151
|
Russo M, Bardelli A. Lesion-Directed Therapies and Monitoring Tumor Evolution Using Liquid Biopsies. Cold Spring Harb Perspect Med 2017; 7:a029587. [PMID: 28003276 PMCID: PMC5287059 DOI: 10.1101/cshperspect.a029587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Precision oncology relies on targeted drugs, such as kinase inhibitors, that are presently administered based on molecular profiles obtained from surgical or bioptic tissue samples. The inherent ability of human tumors to molecularly evolve in response to drug pressures represents a daunting diagnostic challenge. Circulating free DNA (cfDNA) released from primary and metastatic lesions can be used to draw molecular maps that can be continuously updated to match each tumor's evolution. We will present evidence that liquid biopsies can effectively interrogate how targeted therapies drive lesion-specific drug-resistance mechanisms. The impact of drug-induced molecular heterogeneity on subsequent lines of treatment will also be discussed.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, University of Torino, 10060 Candiolo (TO), Italy
- Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Torino, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, 10060 Candiolo (TO), Italy
- Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Torino, Italy
| |
Collapse
|
152
|
Guenat D, Deroo O, Magnin S, Chaigneau L, Monnien F, Borg C, Mougin C, Emile JF, Prétet JL. Somatic mutational spectrum analysis in a prospective series of 104 gastrointestinal stromal tumors. Oncol Rep 2017; 37:1671-1681. [PMID: 28098915 DOI: 10.3892/or.2017.5384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/23/2016] [Indexed: 11/05/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are mesenchymal tumors distinguished by driver mutations in proto-oncogenes KIT or PDGFRA in 85-90% of cases. These mutations have been linked to the response to imatinib, a multikinase inhibitor, and have independent prognostic impact. Here, we describe the prospective study of the molecular characteristics of 104 GISTs from French adult patients analyzed routinely through the National Hospital Program of Molecular Cancer Diagnosis. All patients with GISTs diagnosed at the University Hospital of Besançon between August 2005 and October 2014 were prospectively included in the present study. KIT, PDGFRA and KRAS-codons 12 and 13 as well as BRAF codon 600 mutations were analyzed by Sanger sequencing or SNaPshot. KIT and PDGFRA mutations were detected in 71.2 and 19.2% of the cases, respectively. A total of 43 different mutations were detected of which 13 had never been described. As expected, KIT exon 9 and PDGFRA exon 18 mutations were associated with small bowel and gastric localizations respectively. No mutation was found in KRAS and BRAF. Molecular studies are critical to improve the management of GISTs. Our study enhances the current knowledge by describing 13 new mutations in KIT. A common molecular pattern in all KIT exon 11 substitutions is also described for the first time in this study but its significance remains unknown since genetic and environmental risk factors favoring the development of GISTs such as DNA repair defects and exposure to carcinogens are not currently known.
Collapse
|
153
|
Perez-Gracia JL, Sanmamed MF, Bosch A, Patiño-Garcia A, Schalper KA, Segura V, Bellmunt J, Tabernero J, Sweeney CJ, Choueiri TK, Martín M, Fusco JP, Rodriguez-Ruiz ME, Calvo A, Prior C, Paz-Ares L, Pio R, Gonzalez-Billalabeitia E, Gonzalez Hernandez A, Páez D, Piulats JM, Gurpide A, Andueza M, de Velasco G, Pazo R, Grande E, Nicolas P, Abad-Santos F, Garcia-Donas J, Castellano D, Pajares MJ, Suarez C, Colomer R, Montuenga LM, Melero I. Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treat Rev 2016; 53:79-97. [PMID: 28088073 DOI: 10.1016/j.ctrv.2016.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Abstract
The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promising candidate biomarkers have been established. This has led to the proliferation of a myriad of exploratory studies using dissimilar strategies, most of which fail to identify any promising targets and are seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are developed below their potential, due to failure to identify predictive biomarkers. While some drugs will be systematically administered to many patients who will not benefit from them, leading to unnecessary toxicities and costs, others will never reach registration due to our inability to identify the specific patient population in which they are active. Despite these drawbacks, a limited number of outstanding predictive biomarkers have been successfully identified and validated, and have changed the standard practice of oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified and, based on those experiences, proposes a methodological framework-the DESIGN guidelines-to standardize the clinical design of biomarker identification studies and to develop future research in this pivotal field.
Collapse
Affiliation(s)
- Jose Luis Perez-Gracia
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain.
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ana Bosch
- Division of Oncology and Pathology Department of Clinical Sciences, Lund University, Sweden
| | - Ana Patiño-Garcia
- Department of Pediatrics and CIMA LAB Diagnostics, University Clinic of Navarra, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Victor Segura
- IDISNA and Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Joaquim Bellmunt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Josep Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christopher J Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Miguel Martín
- Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | - Juan Pablo Fusco
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | - Maria Esperanza Rodriguez-Ruiz
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain
| | - Celia Prior
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Luis Paz-Ares
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ruben Pio
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Program in Solid Tumors and Biomarkers, CIMA, University of Navarra, Spain
| | - Enrique Gonzalez-Billalabeitia
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | | | - David Páez
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jose María Piulats
- Department of Medical Oncology, Institut Català d'Oncologia, Barcelona, Spain
| | - Alfonso Gurpide
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Mapi Andueza
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | - Guillermo de Velasco
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Roberto Pazo
- Department of Medical Oncology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Enrique Grande
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Pilar Nicolas
- Chair in Law and the Human Genome, University of the Basque Country, Bizkaia, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, University Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Jesus Garcia-Donas
- Department of Medical Oncology, HM Hospitales - Centro Integral Oncológico HM Clara Campal, Madrid, Spain
| | - Daniel Castellano
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María J Pajares
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; Program in Solid Tumors and Biomarkers, CIMA, University of Navarra, Spain
| | - Cristina Suarez
- Department of Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Colomer
- Department of Oncology, Hospital Universitario de la Princesa, Spain
| | - Luis M Montuenga
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; Program in Solid Tumors and Biomarkers, CIMA, University of Navarra, Spain
| | - Ignacio Melero
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| |
Collapse
|
154
|
Mulet-Margalef N, Garcia-Del-Muro X. Sunitinib in the treatment of gastrointestinal stromal tumor: patient selection and perspectives. Onco Targets Ther 2016; 9:7573-7582. [PMID: 28008275 PMCID: PMC5171199 DOI: 10.2147/ott.s101385] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. In advanced setting and after progression to imatinib, the multi-targeted receptor tyrosine kinase inhibitor sunitinib has clearly demonstrated a clinical benefit in terms of response rate and progression-free survival with an acceptable toxicity profile. The recommended schedule for sunitinib administration is 50 mg per day 4 weeks ON and 2 weeks OFF; however, potential alternative schedules are also reviewed in the present article. Several biomarkers have been explored to better select candidates for sunitinib therapy, such as the value of early changes in standardized uptake value assessed by positron emission tomography with 18F-fluorodeoxyglucose, circulating biomarkers, clinical biomarkers such as the appearance of arterial hypertension during treatment that correlates with better outcomes, and the GIST genotype. GISTs with KIT mutations at exon 9 and the so-called wild-type GISTs seem to better respond to sunitinib. Nonetheless, further investigation is required to confirm these findings as well as to understand the mechanisms of sunitinib resistance such as the development of new KIT mutations or conformational changes in KIT receptor.
Collapse
Affiliation(s)
- Nuria Mulet-Margalef
- Sarcoma Multidisciplinary Unit and Medical Oncology Department, Institut Català d'Oncologia Hospitalet, IDIBELL, Barcelona, Spain
| | - Xavier Garcia-Del-Muro
- Sarcoma Multidisciplinary Unit and Medical Oncology Department, Institut Català d'Oncologia Hospitalet, IDIBELL, Barcelona, Spain
| |
Collapse
|
155
|
Rosenbloom DIS, Camara PG, Chu T, Rabadan R. Evolutionary scalpels for dissecting tumor ecosystems. Biochim Biophys Acta Rev Cancer 2016; 1867:69-83. [PMID: 27923679 DOI: 10.1016/j.bbcan.2016.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/20/2016] [Indexed: 02/06/2023]
Abstract
Amidst the growing literature on cancer genomics and intratumor heterogeneity, essential principles in evolutionary biology recur time and time again. Here we use these principles to guide the reader through major advances in cancer research, highlighting issues of "hit hard, hit early" treatment strategies, drug resistance, and metastasis. We distinguish between two frameworks for understanding heterogeneous tumors, both of which can inform treatment strategies: (1) The tumor as diverse ecosystem, a Darwinian population of sometimes-competing, sometimes-cooperating cells; (2) The tumor as tightly integrated, self-regulating organ, which may hijack developmental signals to restore functional heterogeneity after treatment. While the first framework dominates literature on cancer evolution, the second framework enjoys support as well. Throughout this review, we illustrate how mathematical models inform understanding of tumor progression and treatment outcomes. Connecting models to genomic data faces computational and technical hurdles, but high-throughput single-cell technologies show promise to clear these hurdles. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Collapse
Affiliation(s)
- Daniel I S Rosenbloom
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| | - Pablo G Camara
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Tim Chu
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
156
|
Schöffski P, Wozniak A, Schöffski O, van Eycken L, Debiec-Rychter M. Overcoming Cost Implications of Mutational Analysis in Patients with Gastrointestinal Stromal Tumors: A Pragmatic Approach. Oncol Res Treat 2016; 39:811-816. [DOI: 10.1159/000453057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022]
|
157
|
Gebreyohannes YK, Schöffski P, Van Looy T, Wellens J, Vreys L, Cornillie J, Vanleeuw U, Aftab DT, Debiec-Rychter M, Sciot R, Wozniak A. Cabozantinib Is Active against Human Gastrointestinal Stromal Tumor Xenografts Carrying Different KIT Mutations. Mol Cancer Ther 2016; 15:2845-2852. [DOI: 10.1158/1535-7163.mct-16-0224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 01/30/2023]
|
158
|
Kondo T. Proteogenomics for the Study of Gastrointestinal Stromal Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 926:139-151. [DOI: 10.1007/978-3-319-42316-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
159
|
Szucs Z, Thway K, Fisher C, Bulusu R, Constantinidou A, Benson C, van der Graaf WT, Jones RL. Promising novel therapeutic approaches in the management of gastrointestinal stromal tumors. Future Oncol 2016; 13:185-194. [PMID: 27600625 DOI: 10.2217/fon-2016-0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Primary and secondary resistance to currently available licensed tyrosine kinase inhibitors poses a real clinical challenge in the management of advanced gastrointestinal stromal tumors. Within the frame of early phase clinical trials novel systemic treatments are currently being evaluated to target both the well explored and novel emerging downstream effectors of KIT and PDGFRA signaling. Alternative therapeutic approaches also include exploring novel inhibitors of the KIT/PDGFRA receptors, immune checkpoint and cyclin-dependent kinase inhibitors. The final clinical trial outcome data for these agents are highly anticipated. Integration of new diagnostic techniques into routine clinical practice can potentially guide tailored delivery of agents in the treatment of a highly polyclonal, heterogeneous disease such as heavily pretreated advanced gastrointestinal stromal tumor.
