the presence of water vapor. This work thus provides a facile means to design robust and flexible composite photocatalysts for visible-light-driven CO2 photoreduction with high efficiency.
Collapse
Affiliation(s)
- Hai-Bo Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.
| | - Kai Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.
| | - Ning Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.
| | - Jian-Ying Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.
| | - Xu-Teng Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.
| | - Heng-Xin Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.
| | - Hai-Lei Cao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.
| |
Collapse
|
163
|
Yang H, Fan J, Zhou C, Luo R, Liu H, Wan Y, Zhang J, Chen J, Wang G, Wang R, Jiang C. Co 3O 4@CdS Hollow Spheres Derived from ZIF-67 with a High Phenol and Dye Photodegradation Activity. ACS OMEGA 2020; 5:17160-17169. [PMID: 32715201 PMCID: PMC7377639 DOI: 10.1021/acsomega.0c01131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The Co3O4@CdS double-layered hollow spheres were first prepared by the template-removal method with the assistance of the ZIF-67 material; the structure has been proved by transmission electron microscopy (TEM). The Co3O4@CdS hollow spheres calcinated at 400 °C exhibited the highest photodegradation activity. Nearly 90% phenol was degraded after 2 h of visible-light irradiation. More than 80% rhodamine-B (RhB) was degraded within the first 30 min and nearly eliminated after 1 h of irradiation. The mechanism of the photodegradation reaction was investigated. Based on the analysis of electron spin resonance (ESR) spectra and radical trapping test, it was found that superoxide radicals are the major oxidative species for dye degradation and holes and hydroxyl radicals are the major oxidative species for phenol degradation. These results may be used in industrial wastewater treatment. The reaction obeys first-order reaction kinetics, and the rate constant of the Co3O4@CdS hollow sphere in dye degradation is 0.05 min-1 and that in phenol degradation is 0.02 min-1, which is three times higher than that of CdS nanoparticles. These results indicated the high oxidizing ability of the samples.
Collapse
Affiliation(s)
- Haowei Yang
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Jinlong Fan
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Chengxin Zhou
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Rui Luo
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Hongwei Liu
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Yingfei Wan
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Jin Zhang
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Jinwei Chen
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Gang Wang
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Ruilin Wang
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, P. R. China
| | - Chunping Jiang
- West
China School of Public Health No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
164
|
Klarner M, Hammon S, Feulner S, Kümmel S, Kador L, Kempe R. Visible Light‐driven Dehydrogenation of Benzylamine under Liberation of H
2. ChemCatChem 2020. [DOI: 10.1002/cctc.202000329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mara Klarner
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Sebastian Hammon
- Theoretical Physics IV University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Sebastian Feulner
- Institute of Physics, Bayreuth Institute of Macromolecule Research (BIMF) University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Stephan Kümmel
- Theoretical Physics IV University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Lothar Kador
- Institute of Physics, Bayreuth Institute of Macromolecule Research (BIMF) University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Rhett Kempe
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|
165
|
Garg R, Mondal S, Sahoo L, Vinod CP, Gautam UK. Nanocrystalline Ag 3PO 4 for Sunlight- and Ambient Air-Driven Oxidation of Amines: High Photocatalytic Efficiency and a Facile Catalyst Regeneration Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29324-29334. [PMID: 32484649 DOI: 10.1021/acsami.0c05961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Selective oxidation of amines to imines using sunlight as clean and renewable energy source is an important but challenging chemical transformation because of high reactivity of the generated imines and lack of visible light-responsive materials with high conversion rates. In addition, oxygen gas has to be purged in the reaction mixture in order to increase the reaction efficiency which, in itself, is an energy-consuming process. Herein, we report, for the first time, the use of Ag3PO4 as an excellent photocatalyst for the oxidative coupling of benzyl amines induced by ambient air in the absence of any external source of molecular oxygen at room temperature. The conversion efficiency for the selective oxidation of benzyl amine was found to be greater than 95% with a selectivity of >99% after 40 min of light irradiation indicating an exceptionally high conversion efficiency with a rate constant of 0.002 min-1, a turnover frequency of 57 h-1, and a quantum yield of 19%, considering all of the absorbed photons. Ag3PO4, however, is known for its poor photostability owing to a positive conduction band position and a favorable reduction potential to metallic silver. Therefore, we further employed a simple catalyst regeneration strategy and showed that the catalyst can be recycled with negligible loss of activity and selectivity.
