151
|
Haverkort F, Stradomska A, Knoester J. First-Principles Simulations of the Initial Phase of Self-Aggregation of a Cyanine Dye: Structure and Optical Spectra. J Phys Chem B 2014; 118:8877-90. [DOI: 10.1021/jp5049277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank Haverkort
- Zernike
Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anna Stradomska
- Zernike
Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Zernike
Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
152
|
Ni Y, Skinner JL. Ultrafast pump-probe and 2DIR anisotropy and temperature-dependent dynamics of liquid water within the E3B model. J Chem Phys 2014; 141:024509. [DOI: 10.1063/1.4886427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yicun Ni
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - J. L. Skinner
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
153
|
Lee J, Miller BT, Damjanović A, Brooks BR. Constant pH Molecular Dynamics in Explicit Solvent with Enveloping Distribution Sampling and Hamiltonian Exchange. J Chem Theory Comput 2014; 10:2738-2750. [PMID: 25061443 PMCID: PMC4095908 DOI: 10.1021/ct500175m] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 12/21/2022]
Abstract
We present a new computational approach for constant pH simulations in explicit solvent based on the combination of the enveloping distribution sampling (EDS) and Hamiltonian replica exchange (HREX) methods. Unlike constant pH methods based on variable and continuous charge models, our method is based on discrete protonation states. EDS generates a hybrid Hamiltonian of different protonation states. A smoothness parameter s is used to control the heights of energy barriers of the hybrid-state energy landscape. A small s value facilitates state transitions by lowering energy barriers. Replica exchange between EDS potentials with different s values allows us to readily obtain a thermodynamically accurate ensemble of multiple protonation states with frequent state transitions. The analysis is performed with an ensemble obtained from an EDS Hamiltonian without smoothing, s = ∞, which strictly follows the minimum energy surface of the end states. The accuracy and efficiency of this method is tested on aspartic acid, lysine, and glutamic acid, which have two protonation states, a histidine with three states, a four-residue peptide with four states, and snake cardiotoxin with eight states. The pKa values estimated with the EDS-HREX method agree well with the experimental pKa values. The mean absolute errors of small benchmark systems range from 0.03 to 0.17 pKa units, and those of three titratable groups of snake cardiotoxin range from 0.2 to 1.6 pKa units. This study demonstrates that EDS-HREX is a potent theoretical framework, which gives the correct description of multiple protonation states and good calculated pKa values.
Collapse
Affiliation(s)
- Juyong Lee
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Benjamin T Miller
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Ana Damjanović
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States ; Department of Biophysics, Johns Hopkins University , Baltimore, Maryland, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
154
|
Li B, Bi S, Liu Y, Ling B, Li P. Role of Acetate and Water in the Water-Assisted Pd(OAc)2-Catalyzed Cross-Coupling of Alkenes with N-Tosyl Hydrazones: A DFT Study. Organometallics 2014. [DOI: 10.1021/om500375k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Bingwen Li
- School of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, People’s Republic of China
| | - Siwei Bi
- School of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, People’s Republic of China
| | - Yuxia Liu
- School of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, People’s Republic of China
| | - Baoping Ling
- School of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, People’s Republic of China
| | - Ping Li
- School of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, People’s Republic of China
| |
Collapse
|
155
|
Abstract
Ion channels are membrane-bound enzymes whose catalytic sites are ion-conducting pores that open and close (gate) in response to specific environmental stimuli. Ion channels are important contributors to cell signaling and homeostasis. Our current understanding of gating is the product of 60 plus years of voltage-clamp recording augmented by intervention in the form of environmental, chemical, and mutational perturbations. The need for good phenomenological models of gating has evolved in parallel with the sophistication of experimental technique. The goal of modeling is to develop realistic schemes that not only describe data, but also accurately reflect mechanisms of action. This review covers three areas that have contributed to the understanding of ion channels: traditional Eyring kinetic theory, molecular dynamics analysis, and statistical thermodynamics. Although the primary emphasis is on voltage-dependent channels, the methods discussed here are easily generalized to other stimuli and could be applied to any ion channel and indeed any macromolecule.
Collapse
|
156
|
Savelyev A, MacKerell AD. All-atom polarizable force field for DNA based on the classical Drude oscillator model. J Comput Chem 2014; 35:1219-39. [PMID: 24752978 PMCID: PMC4075971 DOI: 10.1002/jcc.23611] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/19/2014] [Accepted: 03/23/2014] [Indexed: 12/16/2022]
Abstract
Presented is a first generation atomistic force field (FF) for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages, and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting quantum mechanical (QM) data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude FF yields stable DNA duplexes on the 100-ns time scale and satisfactorily reproduce (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII substates of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive FF, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA.