Collapse
Affiliation(s)
- Zoltan Szucs
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Khin Thway
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Cyril Fisher
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Ramesh Bulusu
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | | | - Charlotte Benson
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Winette Ta van der Graaf
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK.,The Institute of Cancer Research, Cotswold Road, Sutton, SM2 5NG, UK
| | - Robin L Jones
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
160
|
Szucs Z, Thway K, Fisher C, Bulusu R, Constantinidou A, Benson C, van der Graaf WT, Jones RL. Molecular subtypes of gastrointestinal stromal tumors and their prognostic and therapeutic implications. Future Oncol 2016; 13:93-107. [PMID: 27600498 DOI: 10.2217/fon-2016-0192] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are composed of various molecular subtypes, with differing prognostic and predictive relevance. Previously, tumors lacking mutations in the KIT and PDGFRA genes have been designated as 'wild-type' GISTs; however, they represent a heterogeneous group currently undergoing further subclassification. Primary and secondary resistance to imatinib poses a significant clinical challenge, therefore ongoing research is trying to evaluate mechanisms to overcome resistance. Thorough understanding of the prognostic and predictive relevance of different genetic subtypes of GIST can guide clinical decision-making both in the adjuvant and the metastatic setting. Further work is required to identify tailored therapies for specific subgroups of GISTs wild-type for KIT and PDGFRA mutations and to identify predictive factors of resistance to currently approved systemic therapies.
Collapse
Affiliation(s)
- Zoltan Szucs
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Khin Thway
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Cyril Fisher
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Ramesh Bulusu
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | | | - Charlotte Benson
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Winette Ta van der Graaf
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK.,The Institute of Cancer Research, Cotswold Road, Sutton, SM2 5NG, UK
| | - Robin L Jones
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
161
|
Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition. Proc Natl Acad Sci U S A 2016; 113:E4784-93. [PMID: 27482095 DOI: 10.1073/pnas.1610179113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants.
Collapse
|
162
|
Yan W, Zhang A, Powell MJ. Genetic alteration and mutation profiling of circulating cell-free tumor DNA (cfDNA) for diagnosis and targeted therapy of gastrointestinal stromal tumors. CHINESE JOURNAL OF CANCER 2016; 35:68. [PMID: 27443349 PMCID: PMC4957326 DOI: 10.1186/s40880-016-0131-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/26/2016] [Indexed: 01/11/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) have been recognized as a biologically distinctive type of tumor, different from smooth muscle and neural tumors of the gastrointestinal tract. The identification of genetic aberrations in proto-oncogenes that drive the growth of GISTs is critical for improving the efficacy of cancer therapy by matching targeted drugs to specific mutations. Research into the oncogenic mechanisms of GISTs has found that these tumors frequently contain activating gene mutations in either platelet-derived growth factor receptor A (PDGFRA) or a receptor tyrosine protein associated with a mast cell growth factor receptor encoded by the KIT gene. Mutant cancer subpopulations have the potential to disrupt durable patient responses to molecularly targeted therapy for GISTs, yet the prevalence and size of subpopulations remain largely unexplored. Detection of the cancer subpopulations that harbor low-frequency mutant alleles of target proto-oncogenes through the use of molecular genetic methods, such as polymerase chain reaction (PCR) target amplification technology, is hampered by the high abundance of wild-type alleles, which limit the sensitivity of detection of these minor mutant alleles. This is especially true in the case of mutant tumor DNA derived “driver” and “drug-resistant” alleles that are present in the circulating cell-free tumor DNA (cfDNA) in the peripheral blood circulation of GIST patients. So-called “liquid biopsy” allows for the dynamic monitoring of the patients’ tumor status during treatment using minimally invasive sampling. New methodologies, such as a technology that employs a xenonucleic acid (XNA) clamping probe to block the PCR amplification of wild-type templates, have allowed improved molecular detection of these low-frequency alleles both in tissue biopsy samples and in cfDNA. These new methodologies could be widely applied for minimally invasive molecular testing in the therapeutic management of GISTs.
Collapse
Affiliation(s)
- Weixin Yan
- Robotics Research Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Aiguo Zhang
- DiaCarta Inc., 2600 Hilltop Drive, Richmond, CA, 94806, USA
| | | |
Collapse
|
163
|
Gandolfi G, Dallaglio K, Longo C, Moscarella E, Lallas A, Alfano R, Argenziano G, Ciarrocchi A. Contemporary and potential future molecular diagnosis of melanoma. Expert Rev Mol Diagn 2016; 16:975-85. [DOI: 10.1080/14737159.2016.1206473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- G. Gandolfi
- Laboratory of Translational Research, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - K. Dallaglio
- Laboratory of Translational Research, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - C. Longo
- Skin Cancer Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - E. Moscarella
- Skin Cancer Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - A. Lallas
- Skin Cancer Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - R. Alfano
- Surgery and Emergency Unit, Second University of Naples, Naples, Italy
| | - G. Argenziano
- Skin Cancer Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
- Dermatology Unit, Second University of Naples, Naples, Italy
| | - A. Ciarrocchi
- Laboratory of Translational Research, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| |
Collapse
|
164
|
Chen YC, Teng TH, Tsai JSC, Huang HD, Chang YL, Liang CW. Single-Tube Reaction Using Perfluorocarbons: A Prerequisite Step Leading to the Whole-Slide In Situ Technique on Histopathological Slides. PLoS One 2016; 11:e0158018. [PMID: 27336363 PMCID: PMC4919083 DOI: 10.1371/journal.pone.0158018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/08/2016] [Indexed: 11/18/2022] Open
Abstract
Developing a robust, novel method for performing multiple reactions in a single tube is not only time- and cost-saving but also critical for future high-throughput whole-slide in situ techniques on diseased tissues. In this study, we introduce the use of perfluorocarbons and compound-coated magnetic particles to create pseudochambers in a single tube, allowing different reactions to be performed in different phases. Perfluorocarbons also serve as cell lysis buffer and polymerase chain reaction (PCR) buffer owing to their highly penetrating, repellent and emulsifiable properties. Using this method, nucleic acids can be isolated and purified from various sample types and sizes, followed by PCR, real-time PCR, or multiplex PCR in the same tube. No incubation or enzyme digesting time is needed and the risk of cross-contamination is reduced. Tests can be performed in microemulsions (water-in-oil droplets) containing sequence-specific captures and probes for further high-throughput detection. We present a simple, quick, and robust procedure as a prerequisite step to future high-throughput in situ techniques.
Collapse
Affiliation(s)
- Yi-Chang Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Han Teng
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Jane S.-C. Tsai
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsien-Da Huang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Yih-Leong Chang
- Department and Graduate Institute of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cher-Wei Liang
- Department and Graduate Institute of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: ;
| |
Collapse
|
165
|
Daughety MM, Heinrich MC. Regorafenib for treatment of imatinib- and sunitinib-resistant metastatic gastrointestinal stromal tumors. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1182906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Molly M. Daughety
- Portland VA Health Care System and OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael C. Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
166
|
Resection of liver metastases in patients with gastrointestinal stromal tumors in the imatinib era: A nationwide retrospective study. Eur J Surg Oncol 2016; 42:1407-13. [PMID: 27038995 DOI: 10.1016/j.ejso.2016.02.257] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Liver metastases are common in patients with gastrointestinal stromal tumors (GIST). In the absence of randomized controlled clinical trials, the effectiveness of surgery as a treatment modality is unclear. This study identifies safety and outcome in a nationwide study of all patients who underwent resection of liver metastases from GIST. METHODS Patients were included using the national registry of histo- and cytopathology (PALGA) of the Netherlands from 1999. Kaplan Meier survival analysis was used for calculating survival outcome. Univariate and multivariate regression analyses were carried out for the assessment of potential prognostic factors. RESULTS A total of 48 patients (29 male, 19 female) with a median age of 58 (range 28-81) years were identified. Preoperative and postoperative tyrosine kinase inhibitor therapy was given to 30 (63%) and 36 (75%) patients, respectively. A minor liver resection was performed in 32 patients, 16 patients underwent major liver resection. Median follow-up was 27 (range 1-146) months. Median progression-free survival (PFS) was 28 (range 1-121) months. One-, three-, and five-year PFS was 93%, 67%, and 59% respectively. Median overall survival (OS) was 90 (range 1-146) months from surgery. The one-, three-, and five-year OS was 93%, 80%, and 76% respectively. R0 resection was the only independent significant prognostic factor for DFS and OS at multivariate analysis. CONCLUSION Resection of liver metastases in GIST patients combined with imatinib may be associated with prolonged overall survival when a complete resection is achieved.
