151
|
Abstract
The past decade has seen an explosion of articles in scientific journals involving non-genetic influences on phenotype through modulation of gene function without changes in gene sequence. The excitement in modern molecular biology surrounding the impact exerted by the environment on development of the phenotype is focused largely on mechanism and has not incorporated questions asked (and answers provided) by early philosophers, biologists, and psychologists. As such, this emergence of epigenetic studies is somewhat "old wine in new bottles" and represents a reformulation of the old debate of preformationism versus epigenesis-one resolved in the 1800s. Indeed, this tendency to always look forward, with minimal concern or regard of what has gone before, has led to the present situation in which "true" epigenetic studies are believed to consist of one of two schools. The first is primarily medically based and views epigenetic mechanisms as pathways for disease (e.g., "the epigenetics of cancer"). The second is primarily from the basic sciences, particularly molecular genetics, and regards epigenetics as a potentially important mechanism for organisms exposed to variable environments across multiple generations. There is, however, a third, and separate, school based on the historical literature and debates and regards epigenetics as more of a perspective than a phenomenon. Against this backdrop, comparative integrative biologists are particularly well-suited to understand epigenetic phenomena as a way for organisms to respond rapidly with modified phenotypes (relative to natural selection) to changes in the environment. Using evolutionary principles, it is also possible to interpret "sunsetting" of modified phenotypes when environmental conditions result in a disappearance of the epigenetic modification of gene regulation. Comparative integrative biologists also recognize epigenetics as a potentially confounding source of variation in their data. Epigenetic modification of phenotype (molecular, cellular, morphological, physiological, and behavioral) can be highly variable depending upon ancestral environmental exposure and can contribute to apparent "random" noise in collected datasets. Thus, future research should go beyond the study of epigenetic mechanisms at the level of the gene and devote additional investigation of epigenetic outcomes at the level of both the individual organism and how it affects the evolution of populations. This review is the first of seven in this special issue of Integrative and Comparative Biology that addresses in detail these and other key topics in the study of epigenetics.
Collapse
Affiliation(s)
- Warren W Burggren
- *Developmental and Integrative Biology, Department of Biology, University of North Texas, Denton, TX 76203, USA; Section of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - David Crews
- *Developmental and Integrative Biology, Department of Biology, University of North Texas, Denton, TX 76203, USA; Section of Integrative Biology, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
152
|
Brox S, Ritter AP, Küster E, Reemtsma T. A quantitative HPLC–MS/MS method for studying internal concentrations and toxicokinetics of 34 polar analytes in zebrafish (Danio rerio) embryos. Anal Bioanal Chem 2014; 406:4831-40. [DOI: 10.1007/s00216-014-7929-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/16/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|
153
|
A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 2014; 357:225-43. [PMID: 24842048 DOI: 10.1007/s00441-014-1883-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The ion regulation mechanisms of fishes have been recently studied in zebrafish (Danio rerio), a stenohaline species. However, recent advances using this organism are not necessarily applicable to euryhaline fishes. The euryhaline species medaka (Oryzias latipes), which, like zebrafish, is genetically well categorized and amenable to molecular manipulation, was proposed as an alternative model for studying osmoregulation during acclimation to different salinities. To establish its suitability as an alternative, the present study was conducted to (1) identify different types of ionocytes in the embryonic skin and (2) analyze gene expressions of the transporters during seawater acclimation. Double/triple in situ hybridization and/or immunocytochemistry revealed that freshwater (FW) medaka contain three types of ionocyte: (1) Na(+)/H(+) exchanger 3 (NHE3) cells with apical NHE3 and basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC), Na(+)-K(+)-ATPase (NKA) and anion exchanger (AE); (2) Na(+)-Cl(-) cotransporter (NCC) cells with apical NCC and basolateral H(+)-ATPase; and (3) epithelial Ca(2+) channel (ECaC) cells [presumed accessory (AC) cells] with apical ECaC. On the other hand, seawater (SW) medaka has a single predominant ionocyte type, which possesses apical cystic fibrosis transmembrane conductance regulator (CFTR) and NHE3 and basolateral NKCC and NKA and is accompanied by smaller AC cells that express lower levels of basolateral NKA. Reciprocal gene expressions of decreased NHE3, AE, NCC and ECaC and increased CFTR and NKCC in medaka gills during SW were revealed by quantative PCR analysis.
Collapse
|
154
|
Chen JB, Gao HW, Zhang YL, Zhang Y, Zhou XF, Li CQ, Gao HP. Developmental toxicity of diclofenac and elucidation of gene regulation in zebrafish (Danio rerio). Sci Rep 2014; 4:4841. [PMID: 24788080 PMCID: PMC4007093 DOI: 10.1038/srep04841] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/08/2014] [Indexed: 01/08/2023] Open
Abstract
Environmental pollution by emerging contaminants, e.g. pharmaceuticals, has become a matter of widespread concern in recent years. We investigated the membrane transport of diclofenac and its toxic effects on gene expression and the development of zebrafish embryos. The association of diclofenac with the embryos conformed to the general partition model at low concentration, the partition coefficient being 0.0033 ml per embryo. At high concentration, the interaction fitted the Freundlich model. Most of the diclofenac remained in the extracellular aqueous solution with less than 5% interacting with the embryo, about half of which was adsorbed on the membranes while the rest entered the cytoplasm. Concentrations of diclofenac over 10.13 μM were lethal to all the embryos, while 3.78 μM diclofenac was teratogenic. The development abnormalities at 4 day post treatment (dpt) include shorter body length, smaller eye, pericardial and body edema, lack of liver, intestine and circulation, muscle degeneration, and abnormal pigmentation. The portion of the diclofenac transferred into the embryo altered the expression of certain genes, e.g. down-regulation of Wnt3a and Gata4 and up-regulation of Wnt8a. The alteration of expression of such genes or the regulation of downstream genes could cause defects in the cardiovascular and nervous systems.
