151
|
Ma SA, Imadojemu S, Beer K, Seykora JT. Inflammatory features of frontal fibrosing alopecia. J Cutan Pathol 2017; 44:672-676. [PMID: 28429464 DOI: 10.1111/cup.12955] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Frontal fibrosing alopecia (FFA) is a cicatricial alopecia typically occurring in postmenopausal women. The etiology and pathophysiology of FFA is poorly understood but thought to be immune mediated. This study aims to further explore the extent of fibrosis and the inflammatory microenvironment by characterizing Langerhans cells (LCs), helper T cells, cytotoxic T cells and B cells near hair follicles in FFA. METHODS Eleven paraffin-embedded tissues from patients with a clinical and histopathologic diagnosis of FFA were selected for immunohistochemical studies using CD3, CD4, CD8, CD1a and CD20. The lymphocytes and LCs were counted around involved follicles. The CD4/CD8 T-lymphocyte ratios were calculated and compared to the CD4/CD8 T-lymphocyte ratios in uninvolved areas. RESULTS On histopathologic review, at least 35% of follicles in each case were affected by the disease with concentric perifollicular fibrosis and a perifollicular lichenoid lymphocytic infiltrate around the infundibuloisthmic portion of the hair follicle. There was an increase of perifollicular LCs (mean of 18, SD of 5.5) and intrafollicular LCs (mean of 14, SD of 4.3) in involved follicles compared to uninvolved follicles (P < .0001). The involved follicles also showed a relative decrease in the CD4/CD8 ratio indicating increased numbers of CD8+ T cells; a finding distinct from the CD4-predominant population in uninvolved follicles (P < .0001). CONCLUSION The inflammatory features of FFA show a CD8-biased T-cell infiltrate with increased numbers of LCs in the infundibuloisthmic region. The increased LCs may represent an aberrant immune reaction promoting a CD8+ T-cell response.
Collapse
Affiliation(s)
- Sophia A Ma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sotonye Imadojemu
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth Beer
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Beer Dermatology, West Palm Beach, Florida
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
152
|
Moreno-Arrones O, Saceda-Corralo D, Fonda-Pascual P, Rodrigues-Barata A, Buendía-Castaño D, Alegre-Sánchez A, Pindado-Ortega C, Molins M, Perosanz D, Segurado-Miravalles G, Jaén P, Vañó-Galván S. Frontal fibrosing alopecia: clinical and prognostic classification. J Eur Acad Dermatol Venereol 2017; 31:1739-1745. [DOI: 10.1111/jdv.14287] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | | | | | - M. Molins
- Dermatology Department; Ramon y Cajal Hospital; Madrid Spain
| | - D. Perosanz
- Dermatology Department; Ramon y Cajal Hospital; Madrid Spain
| | | | - P. Jaén
- Dermatology Department; Ramon y Cajal Hospital; Madrid Spain
| | - S. Vañó-Galván
- Dermatology Department; Ramon y Cajal Hospital; Madrid Spain
| |
Collapse
|
153
|
Esteban-Lucía L, Molina-Ruiz A, Requena L. Update on Frontal Fibrosing Alopecia. ACTAS DERMO-SIFILIOGRAFICAS 2017. [DOI: 10.1016/j.adengl.2017.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
154
|
Actualización en alopecia frontal fibrosante. ACTAS DERMO-SIFILIOGRAFICAS 2017; 108:293-304. [DOI: 10.1016/j.ad.2016.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/20/2016] [Accepted: 11/27/2016] [Indexed: 02/07/2023] Open
|
155
|
Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix. Eur J Cell Biol 2017; 96:632-641. [PMID: 28413121 DOI: 10.1016/j.ejcb.2017.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21CIP1, p27KIP1 and p57KIP2) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21CIP1, p27KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically relevant model system for cell cycle physiology research of human epithelial cells within their natural tissue habitat.
Collapse
|
156
|
Kolivras A, Thompson C. Reply to: "Lack of specificity of cytokeratin-15 loss in scarring alopecias". J Am Acad Dermatol 2017; 76:e137-e138. [PMID: 28325419 DOI: 10.1016/j.jaad.2016.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 10/19/2022]
Affiliation(s)
- Athanassios Kolivras
- Department of Dermatology, Saint-Pierre, Brugmann and Queen Fabiola Children University Hospitals, Université Libre de Bruxelles, Brussels, Belgium; Department of Dermatopathology, Saint-Pierre, Brugmann and Queen Fabiola Children University Hospitals, Université Libre de Bruxelles, Brussels, Belgium.