Collapse
Affiliation(s)
- Reeya Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - C P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-NCL, Pune 411008, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
166
|
Markushyna Y, Lamagni P, Catalano J, Lock N, Zhang G, Antonietti M, Savateev A. Advantages in Using Inexpensive CO2 To Favor Photocatalytic Oxidation of Benzylamines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02176] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yevheniia Markushyna
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, 14476 Potsdam, Germany
| | - Paolo Lamagni
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, 14476 Potsdam, Germany
- Carbon Dioxide Activation Center, Aarhus University, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, DK-8000 Aarhus C, Denmark
- Section of Biological and Chemical Engineering, Department of Engineering, Aarhus University, Åbogade 40, DK-8200 Aarhus N, Denmark
| | - Jacopo Catalano
- Section of Biological and Chemical Engineering, Department of Engineering, Aarhus University, Åbogade 40, DK-8200 Aarhus N, Denmark
| | - Nina Lock
- Carbon Dioxide Activation Center, Aarhus University, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, DK-8000 Aarhus C, Denmark
- Section of Biological and Chemical Engineering, Department of Engineering, Aarhus University, Åbogade 40, DK-8200 Aarhus N, Denmark
| | - Guigang Zhang
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, 14476 Potsdam, Germany
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, 14476 Potsdam, Germany
| | - Aleksandr Savateev
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, 14476 Potsdam, Germany
| |
Collapse
|
167
|
Wang Y, Xue YY, Yan LT, Li HP, Li YP, Yuan EH, Li M, Li SN, Zhai QG. Multimetal Incorporation into 2D Conductive Metal-Organic Framework Nanowires Enabling Excellent Electrocatalytic Oxidation of Benzylamine to Benzonitrile. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24786-24795. [PMID: 32372639 DOI: 10.1021/acsami.0c05094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As an important organic intermediate, benzonitrile (BN) is widely involved in organic synthetic chemistry and pharmaceutical and dyestuff industries. However, the exploration of a more efficient and controllable synthesis technique and the corresponding greener catalysts for the synthesis of BN still poses a great challenge. Herein, with multimetallic two-dimensional conductive metal-organic frameworks (2D cMOF) as anodic electrocatalysts, we develop a green, convenient, and highly efficient electrochemical synthesis strategy for BN. Thanks to the intrinsic 2D electrically conductive structure and the optimized the multimetallic coupling catalytic effect, the resulting multimetallic 2D cMOFs exhibit excellent benzylamine (BA) electrooxidation performance. Especially, the trimetallic 2D cMOF (NiCoFe-CAT) requires an ultralow potential of 1.29 V vs reversible hydrogen electrode (RHE) to achieve a 10 mA·cm-2 current density, which indicates the fastest reaction and the most favorable thermodynamic condition. A very high yield (0.058 mmol·mg-1·h-1) and faradic efficiency (∼87%) of benzonitrile are both achieved during the BA electrooxidation reaction at 1.45 V. The reaction mechanism investigations indicated that the various redox mediators of MII/MIII (Ni, Co, Fe) may be regarded as multimetal active species to promote BA conversion. Also, the excellent cycling durability of multimetallic 2D cMOFs further promotes their potential practical applications. These electrocatalytic performances are considered excellent and nearly surpass all other reported Ni-based inorganics or MOF-based electrocatalysts for the electrocatalytic oxidation of benzylamine.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Ying-Ying Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Li-Ting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Changqing District, Jinan 250353, China
| | - Hai-Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yong-Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - En-Hui Yuan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Meng Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
168
|
Wang C, Zhang X, Wang J, Fu H, Wang P, Wang C. A new one‐dimensional coordination polymer synthesized from zinc and guanazole: Superior capture of organic arsenics. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chao‐Yang Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Xiu‐Wu Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Jia‐Wei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Chong‐Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| |
Collapse
|
169
|
Liu S, Zhang C, Sun Y, Chen Q, He L, Zhang K, Zhang J, Liu B, Chen LF. Design of metal-organic framework-based photocatalysts for hydrogen generation. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213266] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
170
|
Li D, Kassymova M, Cai X, Zang SQ, Jiang HL. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213262] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
171
|
Mo C, Yang M, Sun F, Jian J, Zhong L, Fang Z, Feng J, Yu D. Alkene-Linked Covalent Organic Frameworks Boosting Photocatalytic Hydrogen Evolution by Efficient Charge Separation and Transfer in the Presence of Sacrificial Electron Donors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902988. [PMID: 32596107 PMCID: PMC7312270 DOI: 10.1002/advs.201902988] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/10/2020] [Indexed: 05/24/2023]
Abstract
Covalent organic frameworks (COFs) are potential photocatalysts for artificial photosynthesis but they are much less explored for photocatalytic hydrogen evolution (PHE). COFs, while intriguing due to crystallinity, tunability, and porosity, tend to have low apparent quantum efficiency (AQE) and little is explored on atomistic structure-performance correlation. Here, adopting triphenylbenzene knots and phenyl linkers as a proof of concept, three structurally related COFs with different linkages are constructed to achieve a tunable COF platform and probe the effect of the linkage chemistry on PHE. Cyano-substituted alkene-linked COF (COF-alkene) yields a stable 2330 µmol h-1 g-1 PHE rate, much superior to imine- and imide-linked counterparts (<40 µmol h-1 g-1) under visible light irradiation. Impressively, COF-alkene achieves an AQE of 6.7% at 420 nm. Combined femtosecond transient absorption spectroscopy and theoretical calculation disclose the critical role of cyano-substituted alkene linkages toward high efficiency of charge separation and transfer in the presence of sacrificial electron donors-the decisive key to the superior PHE performance. Such alkene linkages can also be extended to design a series of high-performance polymeric photocatalysts, highlighting a general design idea for efficient PHE.