Collapse
|
167
|
Lasota J, Felisiak-Golabek A, Wasag B, Kowalik A, Zięba S, Chłopek M, Wang ZF, Coates T, Kopczynski J, Gozdz S, Sarlomo-Rikala M, Miettinen M. Frequency and clinicopathologic profile of PIK3CA mutant GISTs: molecular genetic study of 529 cases. Mod Pathol 2016; 29:275-82. [PMID: 26796526 PMCID: PMC7511989 DOI: 10.1038/modpathol.2015.160] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are mesenchymal tumors usually driven by the mutational activation of receptor tyrosine kinases, KIT, or PDGFRA. Oncogenic activation of phosphatidylinositide-3-kinase (PI3K), a downstream effector in the KIT signaling pathway, has been identified in different types of cancer, with the PI3K 110α subunit encoded by PIK3CA being a common mutational target. In this study, the mutational hotspot in the PIK3CA kinase domain encoded by exon 20 was evaluated in 529 imatinib-naive GISTs using PCR amplification and Sanger sequencing. Eight mutations (two co-existing in one tumor) were identified. Subsequently, The cobas PIK3CA Mutation Test was employed to evaluate mutational hotspots in exons 1, 4, 7, and 9 in 119 PIK3CA exon 20-wild type tumors. In two cases, mutations in exons 1 and 9 were identified. In one GIST, previously undetected by Sanger sequencing, the exon 20 mutation was discovered. Altogether, eight primary and two metastatic GISTs carried PIK3CA mutations. The size of primary PIK3CA-mutant GISTs was ≥14 cm (mean size 17 cm), and mitotic activity varied from 0 to 72 per 50HPF (mean 5/50HPF). Follow-up data showed short survival in 6 of 7 studied cases. Detection of PIK3CA mutations in large or metastatic KIT-mutant GISTs may suggest that PIK3CA-mutant clones have a proliferative advantage during disease progression. Tyrosine kinase inhibitors have been successfully used in GIST treatment. However, resistance frequently develops due to secondary KIT mutations or activation of downstream to KIT signaling pathways, such as the PI3K/AKT/mTOR pathway. PIK3CA mutations similar to the ones detected in GISTs have been shown to cause such activation. Therefore, genotyping of PIK3CA in GISTs might help to pinpoint primary and metastatic tumors with the potential to develop resistance to tyrosine kinase inhibitors and guide therapy with PI3K inhibitors.
Collapse
Affiliation(s)
- Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute (NCI), Bethesda, MD, USA
| | | | - Bartosz Wasag
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Sebastian Zięba
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Małgorzata Chłopek
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Zeng-Feng Wang
- Laboratory of Pathology, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Tiffany Coates
- Laboratory of Pathology, National Cancer Institute (NCI), Bethesda, MD, USA,Participant of NCI summer 2014 internship program
| | - Janusz Kopczynski
- Department of Surgical Pathology, Holycross Cancer Center, Kielce, Poland
| | - Stanislaw Gozdz
- Department of Clinical Oncology, Holycross Cancer Center, Kielce, Poland,Faculty of Health Sciences, The Jan Kochanowski University, Kielce, Poland
| | | | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute (NCI), Bethesda, MD, USA
| |
Collapse
|
168
|
Reichardt P, Demetri GD, Gelderblom H, Rutkowski P, Im SA, Gupta S, Kang YK, Schöffski P, Schuette J, Soulières D, Blay JY, Goldstein D, Fly K, Huang X, Corsaro M, Lechuga MJ, Martini JF, Heinrich MC. Correlation of KIT and PDGFRA mutational status with clinical benefit in patients with gastrointestinal stromal tumor treated with sunitinib in a worldwide treatment-use trial. BMC Cancer 2016; 16:22. [PMID: 26772734 PMCID: PMC4714485 DOI: 10.1186/s12885-016-2051-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/06/2016] [Indexed: 01/15/2023] Open
Abstract
Background Several small studies indicated that the genotype of KIT or platelet-derived growth factor receptor-α (PDGFRA) contributes in part to the level of clinical effectiveness of sunitinib in gastrointestinal stromal tumor (GIST) patients. This study aimed to correlate KIT and PDGFRA mutational status with clinical outcome metrics (progression-free survival [PFS], overall survival [OS], objective response rate [ORR]) in a larger international patient population. Methods This is a non-interventional, retrospective analysis in patients with imatinib-resistant or intolerant GIST who were treated in a worldwide, open-label treatment-use study (Study 1036; NCT00094029) in which sunitinib was administered at a starting dose of 50 mg/day on a 4-week-on, 2-week-off schedule. Molecular status was obtained in local laboratories with tumor samples obtained either pre-imatinib, post-imatinib/pre-sunitinib, or post-sunitinib treatment, and all available data were used in the analyses regardless of collection time. The primary analysis compared PFS in patients with primary KIT exon 11 versus exon 9 mutations (using a 2-sided log-rank test) and secondary analyses compared OS (using the same test) and ORR (using a 2-sided Pearson χ2 test) in the same molecular subgroups. Results Of the 1124 sunitinib-treated patients in the treatment-use study, 230 (20 %) were included in this analysis, and baseline characteristics were similar between the two study populations. Median PFS was 7.1 months. A significantly better PFS was observed in patients with a primary mutation in KIT exon 9 (n = 42) compared to those with a primary mutation in exon 11 (n = 143; hazard ratio = 0.59; 95 % confidence interval, 0.39–0.89; P = 0.011), with median PFS times of 12.3 and 7.0 months, respectively. Similarly, longer OS and higher ORR were observed in patients with a primary KIT mutation in exon 9 versus exon 11. The data available were limited to investigate the effects of additional KIT or PDGFRA mutations on the efficacy of sunitinib treatment. Conclusions This large retrospective analysis confirms the prognostic significance of KIT mutation status in patients with GIST. This analysis also confirms the effectiveness of sunitinib as a post-imatinib therapy, regardless of mutational status. Trial registration NCT01459757. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2051-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter Reichardt
- Department of Interdisciplinary Oncology, HELIOS Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125, Berlin, Germany.
| | - George D Demetri
- Ludwig Center at Harvard and Dana-Farber Cancer Institute, Boston, MA, USA.
| | | | - Piotr Rutkowski
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | | | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Patrick Schöffski
- University Hospitals Leuven, Leuven Cancer Institute, and Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium.
| | | | - Denis Soulières
- Centre Hospitalier de l'Université de Montreal, Montreal, QC, Canada.
| | - Jean-Yves Blay
- Centre Léon Bérard, Université Claude Bernard, Lyon, France.
| | | | | | | | | | | | | | - Michael C Heinrich
- VA Portland Health Care System and Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
169
|
Asić K. Dominant mechanisms of primary resistance differ from dominant mechanisms of secondary resistance to targeted therapies. Crit Rev Oncol Hematol 2016; 97:178-96. [DOI: 10.1016/j.critrevonc.2015.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
|
170
|
Canzonieri V, Gasparotto D, Alessandrini L, Miolo G, Torrisi E, Perin T, De Paoli P, Maestro R, Buonadonna A. Morphologic shift associated with aberrant cytokeratin expression in a GIST patient after tyrosine kinase inhibitors therapy. A case report with a brief review of the literature. Pathol Res Pract 2016; 212:63-7. [DOI: 10.1016/j.prp.2015.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 01/27/2023]
|
171
|
Current management of gastrointestinal stromal tumors: Surgery, current biomarkers, mutations, and therapy. Surgery 2015; 158:1149-64. [DOI: 10.1016/j.surg.2015.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
|
172
|
Abstract
The recent discovery of oncogenic drivers and subsequent development of novel targeted strategies has significantly added to the therapeutic armamentarium of anti-cancer therapies. Targeting BCR-ABL in chronic myeloid leukemia (CML) or HER2 in breast cancer has led to practice-changing clinical benefits, while promising therapeutic responses have been achieved by precision medicine approaches in EGFR mutant lung cancer, colorectal cancer and BRAF mutant melanoma. However, although initial therapeutic responses to targeted therapies can be substantial, many patients will develop disease progression within 6-12 months. An increasing application of powerful omics-based approaches and improving preclinical models have enabled the rapid identification of secondary resistance mechanisms. Herein, we discuss how this knowledge has translated into rational, novel treatment strategies for relapsed patients in genomically selected cancer populations.