| | - Curtis Thompson
- Department of Biomedical Engineering, Oregon Health Sciences University, Portland, Oregon; Department of Pathology, Oregon Health Sciences University, Portland, Oregon; Department of Dermatology, Oregon Health Sciences University, Portland, Oregon
| |
Collapse
|
157
|
Jumper N, Hodgkinson T, Paus R, Bayat A. Site-specific gene expression profiling as a novel strategy for unravelling keloid disease pathobiology. PLoS One 2017; 12:e0172955. [PMID: 28257480 PMCID: PMC5336271 DOI: 10.1371/journal.pone.0172955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Keloid disease (KD) is a fibroproliferative cutaneous tumour characterised by heterogeneity, excess collagen deposition and aggressive local invasion. Lack of a validated animal model and resistance to a multitude of current therapies has resulted in unsatisfactory clinical outcomes of KD management. In order to address KD from a new perspective, we applied for the first time a site-specific in situ microdissection and gene expression profiling approach, through combined laser capture microdissection and transcriptomic array. The aim here was to analyse the utility of this approach compared with established methods of investigation, including whole tissue biopsy and monolayer cell culture techniques. This study was designed to approach KD from a hypothesis-free and compartment-specific angle, using state-of-the-art microdissection and gene expression profiling technology. We sought to characterise expression differences between specific keloid lesional sites and elucidate potential contributions of significantly dysregulated genes to mechanisms underlying keloid pathobiology, thus informing future explorative research into KD. Here, we highlight the advantages of our in situ microdissection strategy in generating expression data with improved sensitivity and accuracy over traditional methods. This methodological approach supports an active role for the epidermis in the pathogenesis of KD through identification of genes and upstream regulators implicated in epithelial-mesenchymal transition, inflammation and immune modulation. We describe dermal expression patterns crucial to collagen deposition that are associated with TGFβ-mediated signalling, which have not previously been examined in KD. Additionally, this study supports the previously proposed presence of a cancer-like stem cell population in KD and explores the possible contribution of gene dysregulation to the resistance of KD to conventional therapy. Through this innovative in situ microdissection gene profiling approach, we provide better-defined gene signatures of distinct KD regions, thereby addressing KD heterogeneity, facilitating differential diagnosis with other cutaneous fibroses via transcriptional fingerprinting, and highlighting key areas for future KD research.
Collapse
Affiliation(s)
- N. Jumper
- Plastic and Reconstructive Surgery Research, University of Manchester, Oxford Rd, Manchester, United Kingdom
| | - T. Hodgkinson
- Plastic and Reconstructive Surgery Research, University of Manchester, Oxford Rd, Manchester, United Kingdom
- Centre for Tissue Injury and Repair, University of Manchester, and MAHSC, Manchester, United Kingdom
| | - R. Paus
- Centre for Dermatology Research, University of Manchester, and MAHSC, Manchester, United Kingdom
| | - A. Bayat
- Plastic and Reconstructive Surgery Research, University of Manchester, Oxford Rd, Manchester, United Kingdom
- Centre for Dermatology Research, University of Manchester, and MAHSC, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
158
|
Reply to "Clusters of CD123 + plasmacytoid dendritic cells help distinguish lupus alopecia from lichen planopilaris": Plasmacytoid dendritic cell content, clustering, and distribution pattern are useful parameters in differentiating lupus alopecia from lichen planopilaris. J Am Acad Dermatol 2017; 76:e63. [PMID: 28089017 DOI: 10.1016/j.jaad.2016.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/10/2016] [Indexed: 11/21/2022]
|
159
|
Missio DM, Dias MFRG, Trüeb RM. Familial Cicatricial Alopecia: Report of Familial Frontal Fibrosing Alopecia and Fibrosing Alopecia in a Pattern Distribution. Int J Trichology 2017; 9:130-134. [PMID: 28932068 PMCID: PMC5596651 DOI: 10.4103/ijt.ijt_59_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Frontal fibrosing alopecia (FFA) and fibrosing alopecia in a pattern distribution (FAPD) as originally reported by Kossard in 1994 and by Zinkernagel and Trüeb in 2000, respectively, represent two distinct patterns of cicatricial pattern hair loss. Both share a patterned distribution and histological evidence of a lichenoid follicular inflammation with fibrosis. FFA is characterized by a marginal alopecia along the frontotemporal hairline, and FAPD by a progressive alopecia of the centroparietal scalp. Since the original reports, evidence has accumulated that there exists considerable clinical overlap among FFA, FAPD, and lichen planopilaris, with coexistence of features of the three conditions within the same individual. Moreover, familial cases of FFA have been reported, pointing to a possible genetic background to the condition. Our observation of familial occurrence of FFA and FAPD in daughter and mother, respectively, further underscore a nosologic relationship between the two conditions with respect to both an androgenetic background and the (lichenoid) inflammatory reaction pattern.