Collapse
Affiliation(s)
- Chunshao Mo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Meijia Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Fusai Sun
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Junhua Jian
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Linfeng Zhong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Zhengsong Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Jiangshan Feng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‒based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
172
|
Sun M, Sun C, Wang X, Su Z. Promoting visible-light-driven hydrogen production of a zirconium-based metal-organic polyhedron decorated by platinum nanoparticles with different spatial locations. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.105930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
173
|
Fan XN, Ou HD, Deng W, Yao ZJ. Air-Stable Half-Sandwich Iridium Complexes as Aerobic Oxidation Catalysts for Imine Synthesis. Inorg Chem 2020; 59:4800-4809. [DOI: 10.1021/acs.inorgchem.0c00073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Nan Fan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hui-Dan Ou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
174
|
Wang G, Zhang T, Yu W, Si R, Liu Y, Zhao Z. Modulating Location of Single Copper Atoms in Polymeric Carbon Nitride for Enhanced Photoredox Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01099] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Guanchao Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ting Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Weiwei Yu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
175
|
Huang Y, Liu C, Li M, Li H, Li Y, Su R, Zhang B. Photoimmobilized Ni Clusters Boost Photodehydrogenative Coupling of Amines to Imines via Enhanced Hydrogen Evolution Kinetics. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00282] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yi Huang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Mengyang Li
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Huizhi Li
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, P. R. China
| | - Ren Su
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No. 1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, P. R. China
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
176
|
Wu Y, Shi J, Li D, Zhang S, Gu B, Qiu Q, Sun Y, Zhang Y, Cai Z, Jiang Z. Synergy of Electron Transfer and Electron Utilization via Metal–Organic Frameworks as an Electron Buffer Tank for Nicotinamide Regeneration. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05240] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yizhou Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Jiafu Shi
- Tianjin Engineering Center of Biomass-derived Gas and Oil, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Donglin Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Shaohua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Bo Gu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qian Qiu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yiying Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yishan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Ziyi Cai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City 350207, Fuzhou, P. R. China
| |
Collapse
|
177
|
Wang Y, Zhu Z, Sun Z, Hu Q, Li J, Jiang J, Huang X. Discrete Supertetrahedral T5 Selenide Clusters and Their Se/S Solid Solutions: Ionic-Liquid-Assisted Precursor Route Syntheses and Photocatalytic Properties. Chemistry 2020; 26:1624-1632. [PMID: 31971636 DOI: 10.1002/chem.201904256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Indexed: 11/07/2022]
Abstract
Although supertetrahedral Tn sulfide clusters (n=2-6) have been extensively explored, the synthesis of Tn selenide clusters with n>4 has not been achieved thus far. Reported here are ionic-liquid (IL)-assisted precursor route syntheses, characterizations, and the photocatalytic properties of six new M-In-Q (M=Cu or Cd; Q=Se or Se/S) chalcogenide compounds, namely [Bmmim]12 Cu5 In30 Q52 Cl3 (Im) (Q=Se (T5-1), Se48.5 S3.5 (T5-2); Bmmim=1-butyl-2,3-dimethylimidazolium, Im=imidazole), [Bmmim]11 Cd6 In28 Q52 Cl3 (MIm) (Q=Se (T5-3), Se28.5 S23.5 (T5-4), Se16 S36 (T5-5); MIm=1-methylimidazole), and [Bmmim]9 Cd6 In28 Se8 S44 Cl(MIm)3 (T5-6). The cluster compounds T5-1 and T5-3 represent the largest molecular supertetrahedral Tn selenide clusters to date. Under visible-light illumination, the Cu-In-Q compounds showed photocatalytic activity towards the decomposition of crystal violet, whereas the Cd-In-Q compounds exhibited good photocatalytic H2 evolution activity. Interestingly, the experimental results show that the photocatalytic performances of the selenide/sulfide solid solutions were significantly better than those of their selenide analogues, for example, the degradation time of the organic dye with T5-2 was much shorter than that with T5-1, whereas the photocatalytic H2 evolution efficiencies with T5-3-T5-6 improved significantly with increasing sulfur content. This work highlights the significance of IL-assisted precursor route synthesis and the tuning of photocatalytic properties through the formation of solid solutions.