Collapse
Affiliation(s)
- Jia-Bin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hong-Wen Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ya-Lei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yong Zhang
- Hunter Biotechnology, Inc., Hangzhou, 311231, China
| | - Xue-Fei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chun-Qi Li
- Hunter Biotechnology, Inc., Hangzhou, 311231, China
| | - Hai-Ping Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
155
|
Ali S, Aalders J, Richardson MK. Teratological effects of a panel of sixty water-soluble toxicants on zebrafish development. Zebrafish 2014; 11:129-41. [PMID: 24650241 DOI: 10.1089/zeb.2013.0901] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The zebrafish larva is a promising whole-animal model for safety pharmacology, environmental risk assessment, and developmental toxicity. This model has been used for the high-throughput toxicity screening of various compounds. Our aim here is to identify possible phenotypic markers of teratogenicity in zebrafish embryos that could be used for the assaying compounds for reproductive toxicity. We have screened a panel of 60 water-soluble toxicants to examine their effects on zebrafish development. A total of 22,080 wild-type zebrafish larvae were raised in 250 μL defined buffer in 96-well plates at a plating density of one embryo per well. They were exposed for a 96-h period starting at 24 h post-fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for developmental toxicity assessment. A total of 9017 survivors were analyzed at 5 days post-fertilization for nine phenotypes, namely, (1) normal, (2) pericardial oedema, (3) yolk sac oedema, (4) melanophores dispersed, (5) bent tail tip, (6) bent body axis, (7) abnormal Meckel's cartilage, (8) abnormal branchial arches, and (9) uninflated swim bladder. For each toxicant, the EC50 (concentration required to produce one or more of these abnormalities in 50% of embryos) was also calculated. For the majority of toxicants (55/60) there was, at the population level, a statistically significant, concentration-dependent increase in the incidence of abnormal phenotypes among survivors. The commonest abnormalities were pericardial oedema, yolk sac oedema, dispersed melanophores, and uninflated swim bladder. It is possible therefore that these could prove to be general indicators of reproductive toxicity in the zebrafish embryo assay.
Collapse
Affiliation(s)
- Shaukat Ali
- 1 Sylvius Laboratory, Institute of Biology, Leiden University , Leiden, The Netherlands
| | | | | |
Collapse
|
156
|
Squiban B, Frazer JK. Danio rerio: Small Fish Making a Big Splash in Leukemia. CURRENT PATHOBIOLOGY REPORTS 2014; 2:61-73. [PMID: 26269780 DOI: 10.1007/s40139-014-0041-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zebrafish (Danio rerio) are widely used for developmental biology studies. In the past decade, D. rerio have become an important oncology model as well. Leukemia is one type of cancer where zebrafish are particularly valuable. As vertebrates, fish have great anatomic and biologic similarity to humans, including their hematopoietic and immune systems. As an experimental platform, D. rerio offer many advantages that mammalian models lack. These include their ease of genetic manipulation, capacity for imaging, and suitability for large-scale phenotypic and drug screens. In this review, we present examples of these strategies and others to illustrate how zebrafish have been and can be used to study leukemia. Besides appraising the techniques researchers apply and introducing the leukemia models they have created, we also highlight recent and exciting discoveries made using D. rerio with an eye to where the field is likely headed.
Collapse
Affiliation(s)
- Barbara Squiban
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 229, Oklahoma City, OK 73104, USA
| | - J Kimble Frazer
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 224, Oklahoma City, OK 73104, USA
| |
Collapse
|
157
|
Wong D, von Keyserlingk MAG, Richards JG, Weary DM. Conditioned place avoidance of zebrafish (Danio rerio) to three chemicals used for euthanasia and anaesthesia. PLoS One 2014; 9:e88030. [PMID: 24505365 PMCID: PMC3913715 DOI: 10.1371/journal.pone.0088030] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/02/2014] [Indexed: 11/18/2022] Open
Abstract
Zebrafish are becoming one of the most used vertebrates in developmental and biomedical research. Fish are commonly killed at the end of an experiment with an overdose of tricaine methanesulfonate (TMS, also known as MS-222), but to date little research has assessed if exposure to this or other agents qualifies as euthanasia (i.e. a "good death"). Alternative agents include metomidate hydrochloride and clove oil. We use a conditioned place avoidance paradigm to compare aversion to TMS, clove oil, and metomidate hydrochloride. Zebrafish (n = 51) were exposed to the different anaesthetics in the initially preferred side of a light/dark box. After exposure to TMS zebrafish spent less time in their previously preferred side; aversion was less pronounced following exposure to metomidate hydrochloride and clove oil. Nine of 17 fish exposed to TMS chose not to re-enter the previously preferred side, versus 2 of 18 and 3 of 16 refusals for metomidate hydrochloride and clove oil, respectively. We conclude that metomidate hydrochloride and clove oil are less aversive than TMS and that these agents be used as humane alternatives to TMS for killing zebrafish.