Collapse
Affiliation(s)
- Dandara Meurer Missio
- Department of Dermatology, Center for Medical Sciences, Fluminense Federal University, University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil
| | - Maria Fernanda Reis Gavazzoni Dias
- Department of Dermatology, Center for Medical Sciences, Fluminense Federal University, University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil
| | - Ralph Michel Trüeb
- Center for Dermatology and Hair Diseases Professor Trüeb, Zurich-Wallisellen, Switzerland
| |
Collapse
|
160
|
Abbas O, Kurban M. Reply to 'CD123 immunohistochemistry for plasmacytoid dendritic cells is useful in the diagnosis of scarring alopecia': three PDC-related parameters are useful in differentiating lupus alopecia from LPP. J Cutan Pathol 2016; 44:109-110. [PMID: 27862142 DOI: 10.1111/cup.12845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/10/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Ossama Abbas
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
161
|
Jimenez F, Harries M, Poblet E. Frontal fibrosing alopecia: a disease fascinating for the researcher, disappointing for the clinician and distressing for the patient. Exp Dermatol 2016; 25:853-854. [DOI: 10.1111/exd.13104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Francisco Jimenez
- Mediteknia Hair Transplant Clinic and Medical Pathology Group; University of Las Palmas de Gran Canaria; Las Palmas de Gran Canaria Spain
| | - Matthew Harries
- Salford Royal NHS Foundation Trust; The University of Manchester; Salford Manchester UK
| | - Enrique Poblet
- Department of Pathology; Hospital General Universitario Reina Sofía y Universidad de Murcia; Murcia Spain
| |
Collapse
|
162
|
Tziotzios C, Stefanato CM, Fenton DA, Simpson MA, McGrath JA. Frontal fibrosing alopecia: reflections and hypotheses on aetiology and pathogenesis. Exp Dermatol 2016; 25:847-852. [DOI: 10.1111/exd.13071] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Christos Tziotzios
- St John's Institute of Dermatology; King's College London (Guy's Campus); London UK
| | | | - David A. Fenton
- St John's Institute of Dermatology; King's College London (Guy's Campus); London UK
| | - Michael A. Simpson
- Division of Genetics and Molecular Medicine; King's College London; Guy's Hospital; London UK
| | - John A. McGrath
- St John's Institute of Dermatology; King's College London (Guy's Campus); London UK
| |
Collapse
|
163
|
A New Subtype of Lichen Planopilaris Affecting Vellus Hairs and Clinically Mimicking Androgenetic Alopecia. Dermatol Surg 2016; 42:1174-80. [DOI: 10.1097/dss.0000000000000865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
164
|
|
165
|
Purba TS, Brunken L, Hawkshaw NJ, Peake M, Hardman J, Paus R. A primer for studying cell cycle dynamics of the human hair follicle. Exp Dermatol 2016; 25:663-8. [PMID: 27094702 DOI: 10.1111/exd.13046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 12/28/2022]
Abstract
The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lars Brunken
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, Venerology and Allergy, Charité University Medicine Berlin, Berlin, Germany
| | - Nathan J Hawkshaw
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Michael Peake
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,BSc Programme Biological Sciences, University of Huddersfield, Huddersfield, UK
| | - Jonathan Hardman
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
166
|
Pfannes EKB, Hadam S, Döge N, Fimmel S, Blume-Peytavi U, Vogt A. Mini-zone cyanoacrylate skin surface stripping: a new method for non-invasive sampling of scalp material. Exp Dermatol 2016; 25:555-6. [DOI: 10.1111/exd.13006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Eva K. B. Pfannes
- Clinical Research Center for Hair and Skin Science; Department of Dermatology and Allergy; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science; Department of Dermatology and Allergy; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - Nadine Döge
- Clinical Research Center for Hair and Skin Science; Department of Dermatology and Allergy; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - Sabine Fimmel
- Clinical Research Center for Hair and Skin Science; Department of Dermatology and Allergy; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science; Department of Dermatology and Allergy; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science; Department of Dermatology and Allergy; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
167
|
Ramot Y, Mastrofrancesco A, Camera E, Desreumaux P, Paus R, Picardo M. The role of PPARγ-mediated signalling in skin biology and pathology: new targets and opportunities for clinical dermatology. Exp Dermatol 2016; 24:245-51. [PMID: 25644500 DOI: 10.1111/exd.12647] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 12/19/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that modulate the expression of multiple different genes involved in the regulation of lipid, glucose and amino acid metabolism. PPARs and cognate ligands also regulate important cellular functions, including cell proliferation and differentiation, as well as inflammatory responses. This includes a role in mediating skin and pilosebaceous unit homoeostasis: PPARs appear to be essential for maintaining skin barrier permeability, inhibit keratinocyte cell growth, promote keratinocyte terminal differentiation and regulate skin inflammation. They also may have protective effects on human hair follicle (HFs) epithelial stem cells, while defects in PPARγ-mediated signalling may promote the death of these stem cells and thus facilitate the development of cicatricial alopecia (lichen planopilaris). Overall, however, selected PPARγ modulators appear to act as hair growth inhibitors that reduce the proliferation and promote apoptosis of hair matrix keratinocytes. The fact that commonly prescribed PPARγ-modulatory drugs of the thiazolidine-2,4-dione class can exhibit a battery of adverse cutaneous effects underscores the importance of distinguishing beneficial from clinically undesired cutaneous activities of PPARγ ligands and to better understand on the molecular level how PPARγ-regulated cutaneous lipid metabolism and PPARγ-mediated signalling impact on human skin physiology and pathology. Surely, the therapeutic potential that endogenous and exogenous PPARγ modulators may possess in selected skin diseases, ranging from chronic inflammatory hyperproliferative dermatoses like psoriasis and atopic dermatitis, via scarring alopecia and acne can only be harnessed if the complexities of PPARγ signalling in human skin and its appendages are systematically dissected.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
168
|
Saadeh D, Kurban M, Abbas O. Update on the role of plasmacytoid dendritic cells in inflammatory/autoimmune skin diseases. Exp Dermatol 2016; 25:415-21. [PMID: 26837058 DOI: 10.1111/exd.12957] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, blood-derived dendritic cell antigen-2 (BDCA-2) and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. When activated, pDCs are capable of producing large quantities of type I IFNs (mainly IFN-α/β), which provide antiviral resistance and link the innate and adaptive immunity. While generally lacking from normal skin, pDCs infiltrate the skin and appear to be involved in the pathogenesis of several inflammatory, infectious (especially viral) and neoplastic entities. In recent years, pDC role in inflammatory/autoimmune skin conditions has been extensively studied. Unlike type I IFN-mediated protective immunity that pDCs provide at the level of the skin by regulated sensing of microbial or self-nucleic acids upon skin damage, excessive sensing may elicit IFN-driven inflammatory/autoimmune diseases. In this review, focus will be on the role of pDCs in cutaneous inflammatory/autoimmune dermatoses.