Collapse
Affiliation(s)
- Yanqi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,College of Materials Science and Engineering, Fujian Normal University, Fuzhou, 350002, China
| | - Zhipeng Zhu
- Applied Chemistry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaofeng Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qianqian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jianrong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jiang Jiang
- Applied Chemistry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
178
|
Zhang S, Qian X, Yan J, Chen K, Huang J. Nickel-decorated g-C3N4 hollow spheres as an efficient photocatalyst for hydrogen evolution and oxidation of amines to imines. NEW J CHEM 2020. [DOI: 10.1039/d0nj01218a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Photocatalysts composed of earth-abundant elements are highly desired for photocatalytic hydrogen evolution as well as oxidation of amines to imines without the requirement of precious metals.
Collapse
Affiliation(s)
- Shishen Zhang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xiaobing Qian
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Junqiu Yan
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Kelong Chen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jianhua Huang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
179
|
Li XB, Xin ZK, Xia SG, Gao XY, Tung CH, Wu LZ. Semiconductor nanocrystals for small molecule activation via artificial photosynthesis. Chem Soc Rev 2020; 49:9028-9056. [DOI: 10.1039/d0cs00930j] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The protocol of artificial photosynthesis using semiconductor nanocrystals shines light on green, facile and low-cost small molecule activation to produce solar fuels and value-added chemicals.
Collapse
Affiliation(s)
- Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Zhi-Kun Xin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Shu-Guang Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xiao-Ya Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
180
|
Jin Y, Zhang Q, Zhang Y, Duan C. Electron transfer in the confined environments of metal–organic coordination supramolecular systems. Chem Soc Rev 2020; 49:5561-5600. [DOI: 10.1039/c9cs00917e] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review, we overview regulatory factors and diverse applications of electron transfer in confined environments of supramolecular host–guest systems.
Collapse
Affiliation(s)
- Yunhe Jin
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Qingqing Zhang
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
181
|
Liu Y, Lin C, Li B, Wang J, Wang M, Zhang N, Feng Y, Wu P. A visible-light responsive metal–organic framework as an eco-friendly photocatalyst under ambient air at room temperature. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00590h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A 2′,7′-dichlorofluorescein-based MOF as a reusable photocatalyst for the synthesis of 1,3-oxathiolane-2-imines from styrenes and NH4SCN by utilizing visible light and air as the eco-sustainable and cheapest reagents.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Chen Lin
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Bowen Li
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Jian Wang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Man Wang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Na Zhang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Yue Feng
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Pengyan Wu
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
182
|
Liu Y, Zhao Y, Liu ZQ, Liu XH, Zhang XD, Sun WY. Coordination polymers with salicylaldehyde ligands: structural diversity, selective sorption and luminescence sensing properties. CrystEngComm 2020. [DOI: 10.1039/c9ce01675a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Five new coordination polymers with salicylaldehyde ligands were obtained. They show diverse structures, selective dye adsorption and fluorescence sensing properties.
Collapse
Affiliation(s)
- Yi Liu
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Yue Zhao
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Zhi-Qiang Liu
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Xiao-Hui Liu
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Xiu-Du Zhang
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Wei-Yin Sun
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| |
Collapse
|
183
|
Liu H, Guo Z, Lv H, Liu X, Che Y, Mei Y, Bai R, Chi Y, Xing H. Visible-light-driven self-coupling and oxidative dehydrogenation of amines to imines via a Mn(ii)-based coordination polymer. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01396b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The direct synthesis of various imines through visible-light-driven photocatalytic self-coupling and dehydrogenation of amines was achieved using a novel coordination polymer.
Collapse
Affiliation(s)
- Hui Liu
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Zhifen Guo
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Hui Lv
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xin Liu
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yan Che
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yingchun Mei
- Dyestuff Factory
- Jilin Petrochemical Company
- Jilin 132022
- China
| | - Rong Bai
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yanhong Chi
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Hongzhu Xing
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
184
|
Liu Y, Guo JH, Dao XY, Zhang XD, Zhao Y, Sun WY. Coordination polymers with a pyridyl–salen ligand for photocatalytic carbon dioxide reduction. Chem Commun (Camb) 2020; 56:4110-4113. [DOI: 10.1039/d0cc00425a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe(iii) and Mn(iii) coordination polymers with a pyridyl–salen ligand were constructed and have shown photocatalytic activity for CO2reduction under visible-light irradiation.