Collapse
Affiliation(s)
- Devina Wong
- Animal Welfare Program, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | | | - Jeffrey G. Richards
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel M. Weary
- Animal Welfare Program, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
158
|
Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol Teratol 2014; 42:35-42. [PMID: 24503215 DOI: 10.1016/j.ntt.2014.01.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 01/22/2014] [Accepted: 01/26/2014] [Indexed: 11/20/2022]
Abstract
The zebrafish is increasingly used as a vertebrate animal model for in vivo drug discovery and for assessing chemical toxicity and safety. Numerous studies have confirmed that zebrafish and mammals are similar in their physiology, development, metabolism and pathways, and that zebrafish responses to toxic substances are highly predictive of mammalian responses. Developmental and reproductive toxicity assessments are an important part of new drug safety profiling. A significant number of drug candidates have failed in preclinical tests due to their adverse effect on development and reproductivity. Compared to conventional mammal testing, zebrafish testing for assessing developmental and reproductive toxicity offers several compelling experimental advantages, including transparency of embryo and larva, higher throughput, shorter test period, lower cost, smaller amount of compound required, easier manipulation and direct compound delivery. Toxicity and safety assessments using zebrafish have also been accepted by the FDA and EMEA for investigative new drug (IND) approval.
Collapse
|
159
|
Pickart MA, Klee EW. Zebrafish approaches enhance the translational research tackle box. Transl Res 2014; 163:65-78. [PMID: 24269745 DOI: 10.1016/j.trsl.2013.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023]
Abstract
During the past few decades, zebrafish (Danio rerio) have been a workhorse for developmental biology and genetics. Concurrently, zebrafish have proved highly accessible and effective for translational research by providing a vertebrate animal model useful for gene discovery, disease modeling, chemical genetic screening, and other medically relevant studies. Key resources such as an annotated and complete genome sequence, and diverse tools for genetic manipulation continue to spur broad use of zebrafish. Thus, the purpose of this introductory review is to provide a window into the unique characteristics and diverse uses of zebrafish and to highlight in particular the increasing relevance of zebrafish as a translational animal model. This is accomplished by reviewing broad considerations of anatomic and physiological conservation, approaches for disease modeling and creation, general laboratory methods, genetic tools, genome conservation, and diverse opportunities for functional validation. Additional commentary throughout the review also guides the reader to the 4 new reviews found elsewhere in this special issue that showcase the many unique ways the zebrafish is improving understanding of renal regeneration, mitochondrial disease, dyslipidemia, and aging, for example. With many other possible approaches and a rapidly increasing number of medically relevant reports, zebrafish approaches enhance significantly the tools available for translational research and are actively improving the understanding of human disease.
Collapse
Affiliation(s)
| | - Eric W Klee
- Mayo Clinic, College of Medicine, Rochester, Minn
| |
Collapse
|
160
|
Patten AR, Fontaine CJ, Christie BR. A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors. Front Pediatr 2014; 2:93. [PMID: 25232537 PMCID: PMC4153370 DOI: 10.3389/fped.2014.00093] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Prenatal ethanol exposure (PNEE) has been linked to widespread impairments in brain structure and function. There are a number of animal models that are used to study the structural and functional deficits caused by PNEE, including, but not limited to invertebrates, fish, rodents, and non-human primates. Animal models enable a researcher to control important variables such as the route of ethanol administration, as well as the timing, frequency and amount of ethanol exposure. Each animal model and system of exposure has its place, depending on the research question being undertaken. In this review, we will examine the different routes of ethanol administration and the various animal models of fetal alcohol spectrum disorders (FASD) that are commonly used in research, emphasizing their strengths and limitations. We will also present an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on behavior across the lifespan, focusing on learning and memory, olfaction, social, executive, and motor functions. Special emphasis will be placed where the various animal models best represent deficits observed in the human condition and offer a viable test bed to examine potential therapeutics for human beings with FASD.
Collapse
Affiliation(s)
- Anna R Patten
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada
| | | | - Brian R Christie
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada ; Department of Biology, University of Victoria , Victoria, BC , Canada ; Program in Neuroscience, The Brain Research Centre, University of British Columbia , Vancouver, BC , Canada ; Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
161
|
Rocha F, Dias J, Engrola S, Gavaia P, Geurden I, Dinis MT, Panserat S. Glucose overload in yolk has little effect on the long-term modulation of carbohydrate metabolic genes in zebrafish (Danio rerio). ACTA ACUST UNITED AC 2013; 217:1139-49. [PMID: 24363414 DOI: 10.1242/jeb.095463] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Some fish show a low metabolic ability to use dietary carbohydrates. The use of early nutritional stimuli to program metabolic pathways in fish is ill defined. Therefore, studies were undertaken with zebrafish to assess the effect of high glucose levels during the embryonic stage as a lifelong modulator of genes involved in carbohydrate metabolism. Genes related to carbohydrate metabolism were expressed at low levels at 0.2 and 1 day post-fertilization (dpf). However, from 4 dpf onwards there was a significant increase on expression of all genes, suggesting that all analysed pathways were active. By microinjection, we successfully enriched zebrafish egg yolk with glucose (a 43-fold increase of basal levels). Acute effects of glucose injection on gene expression were assessed in larvae up to 10 dpf, and the programming concept was evaluated in juveniles (41 dpf) challenged with a hyperglucidic diet. At 4 dpf, larvae from glucose-enriched eggs showed a downregulation of several genes related to glycolysis, glycogenolysis, lipogenesis and carbohydrate digestion in comparison with control (saline-injected) embryos. This inhibitory regulation was suppressed after 10 dpf. At the juvenile stage, and upon switching from a low to a high digestible carbohydrate diet, early glucose enrichment had no significant effect on most analysed genes. However, these same fish showed altered expression of the genes for cytosolic phosphoenolpyruvate carboxykinase, sodium-dependent glucose cotransporter 1 and glycogen synthase, suggesting changes to the glucose storage capacity in muscle and glucose production and transport in viscera. Overall, supplementation of egg yolk with high glucose levels had little effect on the long-term modulation of carbohydrate metabolic genes in zebrafish.