Collapse
Affiliation(s)
- Dana Saadeh
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ossama Abbas
- Dermatology Department, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
169
|
Tziotzios C, Fenton DA, Stefanato CM, McGrath JA. Finasteride is of uncertain utility in treating frontal fibrosing alopecia. J Am Acad Dermatol 2016; 74:e73-4. [DOI: 10.1016/j.jaad.2015.09.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/19/2022]
|
170
|
Harries MJ, Wong S, Farrant P. Frontal Fibrosing Alopecia and Increased Scalp Sweating: Is Neurogenic Inflammation the Common Link? Skin Appendage Disord 2016; 1:179-84. [PMID: 27386462 DOI: 10.1159/000444758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022] Open
Abstract
Frontal fibrosing alopecia (FFA) is an uncommon scarring hair loss disorder that is characterized by a band-like recession of the frontal hair line with eyebrow hair loss. We present a series of patients with FFA and increased sweating predominantly localized to the scalp, and potential explanations for this association are discussed. We hypothesize that the reported increase in sweating seen in our patients may be in part related to the inflammatory process occurring locally within the skin, either inducing a local axonal sweating reflex or through direct modulation of sweat gland secretion by neuropeptides.
Collapse
Affiliation(s)
- Matthew J Harries
- Dermatology Centre, University of Manchester, Salford Royal NHS Foundation Trust, Salford, UK
| | - Sharon Wong
- Department of Dermatology, Homerton University Hospital NHS Foundation Trust, London, UK
| | - Paul Farrant
- Department of Dermatology, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| |
Collapse
|
171
|
Abstract
Appreciation of different types of hair loss (alopecia) that may be encountered in hospital medicine is important to ensure accurate diagnosis and management, identify underlying medical conditions or treatments that may present with increased hair loss, recognise autoimmune alopecias and their associations, and understand the significant psychological impact of hair loss on an individual. This article discusses common causes of hair loss, as well as those conditions that may be associated with systemic disease, relevant to a general physician.
Collapse
Affiliation(s)
- Rajani Nalluri
- The University of Manchester, Salford Royal NHS Foundation Trust, Salford, UK
| | - Matthew Harries
- The University of Manchester, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
172
|
Oh JW, Kloepper J, Langan EA, Kim Y, Yeo J, Kim MJ, Hsi TC, Rose C, Yoon GS, Lee SJ, Seykora J, Kim JC, Sung YK, Kim M, Paus R, Plikus MV. A Guide to Studying Human Hair Follicle Cycling In Vivo. J Invest Dermatol 2016; 136:34-44. [PMID: 26763421 PMCID: PMC4785090 DOI: 10.1038/jid.2015.354] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022]
Abstract
Hair follicles (HFs) undergo lifelong cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative "quiescence" (telogen). Given that HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. Although available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. In this article, we present such a guide, which uses objective, well-defined, and reproducible criteria, and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in suboptimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field.
Collapse
Affiliation(s)
- Ji Won Oh
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA
| | | | - Ewan A Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Comprehensive Centre for Inflammation Research, University of Lübeck, Germany
| | - Yongsoo Kim
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joongyeub Yeo
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California, USA
| | - Min Ji Kim
- Department of Dermatology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Tsai-Ching Hsi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA
| | - Christian Rose
- Dermatohistologisches Labor Rose/Bartsch, Lübeck, Germany
| | - Ghil Suk Yoon
- Department of Pathology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Seok-Jong Lee
- Department of Dermatology, Kyungpook National University School of Medicine, Daegu, Korea
| | - John Seykora
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jung Chul Kim
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Young Kwan Sung
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Moonkyu Kim
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea.