Collapse
Affiliation(s)
- Alexey Savelyev
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
157
|
Pezeshki S, Lin H. Recent developments in QM/MM methods towards open-boundary multi-scale simulations. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.911870] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
158
|
Abstract
Proteins are fascinating supramolecular structures, which are able to recognize ligands transforming binding information into chemical signals. They can transfer information across the cell, can catalyse complex chemical reactions, and are able to transform energy into work with much more efficiency than any human engine. The unique abilities of proteins are tightly coupled with their dynamic properties, which are coded in a complex way in the sequence and carefully refined by evolution. Despite its importance, our experimental knowledge of protein dynamics is still rather limited, and mostly derived from theoretical calculations. I will review here, in a systematic way, the current state-of-the-art theoretical approaches to the study of protein dynamics, emphasizing the most recent advances, examples of use and the expected lines of development in the near future.
Collapse
Affiliation(s)
- Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri i Reixac 8, Barcelona 08028, Spain.
| |
Collapse
|
159
|
Kumar P, Bojarowski S, Jarzembska KN, Domagała S, Vanommeslaeghe K, MacKerell AD, Dominiak PM. A Comparative Study of Transferable Aspherical Pseudoatom Databank and Classical Force Fields for Predicting Electrostatic Interactions in Molecular Dimers. J Chem Theory Comput 2014; 10:1652-1664. [PMID: 24803869 PMCID: PMC3985931 DOI: 10.1021/ct4011129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Indexed: 11/29/2022]
Abstract
Accurate and fast evaluation of electrostatic interactions in molecular systems is one of the most challenging tasks in the rapidly advancing field of macromolecular chemistry and drug design. Electrostatic interactions are of crucial importance in biological systems. They are well represented by quantum mechanical methods; however, such calculations are computationally expensive. In this study, we have evaluated the University of Buffalo Pseudoatom Databank (UBDB)1,2 approach for approximation of electrostatic properties of macromolecules and their complexes. We selected the S663 and JSCH-20054 data sets (208 molecular complexes in total) for this study. These complexes represent a wide range of chemical and biological systems for which hydrogen bonding, electrostatic, and van der Waals interactions play important roles. Reference electrostatic energies were obtained directly from wave functions at the B3LYP/aug-cc-pVTZ level of theory using the SAPT (Symmetry-Adapted Perturbation Theory) scheme for calculation of electrostatic contributions to total intermolecular interaction energies. Electrostatic energies calculated on the basis of the UBDB were compared with corresponding reference results. Results were also compared with energies computed using a point charge model from popular force fields (AM1-BCC and RESP used in AMBER and CGenFF from CHARMM family). The energy trends are quite consistent (R2 ≈ 0.98) for the UBDB method as compared to the AMBER5 and CHARMM force field methods6(R2 ≈ 0.93 on average). The RSMEs do not exceed 3.2 kcal mol-1 for the UBDB and are in the range of 3.7-7.6 kcal mol-1 for the point charge models. We also investigated the discrepancies in electrostatic potentials and magnitudes of dipole moments among the tested methods. This study shows that estimation of electrostatic interaction energies using the UBDB databank is accurate and reasonably fast when compared to other known methods, which opens potential new applications to macromolecules.