Collapse
Affiliation(s)
- Keara L Redmond
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Anastasia Papafili
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
173
|
Kanda T, Ishikawa T, Kosugi SI, Ueki K, Naito T, Wakai T, Hirota S. Prognostic factors after imatinib secondary resistance: survival analysis in patients with unresectable and metastatic gastrointestinal stromal tumors. Int J Clin Oncol 2015; 21:295-301. [PMID: 26386705 DOI: 10.1007/s10147-015-0903-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/03/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Patients undergoing imatinib therapy for gastrointestinal stromal tumors (GISTs) show drug resistance during treatment in the late stages. The aims of this study were to determine survival after the appearance of imatinib secondary resistance (ISR) and to identify the prognostic factors. METHODS Eligible were patients with unresectable and metastatic GISTs who were diagnosed with ISR and/or underwent treatment for ISR in our institution between 2001 and 2012. A total of 48 patients were enrolled and overall survival was retrospectively analyzed. The Cox proportional hazards model was used to identify the independent prognostic factors. Median follow-up time was 58 months. RESULTS As of the cutoff date, 41 of the 48 patients with ISR had died, of which 39 died of GISTs. The overall 1-, 3-, and 5-year survival rates of the 48 patients were 64.6, 32.8, and 20.4 %, respectively, and median survival time was 22 months. The favorable independent prognostic factors identified were long progression-free survival in first-line imatinib therapy (P = 0.04), small diameter of progressive disease (PD) (P = 0.02), and surgical resection of PD (P = 0.01). CONCLUSION Surgical resection of PD in selected cases could improve prognosis in ISR patients undergoing GIST treatment.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Surgery, Sanjo General Hospital, 5-Tsukanome, Sanjo, Niigata, 955-0055, Japan.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Takashi Ishikawa
- Department of Medical Informatics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Shin-Ichi Kosugi
- Department of Digestive and General Surgery, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-Uonuma, Niigata, Japan
| | - Kyo Ueki
- Department of Surgery, Kashiwazaki Medical Center, Kashiwazaki, Niigata, Japan
| | - Tetsuya Naito
- Department of Surgery, Nagaoka Red Cross Hospital, Nagaoka, Niigata, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
174
|
Bauer S, Joensuu H. Emerging Agents for the Treatment of Advanced, Imatinib-Resistant Gastrointestinal Stromal Tumors: Current Status and Future Directions. Drugs 2015; 75:1323-34. [PMID: 26187774 PMCID: PMC4532715 DOI: 10.1007/s40265-015-0440-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Imatinib is strongly positioned as the recommended first-line agent for most patients with advanced gastrointestinal stromal tumor (GIST) due to its good efficacy and tolerability. Imatinib-resistant advanced GIST continues to pose a therapeutic challenge, likely due to the frequent presence of multiple mutations that confer drug resistance. Sunitinib and regorafenib are approved as second- and third-line agents, respectively, for patients whose GIST does not respond to imatinib or who do not tolerate imatinib, and their use is supported by large randomized trials. ATP-mimetic tyrosine kinase inhibitors provide clinical benefit even in heavily pretreated GIST suggesting that oncogenic dependency on KIT frequently persists. Several potentially useful tyrosine kinase inhibitors with distinct inhibitory profiles against both KIT ATP-binding domain and activation loop mutations have not yet been fully evaluated. Agents that have been found promising in preclinical models and early clinical trials include small molecule KIT and PDGFRA mutation-specific inhibitors, heat shock protein inhibitors, histone deacetylase inhibitors, allosteric KIT inhibitors, KIT and PDGFRA signaling pathway inhibitors, and immunological approaches including antibody-drug conjugates. Concomitant or sequential administration of tyrosine kinase inhibitors with KIT signaling pathway inhibitors require further evaluation, as well as rotation of tyrosine kinase inhibitors as a means to suppress drug-resistant cell clones.
Collapse
Affiliation(s)
- Sebastian Bauer
- />Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- />German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Heikki Joensuu
- />Department of Oncology, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00029 Helsinki, Finland
| |
Collapse
|
175
|
Personalized Medicine in Gastrointestinal Stromal Tumor (GIST): Clinical Implications of the Somatic and Germline DNA Analysis. Int J Mol Sci 2015; 16:15592-608. [PMID: 26184165 PMCID: PMC4519915 DOI: 10.3390/ijms160715592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the gastrointestinal tract. They are characterized by gain of function mutations in KIT or PDGFRA tyrosine kinase receptors, with their consequent constitutive activation. The gold standard therapy is imatinib that offers a good and stable response for approximately 18–36 months. However, resistance is very common and it is vital to identify new biomarkers. Up until now, there have been two main approaches with focus to characterize novel targets. On the one hand, the focus is on the tumor genome, as the final clinical outcome depends mainly from the cancer specific mutations/alterations patterns. However, the germline DNA is important as well, and it is inconceivable to think the patients response to the drug is not related to it. Therefore the aim of this review is to outline the state of the art of the personalized medicine in GIST taking into account both the tumor DNA (somatic) and the patient DNA (germline).
Collapse
|
176
|
|
177
|
Dong Y, Liang C, Zhang B, Ma J, He X, Chen S, Zhang X, Chen W. Bortezomib enhances the therapeutic efficacy of dasatinib by promoting c-KIT internalization-induced apoptosis in gastrointestinal stromal tumor cells. Cancer Lett 2015; 361:137-146. [PMID: 25737303 DOI: 10.1016/j.canlet.2015.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 12/17/2022]
Abstract
Dasatinib-based therapy is often used as a second-line therapeutic strategy for imatinib-resistance gastrointestinal stromal tumors (GISTs); however, acquired aberrant activation of dasatinib target proteins, such as c-KIT and PDGFRβ, attenuates the therapeutic efficiency of dasatinib. Combination therapy which inhibits the activation of dasatinib target proteins may enhance the cytotoxicity of dasatinib in GISTs. Bortezomib, a proteasome inhibitor, significantly inhibited cell viability and promoted apoptosis of dasatinib-treated GIST-T1 cells, whereas GIST-T1 cells showed little dasatinib cytotoxicity when treated with dasatinib alone, as the upregulation of c-KIT caused by dasatinib itself interfered with the inhibition of c-KIT and PDGFRβ phosphorylation by dasatinib. Bortezomib induced internalization and degradation of c-KIT by binding c-KIT to Cbl, an E3 ubiquitin-protein ligase, and the subsequent release of Apaf-1, which was originally bound to the c-KIT-Hsp90β-Apaf-1 complex, induced primary apoptosis in GIST-T1 cells. Combined treatment with bortezomib plus dasatinib caused cell cycle arrest in the G1 phase through inactivation of PDGFRβ and promoted bortezomib-induced apoptosis in GIST-T1 cells. Our data suggest that combination therapy exerts better efficiency for eradicating GIST cells and may be a promising strategy for the future treatment of GISTs.
Collapse
Affiliation(s)
- Ying Dong
- Department of Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chao Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjuan Ma
- Department of Internal Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuexin He
- Department of Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Siyu Chen
- Department of Oncology, Xinhua Hospital Affiliated to Medical School of Shanghai Jiaotong University, Shanghai 200092, China
| | - Xianning Zhang
- Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
178
|
Abstract
OPINION STATEMENT The management of advanced gastrointestinal stromal tumor (GIST) has been dramatically altered by the development of tyrosine kinase inhibitors. The disease, which had a median overall survival of 12 months for patients with unresectable disease, now has a median survival approaching 5 or more years. The challenge faced clinically is how to care for patients when they have progressed on all approved therapies. Clinical trials evaluating the role of novel combination therapies with investigational agents that target AKT/PI3K pathways are of interest especially given the preclinical rationale available. The addition of an mTOR inhibitor can be tried as these are available, but requires care and monitoring for additional toxicities. With improved understanding of this disease, which we thought of as one biology, personalized therapies are being studied and tested and is particularly relevant for GIST that are less responsive to the standard kinase inhibitors, such as platelet-derived growth factor alpha (PDGFRA) D842V and wild-type/succinate dehydrogenase (SDH)-deficient GIST. IGF1R inhibitors as a class are not being developed because of the lack of significant efficacy in many clinical trials and the efficacy in WT GIST has been limited; to date drugs targeting VEGFR, such as sunitinib and regorafenib, appear to be the best agents available for this group of patients. The exciting findings seen with CTLA4 and PD-1/PD-L1 antibodies in melanoma and other solid tumors is exciting, especially because there is a growing body of evidence that such approaches have biologic rationale; clinical trials evaluating these agents are awaited with interest. Last, recent work has shed light on older agents that may have a role in GIST. Moving forward to test these agents alone or in combination with TKIs offers potentially new strategies for treating advanced disease.