| | - Ralf Paus
- Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Münster, Münster, Germany.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|
173
|
Cerqueira ER, Valente N, Sotto MN, Romiti R. Comparative Analysis of Immunopathological Features of Lichen Planopilaris and Female Patients with Frontal Fibrosing Alopecia. Int J Trichology 2016; 8:197-202. [PMID: 28442882 PMCID: PMC5387886 DOI: 10.4103/0974-7753.203179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Frontal fibrosing alopecia (FFA) is a disorder characterized by progressive cicatricial alopecia (CA). Its classification as a clinical variant of lichen planopilaris (LPP) or as a unique disorder is controversial. The presence of Langerhans cells within the bulge area and the sebaceous epithelium and the presence of lymphocytic infiltrate in this area in CA have led to a series of hypotheses, although limited, about their development. To our knowledge, scarce is the literature demonstrating immunoanalytical studies comparing both disorders. Objective: The authors sought to describe diagnostic findings, comorbidities, and immunopathological features of female patients with FFA as compared to LPP. Materials and Methods: This retrospective single-center study included patients given the diagnosis of FFA or LPP. The LPP activity index was used to evaluate objective signs and subjective symptoms. Biopsy specimens were obtained from active, inflammatory areas of the scalp, and the inflammatory infiltrate intensity and quality were compared. Direct immunofluorescence for IgA, IgM, and IgG and immunohistochemistry to demonstrate the expression of CD1a, CD3, CD4, CD8, CD68, and 2,3-dioxygenase indoleamine were performed. Results: Twenty female patients (10 patients with FFA and 10 patients with LPP) were included in the study. Histopathological findings evidenced reduced number of hair follicles and perifollicular fibrosis in both disorders. Immunofluorescence findings resulted positive in 50% of FFA cases and 40% of LPP cases. Conclusion: Although clinically different, our findings suggest that there are, to date, no histological or immunological findings that allow us to accurately separate these two forms of scarring alopecia, namely FFA and LPP.
Collapse
Affiliation(s)
| | - Neusa Valente
- Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil.,Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Mírian Nacagami Sotto
- Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil.,Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Ricardo Romiti
- Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
174
|
Langan EA, Philpott MP, Kloepper JE, Paus R. Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol 2015; 24:903-11. [DOI: 10.1111/exd.12836] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ewan A. Langan
- Department of Dermatology; University of Luebeck; Luebeck Germany
- Centre for Cutaneous Research; Blizard Institute; Queen Mary University; London UK
| | - Michael P. Philpott
- Centre for Cutaneous Research; Blizard Institute; Queen Mary University; London UK
| | | | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Department of Dermatology; University of Muenster; Muenster Germany
| |
Collapse
|
175
|
Lacina L, Plzak J, Kodet O, Szabo P, Chovanec M, Dvorankova B, Smetana K. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche. Int J Mol Sci 2015; 16:24094-110. [PMID: 26473842 PMCID: PMC4632740 DOI: 10.3390/ijms161024094] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Epidermal stem cells (ESCs) are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle—also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also contribute to this niche formation. Cancer stem cells (CSCs) participate in formation of common epithelial malignant diseases such as basal cell or squamous cell carcinoma. In this review article, we focus on the role of cancer microenvironment with emphasis on the effect of cancer-associated fibroblasts (CAFs). This model reflects various biological aspects of interaction between cancer cell and CAFs with multiple parallels to interaction of normal epidermal stem cells and their niche. The complexity of intercellular interactions within tumor stroma is depicted on example of malignant melanoma, where keratinocytes also contribute the microenvironmental landscape during early phase of tumor progression. Interactions seen in normal bulge region can therefore be an important source of information for proper understanding to melanoma. The therapeutic consequences of targeting of microenvironment in anticancer therapy and for improved wound healing are included to article.
Collapse
Affiliation(s)
- Lukas Lacina
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, 12800 Prague 2, Czech Republic.
- Department of Dermatology and Venereology, 1st Faculty of Medicine and General University Hospital, Charles University, U Nemocnice 2, 12808 Prague 2, Czech Republic.
| | - Jan Plzak
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine and University Hospital Motol, Charles University, V Úvalu 84, 15006 Prague 5, Czech Republic.
| | - Ondrej Kodet
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, 12800 Prague 2, Czech Republic.
- Department of Dermatology and Venereology, 1st Faculty of Medicine and General University Hospital, Charles University, U Nemocnice 2, 12808 Prague 2, Czech Republic.
| | - Pavol Szabo
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, 12800 Prague 2, Czech Republic.
| | - Martin Chovanec
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine and University Hospital Motol, Charles University, V Úvalu 84, 15006 Prague 5, Czech Republic.
| | - Barbora Dvorankova
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, 12800 Prague 2, Czech Republic.
| | - Karel Smetana
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, 12800 Prague 2, Czech Republic.