Collapse
Affiliation(s)
- Prashant Kumar
- Department
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | | | | - Sławomir Domagała
- Department
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, School of Pharmacy, University
of Maryland, 20 Penn
Street HSF II, Baltimore, Maryland 21201, United
States
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University
of Maryland, 20 Penn
Street HSF II, Baltimore, Maryland 21201, United
States
| | - Paulina M. Dominiak
- Department
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
160
|
|
161
|
Boulanger E, Thiel W. Toward QM/MM Simulation of Enzymatic Reactions with the Drude Oscillator Polarizable Force Field. J Chem Theory Comput 2014; 10:1795-809. [DOI: 10.1021/ct401095k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eliot Boulanger
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
162
|
Matsugami M, Yoshida N, Hirata F. Theoretical characterization of the “ridge” in the supercritical region in the fluid phase diagram of water. J Chem Phys 2014; 140:104511. [DOI: 10.1063/1.4867974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
163
|
Lagardère L, Lipparini F, Polack É, Stamm B, Cancès É, Schnieders M, Ren P, Maday Y, Piquemal JP. Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II.Towards Massively Parallel Computations using Smooth Particle Mesh Ewald. J Chem Theory Comput 2014; 10:1638-1651. [PMID: 26512230 DOI: 10.1021/ct401096t] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this paper, we present a scalable and efficient implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The Smooth Particle-Mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the Direct Inversion in the Iterative Subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy-force computation needed to perform a MD step. Various tests on large systems are provided in the context of the polarizable AMOEBA force field as implemented in the newly developed Tinker-HP package which is the first implementation for a polarizable model making large scale experiments for massively parallel PBC point dipole models possible. We show that using a large number of cores offers a significant acceleration of the overall process involving the iterative methods within the context of spme and a noticeable improvement of the memory management giving access to very large systems (hundreds of thousands of atoms) as the algorithm naturally distributes the data on different cores. Coupled with advanced MD techniques, gains ranging from 2 to 3 orders of magnitude in time are now possible compared to non-optimized, sequential implementations giving new directions for polarizable molecular dynamics in periodic boundary conditions using massively parallel implementations.
Collapse
Affiliation(s)
- Louis Lagardère
- UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005, Paris, France ; UPMC Univ. Paris 06, UMR 7617, Laboratoire de Chimie Théorique, F-75005, Paris, France
| | - Filippo Lipparini
- UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France ; UPMC Univ. Paris 06, UMR 7617, Laboratoire de Chimie Théorique, F-75005, Paris, France ; UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005, Paris, France
| | - Étienne Polack
- UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France ; UPMC Univ. Paris 06, UMR 7617, Laboratoire de Chimie Théorique, F-75005, Paris, France
| | - Benjamin Stamm
- UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France ; CNRS, UMR 7598 and 7616, F-75005, Paris, France
| | - Éric Cancès
- Université Paris-Est, CERMICS, Ecole des Ponts and INRIA, 6 & 8 avenue Blaise Pascal, 77455 Marne-la-Vallée, France
| | - Michael Schnieders
- Departments of Biomedical Engineering and Biochemistry, The University of Iowa, Iowa City, Iowa 52358, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yvon Maday
- UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France ; Institut Universitaire de France ; Brown Univ, Division of Applied Maths, Providence, RI, USA
| | - Jean-Philip Piquemal
- UPMC Univ. Paris 06, UMR 7617, Laboratoire de Chimie Théorique, F-75005, Paris, France
| |
Collapse
|
164
|
Michel J. Current and emerging opportunities for molecular simulations in structure-based drug design. Phys Chem Chem Phys 2014; 16:4465-77. [PMID: 24469595 PMCID: PMC4256725 DOI: 10.1039/c3cp54164a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/10/2014] [Indexed: 01/29/2023]
Abstract
An overview of the current capabilities and limitations of molecular simulation of biomolecular complexes in the context of computer-aided drug design is provided. Steady improvements in computer hardware coupled with more refined representations of energetics are leading to a new appreciation of the driving forces of molecular recognition. Molecular simulations are poised to more frequently guide the interpretation of biophysical measurements of biomolecular complexes. Ligand design strategies emerge from detailed analyses of computed structural ensembles. The feasibility of routine applications to ligand optimization problems hinges upon successful extensive large scale validation studies and the development of protocols to intelligently automate computations.
Collapse
Affiliation(s)
- Julien Michel
- EaStCHEM School of Chemistry, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3JJ, UK.
| |
Collapse
|
165
|
Wang H, Yang X, Liu Y, Bi S. Theoretical Studies on a New Class of C–C Bond Formation: Palladium-Catalyzed Reactions of α-Diazocarbonyl Compounds with Allylic Esters. Organometallics 2014. [DOI: 10.1021/om4011214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongliang Wang
- School
of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, People’s Republic of China
| | - Xu Yang
- School
of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, People’s Republic of China
| | - Yuxia Liu
- School
of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, People’s Republic of China
| | - Siwei Bi
- School
of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, People’s Republic of China
| |
Collapse
|
166
|
Development of ABEEMσπ polarizable force field for oxidized adenine base pairs: investigation of the interaction and mutagenic mechanism. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1469-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
167
|
Patel DS, He X, MacKerell AD. Polarizable empirical force field for hexopyranose monosaccharides based on the classical Drude oscillator. J Phys Chem B 2014; 119:637-52. [PMID: 24564643 PMCID: PMC4143499 DOI: 10.1021/jp412696m] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A polarizable empirical force field based on the classical Drude oscillator is presented for the hexopyranose form of selected monosaccharides. Parameter optimization targeted quantum mechanical (QM) dipole moments, solute-water interaction energies, vibrational frequencies, and conformational energies. Validation of the model was based on experimental data on crystals, densities of aqueous-sugar solutions, diffusion constants of glucose, and rotational preferences of the exocylic hydroxymethyl of d-glucose and d-galactose in aqueous solution as well as additional QM data. Notably, the final model involves a single electrostatic model for all sixteen diastereomers of the monosaccharides, indicating the transferability of the polarizable model. The presented parameters are anticipated to lay the foundation for a comprehensive polarizable force field for saccharides that will be compatible with the polarizable Drude parameters for lipids and proteins, allowing for simulations of glycolipids and glycoproteins.