Collapse
Affiliation(s)
- Natthapol Songdej
- Department of Medical Oncology and Hematology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | | |
Collapse
|
179
|
Ordog T, Zörnig M, Hayashi Y. Targeting Disease Persistence in Gastrointestinal Stromal Tumors. Stem Cells Transl Med 2015; 4:702-7. [PMID: 25934947 DOI: 10.5966/sctm.2014-0298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/16/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED SummaryGastrointestinal stromal tumors (GISTs) represent 20%-40% of human sarcomas. Although approximately half of GISTs are cured by surgery, prognosis of advanced disease used to be poor due to the high resistance of these tumors to conventional chemo- and radiotherapy. The introduction of molecularly targeted therapy (e.g., with imatinib mesylate) following the discovery of the role of oncogenic mutations in the receptor tyrosine kinases KIT and platelet-derived growth factor α (PDGFRA) significantly increased patient survival. However, GIST cells persist in 95%-97% of imatinib-treated patients who eventually progress and die of the disease because of the emergence of clones with drug-resistant mutations. Because these secondary mutations are highly heterogeneous, even second- and third-line drugs that are effective against certain genotypes have only moderately increased progression-free survival. Consequently, alternative strategies such as targeting molecular mechanisms underlying disease persistence should be considered. We reviewed recently discovered cell-autonomous and microenvironmental mechanisms that could promote the survival of GIST cells in the presence of tyrosine kinase inhibitor therapy. We particularly focused on the potential role of adult precursors for interstitial cells of Cajal (ICCs), the normal counterpart of GISTs. ICC precursors share phenotypic characteristics with cells that emerge in a subset of patients treated with imatinib and in young patients with GIST characterized by loss of succinate dehydrogenase complex proteins and lack of KIT or PDGFRA mutations. Eradication of residual GIST cells and cure of GIST will likely require individualized combinations of several approaches tailored to tumor genotype and phenotype. SIGNIFICANCE Gastrointestinal stromal tumors (GISTs) are one of the most common connective tissue cancers. Most GISTs that cannot be cured by surgery respond to molecularly targeted therapy (e.g., with imatinib); however, tumor cells persist in almost all patients and eventually acquire drug-resistant mutations. Several mechanisms contribute to the survival of GIST cells in the presence of imatinib, including the activation of "escape" mechanisms and the selection of stem-like cells that are not dependent on the expression of the drug targets for survival. Eradication of residual GIST cells and cure of GIST will likely require individualized combinations of several approaches tailored to the genetic makeup and other characteristics of the tumors.
Collapse
Affiliation(s)
- Tamas Ordog
- Center for Individualized Medicine, Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, and Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA;
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Yujiro Hayashi
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, and Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
180
|
Van Looy T, Wozniak A, Floris G, Li H, Wellens J, Vanleeuw U, Sciot R, Debiec-Rychter M, Schöffski P. Therapeutic Efficacy Assessment of CK6, a Monoclonal KIT Antibody, in a Panel of Gastrointestinal Stromal Tumor Xenograft Models. Transl Oncol 2015; 8:112-8. [PMID: 25926077 PMCID: PMC4415139 DOI: 10.1016/j.tranon.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/19/2015] [Accepted: 02/27/2015] [Indexed: 12/12/2022] Open
Abstract
We evaluated the efficacy of CK6, a KIT monoclonal antibody, in a panel of human gastrointestinal stromal tumor (GIST) xenograft models. Nude mice were bilaterally transplanted with human GIST xenografts (four patient derived and two cell line derived), treated for 3 weeks, and grouped as follows: control (untreated); CK6 (40 mg/kg, 3 × weekly); imatinib (50 mg/kg, twice daily); sunitinib (40 mg/kg, once daily); imatinib + CK6; sunitinib + CK6 (same doses and schedules as in the single-agent treatments). Tumor volume assessment, Western blot analysis, and histopathology were used for evaluation of efficacy. Statistical analysis was performed using Mann-Whitney U (MWU) and Wilcoxon matched-pairs tests. CK6 as a single agent only reduced tumor growth rate in the UZLX-GIST3 model (P = .053, MWU compared to control), while in none of the other GIST models an effect on tumor growth rate was observed. CK6 did not result in significant anti-proliferative or pro-apoptotic effects in any of the GIST models, and moreover, CK6 did not induce a remarkable inhibition of KIT activation. Furthermore, no synergistic effect of combining CK6 with tyrosine kinase inhibitors (TKIs) was observed. Conversely, in certain GIST xenografts, anti-tumor effects seemed to be inferior under combination treatment compared to single-agent TKI treatment. In the GIST xenografts tested, the anti-tumor efficacy of CK6 was limited. No synergy was observed on combination of CK6 with TKIs in these GIST models. Our findings highlight the importance of using relevant in vivo human tumor xenograft models in the preclinical assessment of drug combination strategies.
Collapse
Affiliation(s)
- Thomas Van Looy
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Giuseppe Floris
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium.
| | - Haifu Li
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Jasmien Wellens
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Ulla Vanleeuw
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Raf Sciot
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium.
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium.
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| |
Collapse
|
181
|
Heydt C, Kumm N, Fassunke J, Künstlinger H, Ihle MA, Scheel A, Schildhaus HU, Haller F, Büttner R, Odenthal M, Wardelmann E, Merkelbach-Bruse S. Massively parallel sequencing fails to detect minor resistant subclones in tissue samples prior to tyrosine kinase inhibitor therapy. BMC Cancer 2015; 15:291. [PMID: 25886408 PMCID: PMC4404105 DOI: 10.1186/s12885-015-1311-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/01/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Personalised medicine and targeted therapy have revolutionised cancer treatment. However, most patients develop drug resistance and relapse after showing an initial treatment response. Two theories have been postulated; either secondary resistance mutations develop de novo during therapy by mutagenesis or they are present in minor subclones prior to therapy. In this study, these two theories were evaluated in gastrointestinal stromal tumours (GISTs) where most patients develop secondary resistance mutations in the KIT gene during therapy with tyrosine kinase inhibitors. METHODS We used a cohort of 33 formalin-fixed, paraffin embedded (FFPE) primary GISTs and their corresponding recurrent tumours with known mutational status. The primary tumours were analysed for the secondary mutations of the recurrences, which had been identified previously. The primary tumours were resected prior to tyrosine kinase inhibitor therapy. Three ultrasensitive, massively parallel sequencing approaches on the GS Junior (Roche, Mannheim, Germany) and the MiSeq(TM) (Illumina, San Diego, CA, USA) were applied. Additionally, nine fresh-frozen samples resected prior to therapy were analysed for the most common secondary resistance mutations. RESULTS With a sensitivity level of down to 0.02%, no pre-existing resistant subclones with secondary KIT mutations were detected in primary GISTs. The sensitivity level varied for individual secondary mutations and was limited by sequencing artefacts on both systems. Artificial T > C substitutions at the position of the exon 13 p.V654A mutation, in particular, led to a lower sensitivity, independent from the source of the material. Fresh-frozen samples showed the same range of artificially mutated allele frequencies as the FFPE material. CONCLUSIONS Although we achieved a sufficiently high level of sensitivity, neither in the primary FFPE nor in the fresh-frozen GISTs we were able to detect pre-existing resistant subclones of the corresponding known secondary resistance mutations of the recurrent tumours. This supports the theory that secondary KIT resistance mutations develop under treatment by "de novo" mutagenesis. Alternatively, the detection limit of two mutated clones in 10,000 wild-type clones might not have been high enough or heterogeneous tissue samples, per se, might not be suitable for the detection of very small subpopulations of mutated cells.
Collapse
Affiliation(s)
- Carina Heydt
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Niklas Kumm
- Institute of Pathology, University Hospital Erlangen, Krankenhausstraße 8-10, 91054, Erlangen, Germany.
| | - Jana Fassunke
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Helen Künstlinger
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Michaela Angelika Ihle
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Andreas Scheel
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Hans-Ulrich Schildhaus
- Institute of Pathology, University Hospital Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Florian Haller
- Institute of Pathology, University Hospital Erlangen, Krankenhausstraße 8-10, 91054, Erlangen, Germany.
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Margarete Odenthal
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude D17, 48149, Münster, Germany.
| | - Sabine Merkelbach-Bruse
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
182
|
Zhu JQ, Ou WB. Therapeutic targets in gastrointestinal stromal tumors. World J Transl Med 2015; 4:25-37. [DOI: 10.5528/wjtm.v4.i1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/14/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common type of mesenchymal tumor of the gastrointestinal tract. The tumorigenesis of GISTs is driven by gain-of-function mutations in KIT or platelet-derived growth factor receptor α (PDGFRA), resulting in constitutive activation of the tyrosine kinase and its downstream signaling pathways. Oncogenic KIT or PDGFRA mutations are compelling therapeutic targets for the treatment of GISTs, and the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GISTs. However, most GIST patients develop clinical resistance to imatinib and other tyrosine kinase inhibitors. Five mechanisms of resistance have been characterized: (1) acquisition of a secondary point mutation in KIT or PDGFRA; (2) genomic amplification of KIT; (3) activation of an alternative receptor tyrosine kinase; (4) loss of KIT oncoprotein expression; and (5) wild-type GIST. Currently, sunitinib is used as a second-line treatment for patients after imatinib failure, and regorafenib has been approved for patients whose disease is progressing on both imatinib and sunitinib. Phase II/III trials are currently in progress to evaluate novel inhibitors and immunotherapies targeting KIT, its downstream effectors such as phosphatidylinositol 3-kinase, protein kinase B and mammalian target of rapamycin, heat shock protein 90, and histone deacetylase inhibitor. Other candidate targets have been identified, including ETV1, AXL, insulin-like growth factor 1 receptor, KRAS, FAS receptor, protein kinase c theta, ANO1 (DOG1), CDC37, and aurora kinase A. These candidates warrant clinical evaluation as novel therapeutic targets in GIST.