Collapse
Affiliation(s)
- Filipa Rocha
- CCMAR/CIMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
162
|
Lee KJ, Browning LM, Nallathamby PD, Osgood CJ, Xu XHN. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish. NANOSCALE 2013; 5:11625-36. [PMID: 24056877 PMCID: PMC3833826 DOI: 10.1039/c3nr03210h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.
Collapse
Affiliation(s)
- Kerry J Lee
- Department of Chemistry, Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | | | | | | | | |
Collapse
|
163
|
Safety pharmacology — Current and emerging concepts. Toxicol Appl Pharmacol 2013; 273:229-41. [DOI: 10.1016/j.taap.2013.04.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/31/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022]
|
164
|
Lin T, Chen Y, Chen W. Impact of toxicological properties of sulfonamides on the growth of zebrafish embryos in the water. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:1068-1076. [PMID: 24141258 DOI: 10.1016/j.etap.2013.09.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/15/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
Extensive use of pharmaceutical compounds may result in contamination of water bodies lying adjacent to areas where there is a high level of human activity. To evaluate potential risks to fish embryos, three sulfonamides were investigated, by means of an extended zebrafish (Danio rerio) toxicity test. The bio-toxicity of antibacterial sulfonamides, at low concentrations, was investigated by observing lethal and sub-lethal effects on embryos and larvae. Results indicated that sulfonamides caused obvious toxic effects on spontaneous movements, heartbeats and hatching of t embryos, and also resulted in malformations in embryos and larvae. A significant toxicity effect was observed in zebrafish embryos and larvae that had been exposed to a low concentration of sulfadimidine (0.001 mg/L), and a significant difference was noted between the exposed and the blank control groups. Exposure to a low concentration of sulfonamide resulted in characteristic malformations, including pericardial edema, yolk sac edema, hemoglutinations, tail deformation and swim bladder defects.
Collapse
Affiliation(s)
- Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | | | | |
Collapse
|
165
|
Palmblad M, Henkel CV, Dirks RP, Meijer AH, Deelder AM, Spaink HP. Parallel deep transcriptome and proteome analysis of zebrafish larvae. BMC Res Notes 2013; 6:428. [PMID: 24156766 PMCID: PMC4016144 DOI: 10.1186/1756-0500-6-428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 10/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background Sensitivity and throughput of transcriptomic and proteomic technologies have advanced tremendously in recent years. With the use of deep sequencing of RNA samples (RNA-seq) and mass spectrometry technology for protein identification and quantitation, it is now feasible to compare gene and protein expression on a massive scale and for any organism for which genomic data is available. Although these technologies are currently applied to many research questions in various model systems ranging from cell cultures to the entire organism level, there are few comparative studies of these technologies in the same system, let alone on the same samples. Here we present a comparison between gene and protein expression in embryos of zebrafish, which is an upcoming model in disease studies. Results We compared Agilent custom made expression microarrays with Illumina deep sequencing for RNA analysis, showing as expected a high degree of correlation of expression of a common set of 18,230 genes. Gene expression was also found to correlate with the abundance of 963 distinct proteins, with several categories of genes as exceptions. These exceptions include ribosomal proteins, histones and vitellogenins, for which biological and technical explanations are discussed. Conclusions By comparing state of the art transcriptomic and proteomic technologies on samples derived from the same group of organisms we have for the first time benchmarked the differences in these technologies with regard to sensitivity and bias towards detection of particular gene categories in zebrafish. Our datasets submitted to public repositories are a good starting point for researchers interested in disease progression in zebrafish at a stage of development highly suited for high throughput screening technologies.
Collapse
Affiliation(s)
- Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Zone L04-Q, P,O, Box 9600, 2300 RC, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
166
|
Browning LM, Lee KJ, Nallathamby PD, Xu XHN. Silver nanoparticles incite size- and dose-dependent developmental phenotypes and nanotoxicity in zebrafish embryos. Chem Res Toxicol 2013; 26:1503-13. [PMID: 24024906 DOI: 10.1021/tx400228p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomaterials possess distinctive physicochemical properties and promise a wide range of applications, from advanced technology to leading-edge medicine. However, their effects on living organisms remain largely unknown. Here we report that the purified silver nanoparticles (Ag NPs) (97 ± 13 nm) incite specific developmental stage embryonic phenotypes and nanotoxicity in a dose-dependent manner, upon acute exposure of given stage embryos to the NPs (0-24 pM) for only 2 h. The critical concentrations of the NPs that cause 50% of embryos to develop normally for cleavage, early gastrula, early segmentation, late segmentation, and hatching stage zebrafish embryos are 3.5, 4, 6, 6, and 8 pM, respectively, showing that the earlier developmental stage embryos are much more sensitive to the effects of the NPs than the later stage embryos. Interestingly, distinctive phenotypes (head abnormality and no eyes) are observed only in cleavage and early gastrula stage embryos treated with the NPs, showing the stage-specific effects of the NPs. By comparing these Ag NPs with smaller Ag NPs (13.1 ± 2.5 nm), we found that the embryonic phenotypes strikingly depend upon the sizes of Ag NPs and embryonic developmental stages. These notable findings suggest that the Ag NPs are unlike any conventional chemicals or ions. They can potentially enable target-specific study and therapy for early embryonic development in size-, stage-, dose-, and exposure duration-dependent manners.