Collapse
Affiliation(s)
- Dhilon S Patel
- Department of Pharmaceutical Sciences, University of Maryland , 20 Penn Street HSF II, Baltimore, Maryland 21201, United States
| | | | | |
Collapse
|
168
|
Schwörer M, Breitenfeld B, Tröster P, Bauer S, Lorenzen K, Tavan P, Mathias G. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations. J Chem Phys 2014; 138:244103. [PMID: 23822223 DOI: 10.1063/1.4811292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
Collapse
Affiliation(s)
- Magnus Schwörer
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München, Germany
| | | | | | | | | | | | | |
Collapse
|
169
|
Tröster P, Lorenzen K, Tavan P. Polarizable six-point water models from computational and empirical optimization. J Phys Chem B 2014; 118:1589-602. [PMID: 24437570 DOI: 10.1021/jp4125765] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tröster et al. (J. Phys. Chem B 2013, 117, 9486-9500) recently suggested a mixed computational and empirical approach to the optimization of polarizable molecular mechanics (PMM) water models. In the empirical part the parameters of Buckingham potentials are optimized by PMM molecular dynamics (MD) simulations. The computational part applies hybrid calculations, which combine the quantum mechanical description of a H2O molecule by density functional theory (DFT) with a PMM model of its liquid phase environment generated by MD. While the static dipole moments and polarizabilities of the PMM water models are fixed at the experimental gas phase values, the DFT/PMM calculations are employed to optimize the remaining electrostatic properties. These properties cover the width of a Gaussian inducible dipole positioned at the oxygen and the locations of massless negative charge points within the molecule (the positive charges are attached to the hydrogens). The authors considered the cases of one and two negative charges rendering the PMM four- and five-point models TL4P and TL5P. Here we extend their approach to three negative charges, thus suggesting the PMM six-point model TL6P. As compared to the predecessors and to other PMM models, which also exhibit partial charges at fixed positions, TL6P turned out to predict all studied properties of liquid water at p0 = 1 bar and T0 = 300 K with a remarkable accuracy. These properties cover, for instance, the diffusion constant, viscosity, isobaric heat capacity, isothermal compressibility, dielectric constant, density, and the isobaric thermal expansion coefficient. This success concurrently provides a microscopic physical explanation of corresponding shortcomings of previous models. It uniquely assigns the failures of previous models to substantial inaccuracies in the description of the higher electrostatic multipole moments of liquid phase water molecules. Resulting favorable properties concerning the transferability to other temperatures and conditions like the melting of ice are also discussed.
Collapse
Affiliation(s)
- Philipp Tröster
- Lehrstuhl für Biomolekulare Optik, Fakultät für Physik, Ludwig-Maximilians-Universität München , Oettingenstrasse 67, D-80538 Müunchen, Germany
| | | | | |
Collapse
|
170
|
Gao W, Niu H, Lin T, Wang X, Kong L. Molecular dynamics study of response of liquid N,N-dimethylformamide to externally applied electric field using a polarizable force field. J Chem Phys 2014; 140:044501. [PMID: 25669549 DOI: 10.1063/1.4861893] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform external electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.