Collapse
Affiliation(s)
- Yi Liu
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Jin-Han Guo
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Xiao-Yao Dao
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Xiu-Du Zhang
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Yue Zhao
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Wei-Yin Sun
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| |
Collapse
|
185
|
Zhang S, Chen K, Peng W, Huang J. g-C3N4/Uio-66-NH2 nanocomposites with enhanced visible light photocatalytic activity for hydrogen evolution and oxidation of amines to imines. NEW J CHEM 2020. [DOI: 10.1039/c9nj05495b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
g-C3N4/Uio-66-NH2 (CNUIO) nanocomposites were prepared by growing an NH2-mediated zirconium-based metal–organic framework (Uio-66-NH2) in the presence of g-C3N4 nanotubes.
Collapse
Affiliation(s)
- Shishen Zhang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Kelong Chen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Wen Peng
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jianhua Huang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
186
|
Wang YY, Tang Z, Ji XY, Wang S, Yao ZS, Tao J. Encapsulating low-coordinated Pt clusters within a metal–organic framework induces spatial charge separation boosting photocatalytic hydrogen evolution. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00809e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A strategy is developed to synthesize MOF photocatalyst encapsulating low-coordinate Pt clusters with high photocatalytic hydrogen-evolution performance under visible light.
Collapse
Affiliation(s)
- Yao-Yao Wang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- People's Republic of China
| | - Zheng Tang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- People's Republic of China
| | - Xue-Yang Ji
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- People's Republic of China
| | - Song Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices
- Hubei University of Arts and Science
- Xiangyang 441053
- People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- People's Republic of China
| |
Collapse
|
187
|
Fu SS, Ren XY, Guo S, Lan G, Zhang ZM, Lu TB, Lin W. Synergistic Effect over Sub-nm Pt Nanocluster@MOFs Significantly Boosts Photo-oxidation of N-alkyl(iso)quinolinium Salts. iScience 2019; 23:100793. [PMID: 31958757 PMCID: PMC6992937 DOI: 10.1016/j.isci.2019.100793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Quinolones and isoquinolones are of interest to pharmaceutical industry owing to their potent biological activities. Herein, we first encapsulated sub-nm Pt nanoclusters into Zr-porphyrin frameworks to afford an efficient photocatalyst Pt0.9@PCN-221. This catalyst can dramatically promote electron-hole separation and 1O2 generation to achieve synergistic effect first in the metal-organic framework (MOF) system, leading to the highest activity in photosynthesis of (iso)quinolones in >90.0% yields without any electronic sacrificial agents. Impressively, Pt0.9@PCN-221 was reused 10 times without loss of activity and can catalyze gram-scale synthesis of 1-methyl-5-nitroisoquinolinone at an activity of 175.8 g·gcat−1, 22 times higher than that of PCN-221. Systematic investigations reveal the contribution of synergistic effect of photogenerated electron, photogenerated hole, and 1O2 generation for efficient photo-oxidation, thus highlighting a new strategy to integrate multiple functional components into MOFs to synergistically catalyze complex photoreactions for exploring biologically active heterocyclic molecules. A state-of-the-art photocatalyst for preparation of bioactive (iso)quinolones Synergistic catalysis of photogenerated e−/h+ and 1O2 Sub-nm Pt0.9@PCN-221 with a high efficiency of e−-h+ separation and 1O2 generation
Collapse
Affiliation(s)
- Shan-Shan Fu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiu-Ying Ren
- College of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Guangxu Lan
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; College of Chemistry, Northeast Normal University, Changchun 130024, P.R. China.
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
188
|
Hao J, Zhan W, Sun L, Zhuang G, Wang X, Han X. Combining N,S-Codoped C and CeO2: A Unique Hinge-like Structure for Efficient Photocatalytic Hydrogen Evolution. Inorg Chem 2019; 59:937-942. [DOI: 10.1021/acs.inorgchem.9b03204] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Juan Hao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wenwen Zhan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Liming Sun
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaojun Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiguang Han
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
189
|
Yadav D, Awasthi SK. An unsymmetrical covalent organic polymer for catalytic amide synthesis. Dalton Trans 2019; 49:179-186. [PMID: 31799570 DOI: 10.1039/c9dt03931g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we present the first report on the Covalent Organic Polymer (COP) directed non-classical synthesis of an amide bond. An economical route has been chosen for the synthesis of APC-COP using p-aminophenol and cyanuric chloride. APC-COP acts as a smart, valuable and sustainable catalyst for efficient access to the amide bond under mild conditions at room temperature in 30 min. APC-COP exhibits selectivity towards carboxylic acids over esters. The key features of this protocol involve the variety of parameters, viz. wider substrate scope, no use of additive and recyclability, which makes this approach highly desirable in gramscale synthesis. Moreover, we have shown the practical utility of the present method in the catalytic synthesis of paracetamol.