Collapse
Affiliation(s)
- Lauren M Browning
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | | | | | | |
Collapse
|
167
|
Sarmah S, Muralidharan P, Curtis CL, McClintick JN, Buente BB, Holdgrafer DJ, Ogbeifun O, Olorungbounmi OC, Patino L, Lucas R, Gilbert S, Groninger ES, Arciero J, Edenberg HJ, Marrs JA. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects. Biol Open 2013; 2:1013-21. [PMID: 24167711 PMCID: PMC3798184 DOI: 10.1242/bio.20135546] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/07/2013] [Indexed: 11/20/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell), prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a), which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue) microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis , 723 West Michigan Street, Indianapolis, IN 46202-5130 , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Cuevas E, Trickler WJ, Guo X, Ali SF, Paule MG, Kanungo J. Acetyl L-carnitine protects motor neurons and Rohon-Beard sensory neurons against ketamine-induced neurotoxicity in zebrafish embryos. Neurotoxicol Teratol 2013; 39:69-76. [PMID: 23896048 DOI: 10.1016/j.ntt.2013.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Ketamine, a non-competitive antagonist of N-methyl-D-aspartate (NMDA) type glutamate receptors is commonly used as a pediatric anesthetic. Multiple studies have shown ketamine to be neurotoxic, particularly when administered during the brain growth spurt. Previously, we have shown that ketamine is detrimental to motor neuron development in the zebrafish embryos. Here, using both wild type (WT) and transgenic (hb9:GFP) zebrafish embryos, we demonstrate that ketamine is neurotoxic to both motor and sensory neurons. Drug absorption studies showed that in the WT embryos, ketamine accumulation was approximately 0.4% of the original dose added to the exposure medium. The transgenic embryos express green fluorescent protein (GFP) localized in the motor neurons making them ideal for evaluating motor neuron development and toxicities in vivo. The hb9:GFP zebrafish embryos (28 h post fertilization) treated with 2 mM ketamine for 20 h demonstrated significant reductions in spinal motor neuron numbers, while co-treatment with acetyl L-carnitine proved to be neuroprotective. In whole mount immunohistochemical studies using WT embryos, a similar effect was observed for the primary sensory neurons. In the ketamine-treated WT embryos, the number of primary sensory Rohon-Beard (RB) neurons was significantly reduced compared to that in controls. However, acetyl L-carnitine co-treatment prevented ketamine-induced adverse effects on the RB neurons. These results suggest that acetyl L-carnitine protects both motor and sensory neurons from ketamine-induced neurotoxicity.
Collapse
Affiliation(s)
- Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | |
Collapse
|
169
|
Péan S, Daouk T, Vignet C, Lyphout L, Leguay D, Loizeau V, Bégout ML, Cousin X. Long-term dietary-exposure to non-coplanar PCBs induces behavioral disruptions in adult zebrafish and their offspring. Neurotoxicol Teratol 2013; 39:45-56. [PMID: 23851001 DOI: 10.1016/j.ntt.2013.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
The use of polychlorinated biphenyls (PCBs) has been banned for several decades. PCBs have a long biological half-life and high liposolubility which leads to their bioaccumulation and biomagnification through food chains over a wide range of trophic levels. Exposure can lead to changes in animal physiology and behavior and has been demonstrated in both experimental and field analyses. There are also potential risks to high trophic level predators, including humans. A maternal transfer has been demonstrated in fish as PCBs bind to lipids in eggs. In this study, behavioral traits (exploration and free swimming, with or without challenges) of contaminated zebrafish (Danio rerio) adults and their offspring (both as five-day-old larvae and as two-month-old fish reared under standard conditions) were measured using video-tracking. Long-term dietary exposure to a mixture of non-coplanar PCBs was used to mimic known environmental contamination levels and congener composition. Eight-week-old fish were exposed for eight months at 26-28 °C. Those exposed to an intermediate dose (equivalent to that found in the Loire Estuary, ∑(CB)=515 ng g⁻¹ dry weight in food) displayed behavioral disruption in exploration capacities. Fish exposed to the highest dose (equivalent to that found in the Seine Estuary, ∑(CB)=2302 ng g⁻¹ dry weight in food) displayed an increased swimming activity at the end of the night. In offspring, larval activity was increased and two-month-old fish occupied the bottom section of the tank less often. These findings call for more long-term experiments using the zebrafish model; the mechanisms underlying behavioral disruptions need to be understood due to their implications for both human health and their ecological relevance in terms of individual fitness and survival.