Collapse
Affiliation(s)
- Weimin Gao
- Institute for Frontier Materials, Deakin University, Waurn Ponds VIC 3216, Australia
| | - Haitao Niu
- Institute for Frontier Materials, Deakin University, Waurn Ponds VIC 3216, Australia
| | - Tong Lin
- Institute for Frontier Materials, Deakin University, Waurn Ponds VIC 3216, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds VIC 3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds VIC 3216, Australia
| |
Collapse
|
171
|
Riahi S, Rowley CN. Solvation of Hydrogen Sulfide in Liquid Water and at the Water–Vapor Interface Using a Polarizable Force Field. J Phys Chem B 2014; 118:1373-80. [DOI: 10.1021/jp4096198] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saleh Riahi
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| | - Christopher N. Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| |
Collapse
|
172
|
Schmidt TC, Paasche A, Grebner C, Ansorg K, Becker J, Lee W, Engels B. QM/MM investigations of organic chemistry oriented questions. Top Curr Chem (Cham) 2014; 351:25-101. [PMID: 22392477 DOI: 10.1007/128_2011_309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
About 35 years after its first suggestion, QM/MM became the standard theoretical approach to investigate enzymatic structures and processes. The success is due to the ability of QM/MM to provide an accurate atomistic picture of enzymes and related processes. This picture can even be turned into a movie if nuclei-dynamics is taken into account to describe enzymatic processes. In the field of organic chemistry, QM/MM methods are used to a much lesser extent although almost all relevant processes happen in condensed matter or are influenced by complicated interactions between substrate and catalyst. There is less importance for theoretical organic chemistry since the influence of nonpolar solvents is rather weak and the effect of polar solvents can often be accurately described by continuum approaches. Catalytic processes (homogeneous and heterogeneous) can often be reduced to truncated model systems, which are so small that pure quantum-mechanical approaches can be employed. However, since QM/MM becomes more and more efficient due to the success in software and hardware developments, it is more and more used in theoretical organic chemistry to study effects which result from the molecular nature of the environment. It is shown by many examples discussed in this review that the influence can be tremendous, even for nonpolar reactions. The importance of environmental effects in theoretical spectroscopy was already known. Due to its benefits, QM/MM can be expected to experience ongoing growth for the next decade.In the present chapter we give an overview of QM/MM developments and their importance in theoretical organic chemistry, and review applications which give impressions of the possibilities and the importance of the relevant effects. Since there is already a bunch of excellent reviews dealing with QM/MM, we will discuss fundamental ingredients and developments of QM/MM very briefly with a focus on very recent progress. For the applications we follow a similar strategy.
Collapse
Affiliation(s)
- Thomas C Schmidt
- Institut für Phys. und Theor. Chemie, Emil-Fischer-Strasse 42, Campus Hubland Nord, 97074, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
173
|
Vanommeslaeghe K, Guvench O, MacKerell AD. Molecular mechanics. Curr Pharm Des 2014; 20:3281-92. [PMID: 23947650 PMCID: PMC4026342 DOI: 10.2174/13816128113199990600] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022]
Abstract
Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which are essential in the study of conformational flexibility. Given the importance of protein flexibility in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery (CSBDD) projects. This paper introduces the reader to the fundamentals of MM, with a special emphasis on how the target data used in the parametrization of force fields determine their strengths and weaknesses. Variations and recent developments such as polarizable force fields are discussed. The paper ends with a brief overview of common force fields in CSBDD.
Collapse
Affiliation(s)
- Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St, HSF-II Rm 633, Baltimore, MD 21201; tel: 410-706-7442; fax: 410-706-5017
| | - Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Ave, Portland, ME 04103
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St, HSF-II Rm 633, Baltimore, MD 21201; tel: 410-706-7442; fax: 410-706-5017
| |
Collapse
|
174
|
de la Cruz Cruz JI, Juárez-Saavedra P, Paz-Michel B, Leyva-Ramirez MA, Rajapakshe A, Vannucci AK, Lichtenberger DL, Paz-Sandoval MA. Phosphine-Substituted (η5-Pentadienyl) Manganese Carbonyl Complexes: Geometric Structures, Electronic Structures, and Energetic Properties of the Associative Substitution Mechanism, Including Isolation of the Slipped η3-Pentadienyl Associative Intermediate. Organometallics 2013. [DOI: 10.1021/om401017t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Patricia Juárez-Saavedra
- Departamento de Quı́mica, Cinvestav, Av. IPN #
2508, Col. San Pedro Zacatenco, México
D. F. 07360, México
| | - Brenda Paz-Michel
- Departamento de Quı́mica, Cinvestav, Av. IPN #
2508, Col. San Pedro Zacatenco, México
D. F. 07360, México
| | | | - Asha Rajapakshe
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Aaron K. Vannucci
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Dennis L. Lichtenberger
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - M. Angeles Paz-Sandoval