Collapse
Affiliation(s)
- Deepika Yadav
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | | |
Collapse
|
190
|
Xu C, Pan Y, Wan G, Liu H, Wang L, Zhou H, Yu SH, Jiang HL. Turning on Visible-Light Photocatalytic C-H Oxidation over Metal-Organic Frameworks by Introducing Metal-to-Cluster Charge Transfer. J Am Chem Soc 2019; 141:19110-19117. [PMID: 31707780 DOI: 10.1021/jacs.9b09954] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tailorable structure and electronic structure of metal-organic frameworks (MOFs) greatly facilitate their modulated light harvesting, redox power, and consequently photocatalysis. Herein, a representative MOF, UiO-66, was furnished by installing Fe3+ onto the Zr-oxo clusters, to give Fe-UiO-66, which features extended visible light harvesting, based on metal-to-cluster charge transfer (MCCT). The Fe-UiO-66 with unique electronic structure and strong oxidizing power exhibits visible light-driven water oxidation, which is impossible for pristine UiO-66. More strikingly, under visible irradiation, the generated holes over Fe-UiO-66 are able to exclusively convert H2O to hydroxide radicals, initiating and driving the activation of stubborn C-H bond, such as toluene oxidation. The electrons reduce O2 to O2•- radicals that further promote the oxidation reaction. The related catalytic mechanism and the structure-activity relationship have been investigated in detail. As far as we know, this is not only an unprecedented report on activating "inert" MOFs for photocatalytic C-H activation but also the first work on extended light harvesting and enhanced photocatalysis for MOFs by introducing an MCCT process.
Collapse
Affiliation(s)
- Caiyun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Yating Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Gang Wan
- SLAC National Accelerator Laboratory , 2575 Sand Hill Rd , Menlo Park , California 94025 , United States
| | - Hang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Liang Wang
- X-ray Science Division, Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| |
Collapse
|
191
|
Qian X, Wu W, Niu Y, Yang J, Xu C, Wong KY. Triple-Shelled Co-VSe x Hollow Nanocages as Superior Bifunctional Electrode Materials for Efficient Pt-Free Dye-Sensitized Solar Cells and Hydrogen Evolution Reactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43278-43286. [PMID: 31663327 DOI: 10.1021/acsami.9b16623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complex nanostructures with distinct spatial architectures and more active sites hold broad prospects in new energy conversion fields. Herein, a facile strategy was carried out to construct triple-shelled Co-VSex nanocages, starting with an ion-exchange process between Co-based zeolitic imidazolate framework-67 (ZIF-67) nanopolyhedrons and VO3- followed by the formation of triple-shelled Co-VSex hollow nanocages during the process of increasing the solvothermal temperature under the assistance of SeO32-. Meanwhile, triple-shelled Co-VSx and yolk-double shell Co-VOx nanocages were fabricated as references by a similar process. Benefiting from the larger surface areas and more electrolyte adsorption sites, the triple-shelled Co-VSex nanocages exhibited excellent electrocatalytic performances when applied as the electrochemical catalysts for dye-sensitized solar cells (DSSC) and hydrogen evolution reactions (HER). More concretely, the DSSC based on the Co-VSex counter electrode showed outstanding power conversion efficiency of 9.68% when its Pt counterpart was 8.46%. Moreover, the Co-VSex electrocatalyst exhibited prominent HER performance with a low onset overpotential of 40 mV and a small Tafel slope of 39.1 mV dec-1 in an acidic solution.