Collapse
Affiliation(s)
- Samuel Péan
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, BP 7, 17137 L'Houmeau, France
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Gallardo VE, Behra M. Fluorescent activated cell sorting (FACS) combined with gene expression microarrays for transcription enrichment profiling of zebrafish lateral line cells. Methods 2013; 62:226-31. [PMID: 23791746 DOI: 10.1016/j.ymeth.2013.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022] Open
Abstract
Transgenic lines carrying fluorescent reporter genes like GFP have been of great value in the elucidation of developmental features and physiological processes in various animal models, including zebrafish. The lateral line (LL), which is a fish specific superficial sensory organ, is an emerging organ model for studying complex cellular processes in the context of the whole living animal. Cell migration, mechanosensory cell development/differentiation and regeneration are some examples. This sensory system is made of superficial and sparse small sensory patches called neuromasts, with less than 50 cells in any given patch. The paucity of cells is a real problem in any effort to characterize those cells at the transcriptional level. We describe here a method which we applied to efficiently separate subpopulation of cells of the LL, using two distinct stable transgenic zebrafish lines, Tg(cldnb:gfp) and Tg(tnks1bp1:EGFP). In both cases, the GFP positive (GFP+) cells were separated from the remainder of the animal by using a Fluorescent Activated Cell Sorter (FACS). The transcripts of the GFP+ cells were subsequently analyzed on gene expression microarrays. The combination of FACS and microarrays is an efficient method to establish a transcriptional signature for discrete cell populations which would otherwise be masked in whole animal preparation.
Collapse
Affiliation(s)
- Viviana E Gallardo
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
171
|
Spaink HP, Cui C, Wiweger MI, Jansen HJ, Veneman WJ, Marín-Juez R, de Sonneville J, Ordas A, Torraca V, van der Ent W, Leenders WP, Meijer AH, Snaar-Jagalska BE, Dirks RP. Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 2013; 62:246-54. [PMID: 23769806 DOI: 10.1016/j.ymeth.2013.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines.
Collapse
Affiliation(s)
- Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Mishra S, Guan J, Plovie E, Seldin DC, Connors LH, Merlini G, Falk RH, MacRae CA, Liao R. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am J Physiol Heart Circ Physiol 2013; 305:H95-103. [PMID: 23624626 DOI: 10.1152/ajpheart.00186.2013] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shikha Mishra
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Trede NS, Heaton W, Ridges S, Sofla H, Cusick M, Bearss D, Jones D, Fujinami RS. Discovery of Biologically Active Oncologic and Immunologic Small Molecule Therapies using Zebrafish: Overview and Example of Modulation of T Cell Activation. ACTA ACUST UNITED AC 2013; Chapter 14:Unit14.24. [DOI: 10.1002/0471141755.ph1424s60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nikolaus S. Trede
- Department of Oncological Sciences, Huntsman Cancer Institute Salt Lake City Utah
- Department of Pediatrics, University of Utah Salt Lake City Utah
| | - William Heaton
- Department of Oncological Sciences, Huntsman Cancer Institute Salt Lake City Utah
| | - Suzanne Ridges
- Department of Oncological Sciences, Huntsman Cancer Institute Salt Lake City Utah
| | - Hossein Sofla
- Department of Oncological Sciences, Huntsman Cancer Institute Salt Lake City Utah
| | - Matthew Cusick
- Department of Pathology, University of Utah Salt Lake City Utah
| | - David Bearss
- Department of Oncological Sciences, Huntsman Cancer Institute Salt Lake City Utah
| | - David Jones
- Department of Oncological Sciences, Huntsman Cancer Institute Salt Lake City Utah
| | | |
Collapse
|
174
|
Huang SH, Huang KS, Yu CH, Gong HY. Metabolic profile analysis of a single developing zebrafish embryo via monitoring of oxygen consumption rates within a microfluidic device. BIOMICROFLUIDICS 2013; 7:64107. [PMID: 24396541 PMCID: PMC3855040 DOI: 10.1063/1.4833256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/11/2013] [Indexed: 05/02/2023]
Abstract
A combination of a microfluidic device with a light modulation system was developed to detect the oxygen consumption rate (OCR) of a single developing zebrafish embryo via phase-based phosphorescence lifetime detection. The microfluidic device combines two components: an array of glass microwells containing Pt(II) octaethylporphyrin as an oxygen-sensitive luminescent layer and a microfluidic module with pneumatically actuated glass lids above the microwells to controllably seal the microwells of interest. The total basal respiration (OCR, in pmol O2/min/embryo) of a single developing zebrafish embryo inside a sealed microwell has been successfully measured from the blastula stage (3 h post-fertilization, 3 hpf) through the hatching stage (48 hpf). The total basal respiration increased in a linear and reproducible fashion with embryonic age. Sequentially adding pharmacological inhibitors of bioenergetic pathways allows us to perform respiratory measurements of a single zebrafish embryo at key developmental stages and thus monitor changes in mitochondrial function in vivo that are coordinated with embryonic development. We have successfully measured the metabolic profiles of a single developing zebrafish embryo from 3 hpf to 48 hpf inside a microfluidic device. The total basal respiration is partitioned into the non-mitochondrial respiration, mitochondrial respiration, respiration due to adenosine triphosphate (ATP) turnover, and respiration due to proton leak. The changes in these respirations are correlated with zebrafish embryonic development stages. Our proposed platform provides the potential for studying bioenergetic metabolism in a developing organism and for a wide range of biomedical applications that relate mitochondrial physiology and disease.