Collapse
|
183
|
Abstract
Advances in next-generation sequencing and bioinformatics have led to an unprecedented view of the cancer genome and its evolution. Genomic studies have demonstrated the complex and heterogeneous clonal landscape of tumors of different origins and the potential impact of intratumor heterogeneity on treatment response and resistance, cancer progression, and the risk of disease relapse. However, the significance of subclonal mutations, in particular mutations in driver genes, and their evolution through time and their dynamics in response to cancer therapies, is yet to be determined. The necessary tools are now available to prospectively determine whether clonal heterogeneity can be used as a biomarker of clinical outcome and to what extent subclonal somatic alterations might influence clinical outcome. Studies that use longitudinal tissue sampling, integrating both genomic and clinical data, have the potential to reveal the subclonal composition and track the evolution of tumors to address these questions and to begin to define the breadth of genetic diversity in different tumor types and its relevance to patient outcome. Such studies may provide further evidence for drug-resistance mechanisms informing combinatorial, adaptive, and tumor immune therapies placed within the context of tumor evolution.
Collapse
Affiliation(s)
- Mariam Jamal-Hanjani
- UCL Cancer Institute, Paul O'Gorman Building, London, United Kingdom. Cancer Research UK London Research institute, London, United Kingdom
| | - Sergio A Quezada
- UCL Cancer Institute, Paul O'Gorman Building, London, United Kingdom
| | - James Larkin
- Department of Oncology, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Charles Swanton
- UCL Cancer Institute, Paul O'Gorman Building, London, United Kingdom. Cancer Research UK London Research institute, London, United Kingdom.
| |
Collapse
|
184
|
Tatematsu T, Sasaki H, Shimizu S, Hikosaka YU, Okuda K, Haneda H, Moriyama S, Yano M, Fujii Y. Intra-tumor heterogeneity of BRAF V600E mutation in lung adenocarcinomas. Exp Ther Med 2015; 9:1719-1722. [PMID: 26136882 DOI: 10.3892/etm.2015.2298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 01/08/2015] [Indexed: 01/26/2023] Open
Abstract
BRAF mutations exist in numerous types of cancer, including melanomas, colorectal cancers and lung cancers. The V600E-specific inhibitor vemurafenib has marked clinical activity in patients with BRAF V600E-mutated melanoma. However, there are many cases of resistance to vemurafenib. This may be due to the reported intra-tumor heterogeneity of the BRAF V600E mutation in primary melanomas. BRAF mutations are found in 1-5% of non-small cell carcinomas (NSCLCs), almost exclusively in adenocarcinoma. A few cases have been reported in which vemurafenib was effective against BRAF V600E-mutated lung cancers. In a previous study, five lung adenocarcinomas with BRAF V600E mutation were detected by direct sequencing. The present study analyzed these tumors for the percentage of mutation (%mutation) by competitive allele-specific polymerase chain reaction (CAST-PCR) assay. In addition, sections of all components of the adenocarcinomas were obtained by laser microdissection and analyzed. The %mutations of BRAF V600E within the macrodissected tumors (cases 1-5) were: Case 1, 10.0%; case 2, 8.0%; case 3, 8.9%; case 4, 21.5%; and case 5, 14.9%. In four cases (cases 2-5), the %mutations of each adenocarcinoma component were as follows: Case 2, lepidic growth 6.5-24.5%, papillary 1.3-11.2% and acinar 9.8%; case 3, solid 2.5-69.9%, acinar 12.4-27.1% and papillary 3.7-17.4%; case 4, acinar 10.0-45.0% and papillary 44.0%; and case 5, papillary 3.7-93.4%. Sensitive BRAF mutation detection methods were used and evidence for heterogeneity of the BRAF V600E mutation in these lung adenocarcinoma cases was observed. Targeted therapy with a BRAF V600E inhibitor such as vemurafenib may have potential in the treatment of lung cancer with this mutation; however, it is necessary to consider how the treatment effect of and drug resistance to BRAF V600E inhibitors are affected by the presence of heterogeneity in future studies.
Collapse
Affiliation(s)
- Tsutomu Tatematsu
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hidefumi Sasaki
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shigeki Shimizu
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Y U Hikosaka
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hiroshi Haneda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Satoru Moriyama
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Motoki Yano
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yoshitaka Fujii
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
185
|
Ahmad F, Lad P, Bhatia S, Das BR. Molecular spectrum of c-KIT and PDGFRA gene mutations in gastro intestinal stromal tumor: determination of frequency, distribution pattern and identification of novel mutations in Indian patients. Med Oncol 2015; 32:424. [PMID: 25481675 DOI: 10.1007/s12032-014-0424-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 01/08/2023]
Abstract
KIT and PDGFRA gene mutations are the major genetic alterations seen in gastrointestinal stromal tumors (GISTs) and are being used clinically for predicting response to imatinib therapy. In the current study, we set out to explore the frequency and distribution pattern of c-KIT (exons 9, 11 and 13) and PDGFRA (exons 12 and 18) by direct sequencing in a series of 70 Indian GIST cases. Overall, 27 (38.5 %) and 4 (5.7 %) of the cases had c-KIT and PDGFRA mutations, respectively. Majority of KIT mutations involved exon 11 (85.7 %), followed by exon 9 (14.3 %), while none showed exon 13 mutation. Most exon 9 mutations showed Ala503-Tyr504 duplication, while one had novel point mutation at codon 476 (S476G). In contrast to exon 9 mutations, most exon 11 mutations were in-frame deletions (79 %, 19/24), predominantly at codons 550-560, while remaining exon 11 mutant cases were point mutations at codons 559, 560, 568, 573 and 575. Interestingly, P573T, Q556_V560delinsH, Q575H and Q575_P577 were novel variations observed in exon 11. The PDGFRA mutations were seen mostly in exon 18, which showed point mutation at codon 842 (D842V), while exon 12 showed a novel indel variation (V561_H570delinsT). No significant correlation between c-KIT/PDGFRA mutations and clinicopathological data was observed. In conclusion, this study highlights the frequency and distribution pattern of c-KIT/PDGFRA mutation in Indian cohort. The current study identified novel variations that added new insights into the genetic heterogeneity of GIST patients. Furthermore, this is the first study to report the presence of PDGFRA mutation from Indian subcontinent.
Collapse
Affiliation(s)
- Firoz Ahmad
- Research and Development, SRL Ltd, Plot No. 1, Prime Square Building, S. V. Road Goregaon (W), Mumbai, 400062, India
| | | | | | | |
Collapse
|
186
|
Javidi-Sharifi N, Traer E, Martinez J, Gupta A, Taguchi T, Dunlap J, Heinrich MC, Corless CL, Rubin BP, Druker BJ, Tyner JW. Crosstalk between KIT and FGFR3 Promotes Gastrointestinal Stromal Tumor Cell Growth and Drug Resistance. Cancer Res 2014; 75:880-91. [PMID: 25432174 DOI: 10.1158/0008-5472.can-14-0573] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Kinase inhibitors such as imatinib have dramatically improved outcomes for patients with gastrointestinal stromal tumor (GIST), but many patients develop resistance to these treatments. Although in some patients this event corresponds with mutations in the GIST driver oncogenic kinase KIT, other patients develop resistance without KIT mutations. In this study, we address this patient subset in reporting a functional dependence of GIST on the FGF receptor FGFR3 and its crosstalk with KIT in GIST cells. Addition of the FGFR3 ligand FGF2 to GIST cells restored KIT phosphorylation during imatinib treatment, allowing sensitive cells to proliferate in the presence of the drug. FGF2 expression was increased in imatinib-resistant GIST cells, the growth of which was blocked by RNAi-mediated silencing of FGFR3. Moreover, combining KIT and FGFR3 inhibitors synergized to block the growth of imatinib-resistant cells. Signaling crosstalk between KIT and FGFR3 activated the MAPK pathway to promote resistance to imatinib. Clinically, an IHC analysis of tumor specimens from imatinib-resistant GIST patients revealed a relative increase in FGF2 levels, with a trend toward increased expression in imatinib-naïve samples consistent with possible involvement in drug resistance. Our findings provide a mechanistic rationale to evaluate existing FGFR inhibitors and multikinase inhibitors that target FGFR3 as promising strategies to improve treatment of patients with GIST with de novo or acquired resistance to imatinib.
Collapse
Affiliation(s)
- Nathalie Javidi-Sharifi
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Elie Traer
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Jacqueline Martinez
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Anu Gupta
- Department of Molecular Genetics, Lerner Research Institute, Cleveland, Ohio
| | - Takehiro Taguchi
- Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan
| | - Jennifer Dunlap
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Department of Anatomic Pathology, Oregon Health and Science University, Portland, Oregon
| | - Michael C Heinrich
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Portland VA Medical Center, Portland, Oregon
| | - Christopher L Corless
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Department of Anatomic Pathology, Oregon Health and Science University, Portland, Oregon
| | - Brian P Rubin
- Department of Molecular Genetics, Lerner Research Institute, Cleveland, Ohio. Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio. Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Howard Hughes Medical Institute, Portland, Oregon
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
187
|
Tornillo L. Gastrointestinal stromal tumor - an evolving concept. Front Med (Lausanne) 2014; 1:43. [PMID: 25593916 PMCID: PMC4291900 DOI: 10.3389/fmed.2014.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most frequent mesenchymal tumors of the gastrointestinal tract. The discovery that these tumors, formerly thought of smooth muscle origin, are indeed better characterized by specific activating mutation in genes coding for the receptor tyrosine kinases (RTKs) CKIT and PDGFRA and that these mutations are strongly predictive for the response to targeted therapy with RTK inhibitors has made GISTs the typical example of the integration of basic molecular knowledge in the daily clinical activity. The information on the mutational status of these tumors is essential to predict (and subsequently to plan) the therapy. As resistant cases are frequently wild type, other possible oncogenic events, defining other "entities," have been discovered (e.g., succinil dehydrogenase mutation/dysregulation, insuline growth factor expression, and mutations in the RAS-RAF-MAPK pathway). The classification of disease must nowadays rely on the integration of the clinico-morphological characteristics with the molecular data.