Collapse
Affiliation(s)
- Xing Qian
- College of Chemical Engineering , Fuzhou University , Xueyuan Road No. 2 , Fuzhou 350116 , China
| | - Weimin Wu
- College of Chemical Engineering , Fuzhou University , Xueyuan Road No. 2 , Fuzhou 350116 , China
| | - Yudi Niu
- College of Chemical Engineering , Fuzhou University , Xueyuan Road No. 2 , Fuzhou 350116 , China
| | - Jiahui Yang
- College of Chemical Engineering , Fuzhou University , Xueyuan Road No. 2 , Fuzhou 350116 , China
| | - Chong Xu
- College of Chemical Engineering , Fuzhou University , Xueyuan Road No. 2 , Fuzhou 350116 , China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , The Hong Kong Polytechnic University , Hung Hom, Kowloon 999077 , Hong Kong
| |
Collapse
|
192
|
Nakanishi K, Ohtsu H, Fukuhara G, Kawano M. Do Anionic π Molecules Aggregate in Solution? A Case Study with Multi‐interactive Ligands and Network Formation. Chemistry 2019; 25:15182-15188. [DOI: 10.1002/chem.201903764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Keisuke Nakanishi
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8550 Japan
| | - Hiroyoshi Ohtsu
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8550 Japan
| | - Gaku Fukuhara
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8550 Japan
- JST PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Masaki Kawano
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
193
|
Liu Y, Liu M, Jia J, Wu D, Gao T, Wang X, Yu J, Li F. β-Cyclodextrin-based hollow nanoparticles with excellent adsorption performance towards organic and inorganic pollutants. NANOSCALE 2019; 11:18653-18661. [PMID: 31584597 DOI: 10.1039/c9nr07342f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, β-cyclodextrin (β-CD) based hollow nanoparticles (denoted as β-CDHN) with abundant active sites and high specific surface area were first fabricated via a facile one-step method. The β-CDHN presented a maximum adsorption capacity of 2080.35, 427.35 and 120.48 mg g-1 towards the cationic dye methylene blue (MB), heavy metal ions (Pb2+) and bisphenol A (BPA), respectively, much higher than those of many other adsorbents. Furthermore, β-CDHN also exhibited fast adsorption kinetics towards these pollutants with adsorption rate constants 6 to 200 times higher than those of activated carbon and other β-CD-based adsorbents, meaning the former can remove these pollutants at a much faster adsorption rate than the latter adsorbents. More importantly, the removal efficiency of these pollutants on β-CDHN almost remained stable after 10 regeneration cycles with favorable recyclability. The prepared β-CDHN show great potential in practical applications due to their low costs and high efficiency in the treatment of organic and inorganic pollutants from wastewater.
Collapse
Affiliation(s)
- Yinli Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Miao Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Jie Jia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Dequn Wu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Tingting Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xueli Wang
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, China
| | - Faxue Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
194
|
Li MJ, Wang HJ, Yuan R, Chai YQ. A zirconium-based metal-organic framework sensitized by thioflavin-T for sensitive photoelectrochemical detection of C-reactive protein. Chem Commun (Camb) 2019; 55:10772-10775. [PMID: 31432820 DOI: 10.1039/c9cc05086h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, a novel photoelectrochemical (PEC) assay was developed for the sensitive detection of C-reactive protein (CRP) based on a zirconium-based metal-organic framework (PCN-777) as the photoelectric material and thioflavin-T (Th-T) as the effective signal sensitizer coupled with rolling circle amplification (RCA).
Collapse
Affiliation(s)
- Meng-Jie Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | |
Collapse
|
195
|
Guo Q, Liang F, Li XB, Gao YJ, Huang MY, Wang Y, Xia SG, Gao XY, Gan QC, Lin ZS, Tung CH, Wu LZ. Efficient and Selective CO2 Reduction Integrated with Organic Synthesis by Solar Energy. Chem 2019. [DOI: 10.1016/j.chempr.2019.06.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
196
|
|
197
|
Boosting photocatalytic oxidative coupling of amines by a Ru-complex-sensitized metal-organic framework. J Catal 2019. [DOI: 10.1016/j.jcat.2019.08.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
198
|
Zhang Y, Pang J, Li J, Yang X, Feng M, Cai P, Zhou HC. Visible-light harvesting pyrene-based MOFs as efficient ROS generators. Chem Sci 2019; 10:8455-8460. [PMID: 31803425 PMCID: PMC6839506 DOI: 10.1039/c9sc03080h] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/30/2019] [Indexed: 11/21/2022] Open
Abstract
The utilization of reactive oxygen species (ROS) in organic transformations is of great interest due to their superior oxidative abilities under mild conditions. Recently, metal-organic frameworks (MOFs) have been developed as photosensitizers to transfer molecular oxygen to ROS for photochemical synthesis. However, visible-light responsive MOFs for oxygen activation remains scarce. Now we design and synthesize two porous MOFs, namely, PCN-822(M) (M = Zr, Hf), which are constructed by a 4,5,9,10-(K-region) substituted pyrene-based ligand, 4,4',4'',4'''-((2,7-di-tert-butylpyrene-4,5,9,10-tetrayl)tetrakis(ethyne-2,1-diyl))-tetrabenzoate (BPETB4-). With the extended π-conjugated pyrene moieties isolated on the struts, the derived MOFs are highly responsive to visible light, possessing a broad-band adsorption from 225-650 nm. As a result, the MOFs can be applied as efficient ROS generators under visible-light irradiation, and the hafnium-based MOF, PCN-822(Hf), can promote the oxidation of amines to imines by activating molecular oxygen via synergistic photo-induced energy and charge transfer.