Collapse
Affiliation(s)
- Shih-Hao Huang
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan ; Center for Marine Mechatronic Systems (CMMS), Center of Excellence for the Oceans (CEO), National Taiwan Ocean University, Keelung 202-24, Taiwan
| | - Kuo-Sheng Huang
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan
| | - Chu-Hung Yu
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan
| | - Hong-Yi Gong
- Center for Marine Mechatronic Systems (CMMS), Center of Excellence for the Oceans (CEO), National Taiwan Ocean University, Keelung 202-24, Taiwan ; Department of Aquaculture, National Taiwan Ocean University, Keelung 202-24, Taiwan
| |
Collapse
|
175
|
Shimoda H, Isogai S. Immunohistochemical demonstration of lymphatic vessels in adult zebrafish. Acta Histochem Cytochem 2012; 45:335-41. [PMID: 23378677 PMCID: PMC3554784 DOI: 10.1267/ahc.12027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/04/2012] [Indexed: 11/22/2022] Open
Abstract
Morphological profiles of lymphatic vessels in adult zebrafish trunk and ovary were studied by immunohistochemistry and electron microscopy. The present immunohistochemistry for Prox1 was successful in demonstrating lymphatic vessels in zebrafish. The zebrafish trunk revealed two types of bilateral longitudinal lymphatic trunks draining lymph centripetally along dorsal aorta and posterior cardinal veins. Large honeycomb lymphatic sinus was further shown around common cardinal veins. In the zebrafish ovary, the lymphatic vessels, comprising endothelial cells only, encompassed arterioles in their lumen. This peculiar structure appeared to be conserved in vertebrates including mammals and might serve for control of blood temperature and tissue homeostasis. The present study is first to delineate lymphatic vessels in adult zebrafish by immunohistochemistry. Our immunohistochemical results showed usefulness of immunostaining for Prox1 not only for demonstration of lymphatic vessels in zebrafish, but also for examination of their function and dynamics in pathophysiological condition.
Collapse
Affiliation(s)
- Hiroshi Shimoda
- Department of Anatomical Science, Graduate School of Medicine, Hirosaki University
- Department of Human Anatomy, Faculty of Medicine, Oita University
| | - Sumio Isogai
- Department of Anatomy, School of Medicine, Iwate Medical University
| |
Collapse
|
176
|
Sloman KA, McNeil PL. Using physiology and behaviour to understand the responses of fish early life stages to toxicants. JOURNAL OF FISH BIOLOGY 2012; 81:2175-2198. [PMID: 23252733 DOI: 10.1111/j.1095-8649.2012.03435.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of early life stages of fishes (embryos and larvae) in toxicity testing has been in existence for a long time, generally utilizing endpoints such as morphological defects and mortality. Behavioural endpoints, however, may represent a more insightful evaluation of the ecological effects of toxicants. Indeed, recent years have seen a considerable increase in the use of behavioural measurements in early life stages reflecting a substantial rise in zebrafish Danio rerio early life-stage toxicity testing and the development of automated behavioural monitoring systems. Current behavioural endpoints identified for early life stages in response to toxicant exposure include spontaneous activity, predator avoidance, capture of live food, shoaling ability and interaction with other individuals. Less frequently used endpoints include measurement of anxiogenic behaviours and cognitive ability, both of which are suggested here as future indicators of toxicant disruption. For many simple behavioural endpoints, there is still a need to link behavioural effects with ecological relevance; currently, only a limited number of studies have addressed this issue. Understanding the physiological mechanisms that underlie toxicant effects on behaviour so early in life has received far less attention, perhaps because physiological measurements can be difficult to carry out on individuals of this size. The most commonly established physiological links with behavioural disruption in early life stages are similar to those seen in juveniles and adults including sensory deprivation (olfaction, lateral line and vision), altered neurogenesis and neurotransmitter concentrations. This review highlights the importance of understanding the integrated behavioural and physiological response of early life stages to toxicants and identifies knowledge gaps which present exciting areas for future research.
Collapse
Affiliation(s)
- K A Sloman
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley Campus, Paisley, Scotland PA1 2BE, UK.
| | | |
Collapse
|
177
|
Similarities and differences in the biogenesis, processing and lysosomal targeting between zebrafish and human pro-Cathepsin D: functional implications. Int J Biochem Cell Biol 2012; 45:273-82. [PMID: 23107604 DOI: 10.1016/j.biocel.2012.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/27/2012] [Accepted: 10/20/2012] [Indexed: 12/11/2022]
Abstract
The lysosomal protease Cathepsin D (CD) plays a role in neurodegenerative diseases, cancer, and embryo-fetus abnormalities. It is therefore of interest to know how this protein is synthesized in animal species used for modeling human diseases. Zebrafish (Danio rerio) is emerging as a valuable 'in vivo' vertebrate model for several human diseases. We have characterized the biogenetic pathways of zebrafish and human CD transgenically expressed in both human SH-SY5Y cells and zebrafish PAC2 cells. Differently from human CD, zebrafish CD was synthesized as a mono-glycosylated precursor (pro-CD) that was eventually processed into a single-chain mature polypeptide. In PAC2 cells, ammonium chloride and chloroquine impaired the N-glycosylation, and greatly stimulated the secretion, of pro-CD; still, a portion of un-glycosylated pro-CD reached the lysosomes and was processed to mature CD. The treatment with tunicamycin, which abrogates N-glycosylation, resulted in a similar effect. Zebrafish pro-CD was correctly processed when expressed in human cells, and its glycosylation, transport and maturation were not impaired by ammonium chloride. On the contrary, the transport and processing of human pro-CD expressed in zebrafish cells were profoundly altered: while the intermediate single-chain was not detectable, a small amount of double-chain mature CD still formed. This fact indicates that the enzyme machinery for single- to double-chain processing of mammal CD is present in zebrafish. Our data highlight the respective impact of the information imparted by the primary sequence and of the cellular transport and processing machineries in the biogenesis of lysosomal CD.