Collapse
Affiliation(s)
- Luigi Tornillo
- Institute of Pathology, University of Basel , Basel , Switzerland
| |
Collapse
|
188
|
Van Looy T, Wozniak A, Floris G, Sciot R, Li H, Wellens J, Vanleeuw U, Fletcher JA, Manley PW, Debiec-Rychter M, Schöffski P. Phosphoinositide 3-kinase inhibitors combined with imatinib in patient-derived xenograft models of gastrointestinal stromal tumors: rationale and efficacy. Clin Cancer Res 2014; 20:6071-82. [PMID: 25316817 DOI: 10.1158/1078-0432.ccr-14-1823] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The PI3K signaling pathway drives tumor cell proliferation and survival in gastrointestinal stromal tumor (GIST). We tested the in vivo efficacy of three PI3K inhibitors (PI3Ki) in patient-derived GIST xenograft models. EXPERIMENTAL DESIGN One hundred and sixty-eight nude mice were grafted with human GIST carrying diverse KIT genotypes and PTEN genomic status. Animals were dosed orally for two weeks as follows: control group (untreated); imatinib (IMA); PI3Ki (BKM120-buparlisib, BEZ235, or BYL719) or combinations of imatinib with a PI3Ki. Western blotting, histopathology, and tumor volume evolution were used for the assessment of treatment efficacy. Furthermore, tumor regrowth was evaluated for three weeks after treatment cessation. RESULTS PI3Ki monotherapy showed a significant antitumor effect, reflected in tumor volume reduction or stabilization, inhibitory effects on mitotic activity, and PI3K signaling inhibition. The IMA+PI3Ki combination remarkably improved the efficacy of either single-agent treatment with more pronounced tumor volume reduction and enhanced proapoptotic effects over either single agent. Response to IMA+PI3Ki was found to depend on the KIT genotype and specific model-related molecular characteristics. CONCLUSION IMA+PI3Ki has significant antitumor efficacy in GIST xenografts as compared with single-agent treatment, resulting in more prominent tumor volume reduction and enhanced induction of apoptosis. Categorization of GIST based on KIT genotype and PI3K/PTEN genomic status combined with dose optimization is suggested for patient selection for clinical trials exploring such combinations.
Collapse
Affiliation(s)
- Thomas Van Looy
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Giuseppe Floris
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Haifu Li
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jasmien Wellens
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ulla Vanleeuw
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Paul W Manley
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium. Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| |
Collapse
|
189
|
Chan SL, Ma BBY. An update on the safety and efficacy of regorafenib in the treatment of solid cancers. Expert Opin Drug Metab Toxicol 2014; 10:1607-14. [DOI: 10.1517/17425255.2014.970169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
190
|
Abstract
Subclonal cancer populations change spatially and temporally during the disease course. Studies are revealing branched evolutionary cancer growth with low-frequency driver events present in subpopulations of cells, providing escape mechanisms for targeted therapeutic approaches. Despite such complexity, evidence is emerging for parallel evolution of subclones, mediated through distinct somatic events converging on the same gene, signal transduction pathway, or protein complex in different subclones within the same tumor. Tumors may follow gradualist paths (microevolution) as well as major shifts in evolutionary trajectories (macroevolution). Although macroevolution has been subject to considerable controversy in post-Darwinian evolutionary theory, we review evidence that such nongradual, saltatory leaps, driven through chromosomal rearrangements or genome doubling, may be particularly relevant to tumor evolution. Adapting cancer care to the challenges imposed by tumor micro- and macroevolution and developing deeper insight into parallel evolutionary events may prove central to improving outcome and reducing drug development costs.
Collapse
Affiliation(s)
- Marco Gerlinger
- Cancer Research UK London Research Institute, London, United Kingdom WC2A 3LY;
| | | | | | | | | | | |
Collapse
|
191
|
Garner AP, Gozgit JM, Anjum R, Vodala S, Schrock A, Zhou T, Serrano C, Eilers G, Zhu M, Ketzer J, Wardwell S, Ning Y, Song Y, Kohlmann A, Wang F, Clackson T, Heinrich MC, Fletcher JA, Bauer S, Rivera VM. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin Cancer Res 2014; 20:5745-5755. [PMID: 25239608 DOI: 10.1158/1078-0432.ccr-14-1397] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE KIT is the major oncogenic driver of gastrointestinal stromal tumors (GIST). Imatinib, sunitinib, and regorafenib are approved therapies; however, efficacy is often limited by the acquisition of polyclonal secondary resistance mutations in KIT, with those located in the activation (A) loop (exons 17/18) being particularly problematic. Here, we explore the KIT-inhibitory activity of ponatinib in preclinical models and describe initial characterization of its activity in patients with GIST. EXPERIMENTAL DESIGN The cellular and in vivo activities of ponatinib, imatinib, sunitinib, and regorafenib against mutant KIT were evaluated using an accelerated mutagenesis assay and a panel of engineered and GIST-derived cell lines. The ponatinib-KIT costructure was also determined. The clinical activity of ponatinib was examined in three patients with GIST previously treated with all three FDA-approved agents. RESULTS In engineered and GIST-derived cell lines, ponatinib potently inhibited KIT exon 11 primary mutants and a range of secondary mutants, including those within the A-loop. Ponatinib also induced regression in engineered and GIST-derived tumor models containing these secondary mutations. In a mutagenesis screen, 40 nmol/L ponatinib was sufficient to suppress outgrowth of all secondary mutants except V654A, which was suppressed at 80 nmol/L. This inhibitory profile could be rationalized on the basis of structural analyses. Ponatinib (30 mg daily) displayed encouraging clinical activity in two of three patients with GIST. CONCLUSION Ponatinib possesses potent activity against most major clinically relevant KIT mutants and has demonstrated preliminary evidence of activity in patients with refractory GIST. These data strongly support further evaluation of ponatinib in patients with GIST.
Collapse
Affiliation(s)
| | | | - Rana Anjum
- ARIAD Pharmaceuticals, Inc, Cambridge, MA
| | | | | | | | - Cesar Serrano
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Grant Eilers
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Meijun Zhu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Julia Ketzer
- Sarcoma Center, Dept. of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | | | - Yaoyu Ning
- ARIAD Pharmaceuticals, Inc, Cambridge, MA
| | | | | | - Frank Wang
- ARIAD Pharmaceuticals, Inc, Cambridge, MA
| | | | - Michael C Heinrich
- Portland VA Medical Center and OHSU Knight Cancer Institute, Portland, Oregon
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sebastian Bauer
- Sarcoma Center, Dept. of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
192
|
Burrell RA, Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol 2014; 8:1095-111. [PMID: 25087573 PMCID: PMC5528620 DOI: 10.1016/j.molonc.2014.06.005] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer drug resistance is a major problem, with the majority of patients with metastatic disease ultimately developing multidrug resistance and succumbing to their disease. Our understanding of molecular events underpinning treatment failure has been enhanced by new genomic technologies and pre-clinical studies. Intratumour genetic heterogeneity (ITH) is a prominent contributor to therapeutic failure, and it is becoming increasingly apparent that individual tumours may achieve resistance via multiple routes simultaneously - termed polyclonal resistance. Efforts to target single resistance mechanisms to overcome therapeutic failure may therefore yield only limited success. Clinical studies with sequential analysis of tumour material are needed to enhance our understanding of inter-clonal functional relationships and tumour evolution during therapy, and to improve drug development strategies in cancer medicine.
Collapse
Affiliation(s)
- Rebecca A Burrell
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3L7, UK; UCL Cancer Institute, Paul O'Gorman Building University College London, 72 Huntley Street, London WC1E 6DD, UK.
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3L7, UK; UCL Cancer Institute, Paul O'Gorman Building University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
193
|
Prudkin L, Nuciforo P. Obstacles to precision oncology: confronting current factors affecting the successful introduction of biomarkers to the clinic. Cell Oncol (Dordr) 2014; 38:39-48. [PMID: 25185990 DOI: 10.1007/s13402-014-0192-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tailoring treatment strategies to individual patients requires the availability of reliable biomarkers. Despite important investment in biomarker research, few examples of successful biomarker-drug co-development are currently seen in clinical practice. The validity of a biomarker measurement may be affected by different pre-analytical, analytical and post-analytical factors. The lack of control or oversight of any of these factors may ultimately lead to failure in translating a promising research finding into clinical practice. In the present review, we put into perspective some of the obstacles to "precision" oncology, focusing on the technical and biological hurdles that may affect the validity of a biomarker result and, ultimately, the likelihood of a new targeted agent to reach the clinic. CONCLUSION Biomarker application in precision oncology must consider the evolution of neoplastic disease, evaluate strengths and limitations of the platform used for the determination, and efficiently address specimen type and handling issues. In-depth analytical validation of a new biomarker test that includes evaluation of target stability should be performed before the test is used in clinical samples. More efficient sampling and use of high-sensitivity methodologies may overcome the influence of tumor heterogeneity on biomarker measurement. Clinical trials with biomarker endpoints may only be successful when multidisciplinary academic study teams are involved and results meet the highest quality standards.