| |
Collapse
|
176
|
Dobreva A, Paus R, Cogan N. Mathematical model for alopecia areata. J Theor Biol 2015; 380:332-45. [DOI: 10.1016/j.jtbi.2015.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
|
177
|
Familial frontal fibrosing alopecia. J Am Acad Dermatol 2015; 73:e37. [PMID: 26089074 DOI: 10.1016/j.jaad.2015.01.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
|
178
|
Sleiman R, Kurban M, Abbas O. Evaluation of the Diagnostic Value of Plasmacytoid Dendritic Cells in Differentiating the Lymphocytic Cicatricial Alopecias. Dermatology 2015; 231:158-63. [DOI: 10.1159/000431174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
|
179
|
Exploring the biology of the nail: An intriguing but less-investigated skin appendage. J Dermatol Sci 2015; 79:187-93. [PMID: 25999148 DOI: 10.1016/j.jdermsci.2015.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 02/04/2023]
Abstract
The nail is a highly keratinized structure covering the tip of the digit, and considered to have several important functions in our daily life. In recent years, as biological aspects of the nail organ have been characterized, we realize that the nail unit and the hair follicle share various biological and immunological features. In particular, development and homeostasis of the nail unit also requires intimate epithelial-mesenchymal interactions that involve signaling pathways such as Wnt. There is also a striking immunological resemblance between both appendages, since the nail matrix, like the anagen hair bulb and the bulge, was shown to present unique characteristics of an immune privileged site. On the other hand, considerable progress in identifying nail stem cells has succeeded in locating putative stem cell niches in the nail unit. In this context, it is intriguing that nail stem cells residing in the nail matrix were recently shown to possess the ability to organize the process leading to digit regeneration. Further elucidation of signaling pathways governing epithelial-mesenchymal interactions in the nail unit seems to be a key to develop a novel therapeutic tool to treat amputees using nail epithelium. However, it is at least certain that the nail unit has a promising potential for the future of regenerative medicine. This review explores the biology of the nail organ by focusing on intriguing knowledge gained from recent studies.
Collapse
|
180
|
Hair follicle dermal sheath derived cells improve islet allograft survival without systemic immunosuppression. J Immunol Res 2015; 2015:607328. [PMID: 26000314 PMCID: PMC4427120 DOI: 10.1155/2015/607328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 12/26/2022] Open
Abstract
Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1) or fibroblasts (FB, group 2) under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P < 0.001) without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation.
Collapse
|
181
|
Castellana D, Paus R, Perez-Moreno M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol 2014; 12:e1002002. [PMID: 25536657 PMCID: PMC4275176 DOI: 10.1371/journal.pbio.1002002] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/10/2014] [Indexed: 12/17/2022] Open
Abstract
Castellana, Paus, and Perez-Moreno discover that skin resident macrophages signal to skin stem cells via Wnt ligands to activate the hair follicle life cycle. Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. The cyclic life of hair follicles consists of recurring phases of growth, decay, and rest. Previous studies have identified signals that prompt a new phase of hair growth through the activation of resting hair follicle stem cells (HF-SCs). In addition to these signals, recent findings have shown that cues arising from the neighboring skin environment, in which hair follicles dwell, also participate in controlling hair follicle growth. Here we show that skin resident macrophages surround and signal to resting HF-SCs, regulating their entry into a new phase of hair follicle growth. This process involves the death and activation of a fraction of resident macrophages— resulting in Wnt ligand release —that in turn activate HF-SCs. These findings reveal additional mechanisms controlling endogenous stem cell pools that are likely to be relevant for modulating stem cell regenerative capabilities. The results provide new insights that may have implications for the development of technologies with potential applications in regeneration, aging, and cancer.
Collapse
Affiliation(s)
- Donatello Castellana
- Epithelial Cell Biology Group, BBVA Foundation-CNIO Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ralf Paus
- Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Münster, Münster, Germany
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group, BBVA Foundation-CNIO Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
182
|
Sellheyer K. Spiradenoma and cylindroma originate from the hair follicle bulge and not from the eccrine sweat gland: an immunohistochemical study with CD200 and other stem cell markers. J Cutan Pathol 2014; 42:90-101. [PMID: 25354097 DOI: 10.1111/cup.12406] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/12/2014] [Accepted: 10/25/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Spiradenoma and cylindroma have historically been described as sweat gland tumors and have often been considered to be of eccrine lineage. However, (a) associations with trichoepitheliomas in Brooke-Spiegler syndrome or with trichoepitheliomas and milia in Rasmussen syndrome, (b) neoplastic combinations with hair follicle tumors in solitary cases, and (c) anatomical considerations support a folliculosebaceous-apocrine lineage. Follicular stem cell markers may allow for further characterization of these neoplasms. METHODS A total of 97 tumors were examined for the expression pattern of follicular stem cell markers cytokeratin 15 (CK15), cytokeratin 19 (CK19), pleckstrin homology-like domain, family A, member 1 (PHLDA1), and CD200. The tumors were comprised of 27 spiradenomas, 30 cylindromas, 16 hidradenomas, 19 poromas, 4 dermal duct tumors and 1 hidroacanthoma simplex. RESULTS All spiradenomas and cylindromas were CD200-positive whereas the other tumors classified as eccrine in lineage were all CD200-negative. CK15 also discriminated between spiradenomas and cylindromas and the remaining neoplasms but not to the degree of CD200. PHLDA1 and CK19 were noncontributory. CONCLUSIONS It is concluded that both spiradenoma and cylindroma are not eccrine but follicular tumors. More specifically, it is proposed that both adnexal neoplasms are derived from the hair follicle bulge and as such represent one of the least differentiated follicular tumors.