Collapse
|
178
|
Gao J, Lyon JA, Szeto DP, Chen J. In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2012; 3:2623-35. [PMID: 23082301 PMCID: PMC3470009 DOI: 10.1364/boe.3.002623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 05/15/2023]
Abstract
Digital holographic microscopy (DHM) has been applied extensively to in vitro studies of different living cells. In this paper, we present a novel application of an off-axis DHM system to in vivo study of the development of zebrafish embryos. Even with low magnification microscope objectives, the morphological structures and individual cell types inside developing zebrafish embryos can be clearly observed from reconstructed amplitude images. We further study the dynamic process of blood flow in zebrafish embryos. A calibration routine and post-processing procedures are developed to quantify physiological parameters at different developmental stages. We measure quantitatively the blood flow as well as the heart rate to study the effects of elevated D-glucose (abnormal condition) on circulatory and cardiovascular systems of zebrafish embryos. To enhance our ability to use DHM as a quantitative tool for potential high throughput screening application, the calibration and post-processing algorithms are incorporated into an automated processing software. Our results show that DHM is an excellent non-invasive imaging technique for visualizing the cellular dynamics of organogenesis of zebrafish embryos in vivo.
Collapse
Affiliation(s)
- Jian Gao
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907-1003,
USA
| | - Joseph A. Lyon
- School of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, Indiana 47907-2093,
USA
| | - Daniel P. Szeto
- Department of Natural and Mathematical Sciences, California Baptist University, 8432 Magnolia Avenue, Riverside, California 92504-3297,
USA
| | - Jun Chen
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907-1003,
USA
| |
Collapse
|
179
|
Tegelenbosch RA, Noldus LP, Richardson MK, Ahmad F. Zebrafish embryos and larvae in behavioural assays. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003020] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
180
|
Padilla S, Corum D, Padnos B, Hunter DL, Beam A, Houck KA, Sipes N, Kleinstreuer N, Knudsen T, Dix DJ, Reif DM. Zebrafish developmental screening of the ToxCast™ Phase I chemical library. Reprod Toxicol 2011; 33:174-87. [PMID: 22182468 DOI: 10.1016/j.reprotox.2011.10.018] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/28/2011] [Accepted: 10/28/2011] [Indexed: 01/07/2023]
Abstract
Zebrafish (Danio rerio) is an emerging toxicity screening model for both human health and ecology. As part of the Computational Toxicology Research Program of the U.S. EPA, the toxicity of the 309 ToxCast™ Phase I chemicals was assessed using a zebrafish screen for developmental toxicity. All exposures were by immersion from 6-8 h post fertilization (hpf) to 5 days post fertilization (dpf); nominal concentration range of 1 nM-80 μM. On 6 dpf larvae were assessed for death and overt structural defects. Results revealed that the majority (62%) of chemicals were toxic to the developing zebrafish; both toxicity incidence and potency was correlated with chemical class and hydrophobicity (logP); and inter-and intra-plate replicates showed good agreement. The zebrafish embryo screen, by providing an integrated model of the developing vertebrate, compliments the ToxCast assay portfolio and has the potential to provide information relative to overt and organismal toxicity.
Collapse
Affiliation(s)
- S Padilla
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27712, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Ali S, Champagne DL, Richardson MK. Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds. Behav Brain Res 2011; 228:272-83. [PMID: 22138507 DOI: 10.1016/j.bbr.2011.11.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/04/2011] [Accepted: 11/17/2011] [Indexed: 11/17/2022]
Abstract
The zebrafish is a powerful whole animal model which is complementary to in vitro and mammalian models. It has been shown to be applicable to the high-throughput behavioral screening of compound libraries. We have analysed 60 water-soluble toxic compounds covering a range of common drugs, toxins and chemicals, and representing various pharmacological mechanisms. Wild-type zebrafish larvae were cultured individually in defined buffer in 96 well plates. They were exposed for a 96h period starting at 24h post fertilization (hpf). A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for LC(50) determination. LC(50) values were determined at 24h intervals and behavioral testing was carried out on day 5. We used the visual motor response test, in which movement of individual larvae was analysed using automated video-tracking. For all compounds, LC(50) values were found to decrease as the embryo developed. The majority of compounds (57/60) produced an effect in both the basal (lights on) and challenge phases (lights off) of the behavioral assay. These effects were either (i) suppression of locomotor activity (monotonic concentration-response); (ii) stimulation then suppression (biphasic response); (iii) stimulation (monotonic response). We conclude that behavioral assays with zebrafish embryos could be useful for pharmaceutical efficacy and toxicity screening. The precise phenotypic outcome obtained with behavioral assay varies with compound class.
Collapse
Affiliation(s)
- Shaukat Ali
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, Leiden, The Netherlands
| | | | | |
Collapse
|