Collapse
Affiliation(s)
- Ludmila Prudkin
- Molecular Oncology Laboratory, Vall d'Hebron Institute of Oncology, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | | |
Collapse
|
194
|
Mateo J, Gerlinger M, Rodrigues DN, de Bono JS. The promise of circulating tumor cell analysis in cancer management. Genome Biol 2014. [PMID: 25222379 DOI: 10.1186/s13059‐014‐0448‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enumeration and molecular characterization of circulating tumor cells isolated from peripheral blood of patients with cancer can aid selection of targeted therapy for patients, monitoring of response to therapies and optimization of drug development, while also providing valuable information about intratumoral heterogeneity.
Collapse
|
195
|
Mateo J, Gerlinger M, Rodrigues DN, de Bono JS. The promise of circulating tumor cell analysis in cancer management. Genome Biol 2014; 15:448. [PMID: 25222379 PMCID: PMC4281949 DOI: 10.1186/s13059-014-0448-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enumeration and molecular characterization of circulating tumor cells isolated from peripheral blood of patients with cancer can aid selection of targeted therapy for patients, monitoring of response to therapies and optimization of drug development, while also providing valuable information about intratumoral heterogeneity.
Collapse
Affiliation(s)
- Joaquin Mateo
- />Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG UK
- />Drug Development Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT UK
| | - Marco Gerlinger
- />Centre for Evolution and Cancer, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP UK
- />Gastrointestinal Cancer Unit, Department of Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ UK
| | - Daniel Nava Rodrigues
- />Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG UK
- />Drug Development Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT UK
| | - Johann S de Bono
- />Division of Cancer Therapeutics and Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG UK
- />Drug Development Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT UK
| |
Collapse
|
196
|
Nannini M, Astolfi A, Urbini M, Biasco G, Pantaleo MA. Liquid biopsy in gastrointestinal stromal tumors: a novel approach. J Transl Med 2014; 12:210. [PMID: 25123679 PMCID: PMC4262092 DOI: 10.1186/1479-5876-12-210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/07/2014] [Indexed: 02/05/2023] Open
Abstract
The role of molecular analysis in the management of gastrointestinal stromal tumors (GIST) remains indisputable. To date, tumor tissue extracted from specimens obtained by surgical or biopsy procedures has been the only source of the tumor DNA required for the molecular and genomic assessment of cancer. However, tumor tissue sampling has several clinical limitations: for example, the invasiveness of these procedures precludes repeated sampling. Thus, it is possible to obtain only a static molecular picture of the disease, a picture that lacks the inter- and intra-metastatic molecular heterogeneity that characterizes most GIST. In contrast, circulating tumor DNA obtained from a patient’s bloodstream, known as liquid biopsy, can theoretically overcome the limitations of tissue biopsies and provide the same molecular and genomic information. GIST are recognized as a paradigm of molecular biology among solid tumors. Although few but promising data on liquid biopsy in GIST have been accumulated to date, these tumors may provide the optimal field for application of this challenging approach.
Collapse
Affiliation(s)
| | | | | | | | - Maria A Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
197
|
Pantaleo MA, Astolfi A, Urbini M, Fuligni F, Saponara M, Nannini M, Lolli C, Indio V, Santini D, Ercolani G, Brandi G, Pinna AD, Biasco G. Dystrophin deregulation is associated with tumor progression in KIT/PDGFRA mutant gastrointestinal stromal tumors. Clin Sarcoma Res 2014; 4:9. [PMID: 25143820 PMCID: PMC4138414 DOI: 10.1186/2045-3329-4-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/28/2014] [Indexed: 11/15/2022] Open
Abstract
Background Intragenic deletions of the dystrophin-encoding and muscular dystrophy-associated DMD gene have been recently described in gastrointestinal stromal tumor (GIST), rhabdomyosarcoma (RMS) and leiomyosarcoma (LMS). We evaluated the copy numbers and gene expression levels of DMD in our series of GIST patients who were already studied with wide genome assays, to investigate more fully a correlation between dystrophin status and disease annotations. Findings Our study highlighted a recurrent intragenic deletion on chromosome X, involving the DMD gene that codes for human dystrophin in GIST patients. Of 29 KIT/PDGFRA mutant GIST samples, 9 (31%) showed deletions of the DMD gene, which were focal and intragenic in 8 cases, and involved loss of an entire chromosome in one case (GIST_188). DMD loss was seen in only 5 patients with metastasis, whereas 18 out of 20 patients with localized disease had wild-type DMD (P = 0.0004, Fisher exact test). None of the 6 KIT/PDGFRA WT GIST showed DMD alterations. Conclusions Our study confirms the presence of DMD deletions only in KIT/PDGFRA mutant GIST and this event is almost associated with metastatic disease. These findings are, of course, quite preliminary but support development of potential therapeutic strategies that target and restore DMD function in the treatment of metastatic GIST.
Collapse
Affiliation(s)
- Maria A Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy ; "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Milena Urbini
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Fabio Fuligni
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maristella Saponara
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Cristian Lolli
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Donatella Santini
- Pathology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giorgio Ercolani
- Department of General Surgery and Transplantation, Sant'Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
| | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Antonio D Pinna
- Department of General Surgery and Transplantation, Sant'Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
| | - Guido Biasco
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy ; "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| |
Collapse
|
198
|
Nishida T, Doi T, Naito Y. Tyrosine kinase inhibitors in the treatment of unresectable or metastatic gastrointestinal stromal tumors. Expert Opin Pharmacother 2014; 15:1979-89. [PMID: 24990162 DOI: 10.1517/14656566.2014.937707] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Gastrointestinal stromal tumor (GIST) is the most common sarcoma of the gastrointestinal tract. Proliferation of GIST is driven by activating mutations in the KIT or PDGFRA genes that found in most sporadic GISTs. Surgery is the main remedial measure for primary GIST, and imatinib is the principal therapeutic of choice for unresectable or metastatic GIST. Imatinib revolutionized treatment for unresectable or metastatic GISTs; however, resistance to imatinib has inevitably developed for most GIST patients. AREAS COVERED PubMed was searched to find biological studies of GIST and clinical trials of molecularly targeted agents on unresectable or metastatic GISTs, and the key papers found have been reviewed. In this paper, the standard therapy which includes imatinib, sunitinib and regorafenib for unresectable or metastatic GIST has been reviewed and molecular mechanisms of resistance for tyrosine kinase inhibitors (TKIs) have been postulated and discussed. Treatment measures for resistant GIST and therapeutic choices after the standard therapy have also been described. EXPERT OPINION The standard therapy for unresectable or metastatic GISTs is first-line imatinib, second-line sunitinib and third-line regorafenib. After standard therapy, best supportive care or clinical trials is recommended in the guidelines. However, patients may benefit from continuation of TKIs beyond disease progression and from rechallenge of TKIs used previously.
Collapse
Affiliation(s)
- Toshirou Nishida
- National Cancer Center Hospital East, Surgery , 6-5-1 Kashiwanoha, Kashiwa, 277-8577 , Japan
| | | | | |
Collapse
|
199
|
van Engen-van Grunsven AC, Küsters-Vandevelde HV, De Hullu J, van Duijn LM, Rijntjes J, Bovée JV, Groenen PJ, Blokx WA. NRAS mutations are more prevalent than KIT mutations in melanoma of the female urogenital tract—A study of 24 cases from the Netherlands. Gynecol Oncol 2014; 134:10-4. [DOI: 10.1016/j.ygyno.2014.04.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/18/2014] [Accepted: 04/29/2014] [Indexed: 02/03/2023]
|
200
|
Carlino MS, Todd JR, Rizos H. Resistance to c-Kit inhibitors in melanoma: insights for future therapies. Oncoscience 2014; 1:423-6. [PMID: 25594040 PMCID: PMC4284619 DOI: 10.18632/oncoscience.51] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/05/2014] [Indexed: 12/13/2022] Open
Abstract
Mutations activating the receptor tyrosine kinase c-Kit occur commonly in melanomas arising on mucosal membranes and acral skin. Clinical studies have demonstrated that selective inhibition of c-Kit is effective in treating patients with c-Kit mutant gastrointestinal stromal tumors, but c-Kit inhibitor activity has been disappointing in c-Kit mutant melanoma patients. Activated c-Kit utilises phosphatidylinositol 3-kinase (PI3K) signalling as the dominant effector of cell proliferation and survival with the mitogen-activated protein kinase (MAPK) cascade serving as an ancillary survival pathway. We confirmed that these pathways are re-activated in melanoma cells with acquired resistance to c-Kit inhibitors and that these resistant sublines remain sensitive to the concurrent inhibition of MAPK and PI3K signalling. These findings suggest that durable responses in c-Kit mutant melanoma may require combination therapies that selectively inhibit critical downstream proliferative and survival pathways. We also discuss the interaction between targeted therapies and anti-tumor immune responses and the need to consider immunotherapies in new combinatorial treatment approaches.
Collapse
Affiliation(s)
- Matteo S Carlino
- Westmead Institute for Cancer Research, The University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia ; Department of Medical Oncology, Westmead and Blacktown Hospitals, New South Wales, Australia ; Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Jason R Todd
- Westmead Institute for Cancer Research, The University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia ; Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Helen Rizos
- Westmead Institute for Cancer Research, The University of Sydney at Westmead Millennium Institute, Westmead, New South Wales, Australia ; Department of Medical Oncology, Westmead and Blacktown Hospitals, New South Wales, Australia ; Australian School of Advanced Medicine, Macquarie University, New South Wales, Australia
| |
Collapse
|