Collapse
Affiliation(s)
- Klaus Sellheyer
- Department of Dermatology, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| |
Collapse
|
183
|
Paus R, Langan EA, Vidali S, Ramot Y, Andersen B. Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends Mol Med 2014; 20:559-70. [DOI: 10.1016/j.molmed.2014.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
|
184
|
Vogt A, Blume-Peytavi U. Selective hair therapy: bringing science to the fiction. Exp Dermatol 2014; 23:83-6. [PMID: 24387677 DOI: 10.1111/exd.12318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 01/17/2023]
Abstract
Investigations on carrier-based drug delivery systems for higher selectivity in hair therapy have clearly evolved from dye release and model studies to highly sophisticated approaches, many of which specifically tackle hair indications and the delivery of hair-relevant molecules. Here, we group recent hair disease-oriented work into efforts towards (i) improved delivery of conventional drugs, (ii) delivery of novel drug classes, for example biomolecules and (iii) targeted delivery on the cellular/molecular level. Considering the solid foundation of experimental work, it does not take a large step outside the current box of thinking to follow the idea of using large carriers (>500 nm, unlikely to penetrate as a whole) for follicular penetration, retention and protection of sensitive compounds. Yet, reports on particles <200 nm being internalized by keratinocytes and dendritic cells at sites of barrier disruption (e.g., hair follicles) combined with recent advances in nanodermatology add interesting new facets to the possibilities carrier technologies could offer, for example, unprecedented levels of selectivity. The authors provide thought-provoking ideas on how smart delivery technologies and advances in our molecular understanding of hair pathophysiology could result in a whole new era of hair therapeutics. As the field still largely remains in preclinical investigation, determined efforts towards production of medical grade material and truly translational work are needed to demonstrate surplus value of carrier systems for clinical applications.
Collapse
Affiliation(s)
- Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
185
|
Bertolini M, Zilio F, Rossi A, Kleditzsch P, Emelianov VE, Gilhar A, Keren A, Meyer KC, Wang E, Funk W, McElwee K, Paus R. Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLoS One 2014; 9:e94260. [PMID: 24832234 PMCID: PMC4022513 DOI: 10.1371/journal.pone.0094260] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/12/2014] [Indexed: 02/08/2023] Open
Abstract
Alopecia areata (AA) is a CD8+ T-cell dependent autoimmune disease of the hair follicle (HF) in which the collapse of HF immune privilege (IP) plays a key role. Mast cells (MCs) are crucial immunomodulatory cells implicated in the regulation of T cell-dependent immunity, IP, and hair growth. Therefore, we explored the role of MCs in AA pathogenesis, focusing on MC interactions with CD8+ T-cells in vivo, in both human and mouse skin with AA lesions. Quantitative (immuno-)histomorphometry revealed that the number, degranulation and proliferation of perifollicular MCs are significantly increased in human AA lesions compared to healthy or non-lesional control skin, most prominently in subacute AA. In AA patients, perifollicular MCs showed decreased TGFβ1 and IL-10 but increased tryptase immunoreactivity, suggesting that MCs switch from an immuno-inhibitory to a pro-inflammatory phenotype. This concept was supported by a decreased number of IL-10+ and PD-L1+ MCs, while OX40L+, CD30L+, 4–1BBL+ or ICAM-1+ MCs were increased in AA. Lesional AA-HFs also displayed significantly more peri- and intrafollicular- CD8+ T-cells as well as more physical MC/CD8+ T-cell contacts than healthy or non-lesional human control skin. During the interaction with CD8+ T-cells, AA MCs prominently expressed MHC class I and OX40L, and sometimes 4–1BBL or ICAM-1, suggesting that MC may present autoantigens to CD8+ T-cells and/or co-stimulatory signals. Abnormal MC numbers, activities, and interactions with CD8+ T-cells were also seen in the grafted C3H/HeJ mouse model of AA and in a new humanized mouse model for AA. These phenomenological in vivo data suggest the novel AA pathobiology concept that perifollicular MCs are skewed towards pro-inflammatory activities that facilitate cross-talk with CD8+ T-cells in this disease, thus contributing to triggering HF-IP collapse in AA. If confirmed, MCs and their CD8+ T-cell interactions could become a promising new therapeutic target in the future management of AA.