Collapse
Affiliation(s)
- Yingmu Zhang
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , USA .
| | - Jiandong Pang
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , USA .
| | - Jialuo Li
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , USA .
| | - Xinyu Yang
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , USA .
| | - Mingbao Feng
- Department of Environmental and Occupational Health , School of Public Health , Texas A&M University , College Station , TX 77843 , United State
| | - Peiyu Cai
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , USA .
| | - Hong-Cai Zhou
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , USA .
- Department of Materials Science and Engineering , Texas A&M University , College Station , Texas 77842 , United State
| |
Collapse
|
199
|
Wang J, Zhou Q, Shen Y, Chen X, Liu S, Zhang Y. Carbon Nitride Co-catalyst Activation Using N-Doped Carbon with Enhanced Photocatalytic H 2 Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12366-12373. [PMID: 31464446 DOI: 10.1021/acs.langmuir.9b01796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Photocatalytic water splitting holds huge potential to meet the current challenges of energy and environments. Among them, polymeric carbon nitride (CN) has drawn much attention as a promising metal-free photocatalyst. As it is known, a number of promising co-catalysts have been developed to improve catalytic reactions, Pt nanoparticles is still among the best co-catalysts for CN in photocatalytic H2 evolution, due to the suitable Fermi level to transfer excited electrons and the low overpotential for H2 reduction. Herein, we report the interface engineering of urea-derived bulk CN and Pt co-catalyst by using a small portion of N-doped carbon (N-C) as a transition layer with a boosted photocatalytic activity up to 7 times. It was revealed that the activation energy of the Pt co-catalyst for water reduction was lowered in the presence of N-C, and the intimate interaction between CN and N-C, ascribing to the similar elemental composition and crystal structure, promoted the efficient separation and migration of charge carriers. This study may open a new avenue to develop CN-based photocatalysts for solar fuel conversion with even higher activity by photocatalyst/co-catalyst interface engineering.
Collapse
Affiliation(s)
- Jianhai Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| |
Collapse
|
200
|
Shi Z, Li J, Han Q, Shi X, Si C, Niu G, Ma P, Li M. Polyoxometalate-Supported Aminocatalyst for the Photocatalytic Direct Synthesis of Imines from Alkenes and Amines. Inorg Chem 2019; 58:12529-12533. [PMID: 31512474 DOI: 10.1021/acs.inorgchem.9b02056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing efficient photocatalysts for direct oxidative coupling of alkenes and amines with O2 under mild conditions is very significant. Herein, ZnW-PYI is well-designed by assembling a [PZnW11O39(H2O)]5- photooxidation catalyst and chiral aminocatalyst pyrrolidine-2-ylimidazole (PYI) via a coordination model. ZnW-PYI efficiently catalyzed the synthesis of imines from alkenes and amines using O2 as the oxidant through nucleophilic catalysis by employing pyrrolidine as an organocatalyst. Combining a polyoxometalate and PYI within one single framework is an effective approach not only for stabilization and heterogenization of the redox-active catalyst and aminocatalyst but also for realization of compatibility between the reaction intermediates and synergy of multiple catalytic cycles.
Collapse
Affiliation(s)
- Zhuolin Shi
- Key Laboratory of Polyoxometalate Chemistry of Henan Province, School of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , P. R. China
| | - Jie Li
- Key Laboratory of Polyoxometalate Chemistry of Henan Province, School of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , P. R. China
| | - Qiuxia Han
- Key Laboratory of Polyoxometalate Chemistry of Henan Province, School of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , P. R. China
| | - Xiaoyun Shi
- Key Laboratory of Polyoxometalate Chemistry of Henan Province, School of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , P. R. China
| | - Chen Si
- Key Laboratory of Polyoxometalate Chemistry of Henan Province, School of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , P. R. China
| | - Guiqin Niu
- Key Laboratory of Polyoxometalate Chemistry of Henan Province, School of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , P. R. China
| | - Pengtao Ma
- Key Laboratory of Polyoxometalate Chemistry of Henan Province, School of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , P. R. China
| | - Mingxue Li
- Key Laboratory of Polyoxometalate Chemistry of Henan Province, School of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , P. R. China
| |
Collapse
|