Collapse
Affiliation(s)
- Marta Bertolini
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Münster, Münster, Germany
| | - Federica Zilio
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Alfredo Rossi
- Department of Internal Medicine and Medical Specialties, University “La Sapienza”, Rome, Italy
| | - Patrick Kleditzsch
- Department of Gynaecology and Obstetrics, University of Rostock, Rostock, Germany
| | - Vladimir E. Emelianov
- Department of Pharmacology, Clinical Pharmacology and Biochemistry, Chuvash State University Medical School, Cheboksary, Russia
| | - Amos Gilhar
- Laboratory for Skin Research, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- Flieman Medical Center, Haifa, Israel
| | - Aviad Keren
- Laboratory for Skin Research, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Katja C. Meyer
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Eddy Wang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kevin McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Münster, Münster, Germany
- Institute for Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
186
|
Purba TS, Haslam IS, Poblet E, Jiménez F, Gandarillas A, Izeta A, Paus R. Human epithelial hair follicle stem cells and their progeny: current state of knowledge, the widening gap in translational research and future challenges. Bioessays 2014; 36:513-25. [PMID: 24665045 DOI: 10.1002/bies.201300166] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelial hair follicle stem cells (eHFSCs) are required to generate, maintain and renew the continuously cycling hair follicle (HF), supply cells that produce the keratinized hair shaft and aid in the reepithelialization of injured skin. Therefore, their study is biologically and clinically important, from alopecia to carcinogenesis and regenerative medicine. However, human eHFSCs remain ill defined compared to their murine counterparts, and it is unclear which murine eHFSC markers really apply to the human HF. We address this by reviewing current concepts on human eHFSC biology, their immediate progeny and their molecular markers, focusing on Keratin 15 and 19, CD200, CD34, PHLDA1, and EpCAM/Ber-EP4. After delineating how human eHFSCs may be selectively targeted experimentally, we close by defining as yet unmet key challenges in human eHFSC research. The ultimate goal is to transfer emerging concepts from murine epithelial stem cell biology to human HF physiology and pathology.
Collapse
Affiliation(s)
- Talveen S Purba
- The Dermatology Centre, Salford Royal NHS Foundation Trust and Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
187
|
Ernst N, Yay A, Bíró T, Tiede S, Humphries M, Paus R, Kloepper JE. β1 integrin signaling maintains human epithelial progenitor cell survival in situ and controls proliferation, apoptosis and migration of their progeny. PLoS One 2013; 8:e84356. [PMID: 24386370 PMCID: PMC3874009 DOI: 10.1371/journal.pone.0084356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/14/2013] [Indexed: 01/05/2023] Open
Abstract
β1 integrin regulates multiple epithelial cell functions by connecting cells with the extracellular matrix (ECM). While β1 integrin-mediated signaling in murine epithelial stem cells is well-studied, its role in human adult epithelial progenitor cells (ePCs) in situ remains to be defined. Using microdissected, organ-cultured human scalp hair follicles (HFs) as a clinically relevant model for studying human ePCs within their natural topobiological habitat, β1 integrin-mediated signaling in ePC biology was explored by β1 integrin siRNA silencing, specific β1 integrin-binding antibodies and pharmacological inhibition of integrin-linked kinase (ILK), a key component of the integrin-induced signaling cascade. β1 integrin knock down reduced keratin 15 (K15) expression as well as the proliferation of outer root sheath keratinocytes (ORSKs). Embedding of HF epithelium into an ECM rich in β1 integrin ligands that mimic the HF mesenchyme significantly enhanced proliferation and migration of ORSKs, while K15 and CD200 gene and protein expression were inhibited. Employing ECM-embedded β1 integrin-activating or -inhibiting antibodies allowed to identify functionally distinct human ePC subpopulations in different compartments of the HF epithelium. The β1 integrin-inhibitory antibody reduced β1 integrin expression in situ and selectively enhanced proliferation of bulge ePCs, while the β1 integrin-stimulating antibody decreased hair matrix keratinocyte apoptosis and enhanced transferrin receptor (CD71) immunoreactivity, a marker of transit amplifying cells, but did not affect bulge ePC proliferation. That the putative ILK inhibitor QLT0267 significantly reduced ORSK migration and proliferation and induced massive ORSK apoptosis suggests a key role for ILK in mediating the ß1 integrin effects. Taken together, these findings demonstrate that ePCs in human HFs require β1 integrin-mediated signaling for survival, adhesion, and migration, and that different human HF ePC subpopulations differ in their response to β1 integrin signaling. These insights may be exploited for cell-based regenerative medicine strategies that employ human HF-derived ePCs.
Collapse
Affiliation(s)
- Nancy Ernst
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Arzu Yay
- Department of Histology and Embryology, University of Erciyes, Kayseri, Turkey
| | - Tamás Bíró
- DE-MTA ‘‘Lendület’’ Cellular Physiology Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Stephan Tiede
- Institute of Experimental Immunology, Euroimmun AG, Luebeck, Germany
| | - Martin Humphries
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | | |
Collapse
|
188
|
Ramot Y, Mastrofrancesco A, Herczeg-Lisztes E, Bíró T, Picardo M, Kloepper JE, Paus R. Advanced inhibition of undesired human hair growth by PPARγ modulation? J Invest Dermatol 2013; 134:1128-1131. [PMID: 24352039 DOI: 10.1038/jid.2013.473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, University of Luebeck, Luebeck, Germany; Department of Dermatology, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatologic Institute (IRCCS), Rome, Italy
| | - Erika Herczeg-Lisztes
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatologic Institute (IRCCS), Rome, Italy
| | | | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany; The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.
| |
Collapse
|