- Departamento de Quı́mica, Cinvestav, Av. IPN #
2508, Col. San Pedro Zacatenco, México
D. F. 07360, México
| |
Collapse
|
175
|
Xiao X, Zhu T, Ji CG, Zhang JZH. Development of an Effective Polarizable Bond Method for Biomolecular Simulation. J Phys Chem B 2013; 117:14885-93. [DOI: 10.1021/jp4080866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xudong Xiao
- State
Key Laboratory of Precision Spectroscopy, Department of Physics, Institute
of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China
- Institutes
for Advanced Interdisciplinary Research, East China Normal University, Shanghai 200062, China
| | - Tong Zhu
- State
Key Laboratory of Precision Spectroscopy, Department of Physics, Institute
of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China
| | - Chang G. Ji
- State
Key Laboratory of Precision Spectroscopy, Department of Physics, Institute
of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China
- Institutes
for Advanced Interdisciplinary Research, East China Normal University, Shanghai 200062, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - John Z. H. Zhang
- State
Key Laboratory of Precision Spectroscopy, Department of Physics, Institute
of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
176
|
Hasanayn F, Baroudi A, Bengali AA, Goldman AS. Hydrogenation of Dimethyl Carbonate to Methanol by trans-[Ru(H)2(PNN)(CO)] Catalysts: DFT Evidence for Ion-Pair-Mediated Metathesis Paths for C–OMe Bond Cleavage. Organometallics 2013. [DOI: 10.1021/om4005127] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Faraj Hasanayn
- Department of Chemistry, The American University of Beirut, Beirut, Lebanon
| | - Abdulkader Baroudi
- Department of Chemistry, The American University of Beirut, Beirut, Lebanon
| | | | - Alan S. Goldman
- Department of Chemistry
and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
177
|
Lopes PEM, Huang J, Shim J, Luo Y, Li H, Roux B, Mackerell AD. Force Field for Peptides and Proteins based on the Classical Drude Oscillator. J Chem Theory Comput 2013; 9:5430-5449. [PMID: 24459460 DOI: 10.1021/ct400781b] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Presented is a polarizable force field based on a classical Drude oscillator framework, currently implemented in the programs CHARMM and NAMD, for modeling and molecular dynamics (MD) simulation studies of peptides and proteins. Building upon parameters for model compounds representative of the functional groups in proteins, the development of the force field focused on the optimization of the parameters for the polypeptide backbone and the connectivity between the backbone and side chains. Optimization of the backbone electrostatic parameters targeted quantum mechanical conformational energies, interactions with water, molecular dipole moments and polarizabilities and experimental condensed phase data for short polypeptides such as (Ala)5. Additional optimization of the backbone φ, ψ conformational preferences included adjustments of the tabulated two-dimensional spline function through the CMAP term. Validation of the model included simulations of a collection of peptides and proteins. This 1st generation polarizable model is shown to maintain the folded state of the studied systems on the 100 ns timescale in explicit solvent MD simulations. The Drude model typically yields larger RMS differences as compared to the additive CHARMM36 force field (C36) and shows additional flexibility as compared to the additive model. Comparison with NMR chemical shift data shows a small degradation of the polarizable model with respect to the additive, though the level of agreement may be considered satisfactory, while for residues shown to have significantly underestimated S2 order parameters in the additive model, improvements are calculated with the polarizable model. Analysis of dipole moments associated with the peptide backbone and tryptophan side chains show the Drude model to have significantly larger values than those present in C36, with the dipole moments of the peptide backbone enhanced to a greater extent in sheets versus helices and the dipoles of individual moieties observed to undergo significant variations during the MD simulations. Although there are still some limitations, the presented model, termed Drude-2013, is anticipated to yield a molecular picture of peptide and protein structure and function that will be of increased physical validity and internal consistency in a computationally accessible fashion.
Collapse
Affiliation(s)
- Pedro E M Lopes
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn Street HSFII, Baltimore, Maryland 21201, USA
| | - Jing Huang
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn Street HSFII, Baltimore, Maryland 21201, USA
| | - Jihyun Shim
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn Street HSFII, Baltimore, Maryland 21201, USA
| | - Yun Luo
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA ; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439, USA
| | - Hui Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander D Mackerell
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn Street HSFII, Baltimore, Maryland 21201, USA
| |
Collapse
|
178
|
Geometric isotope effects on small chloride ion water clusters with path integral molecular dynamics simulations. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
179
|
Hoffgaard F, Heil J, Kast SM. Three-Dimensional RISM Integral Equation Theory for Polarizable Solute Models. J Chem Theory Comput 2013; 9:4718-26. [PMID: 26583390 DOI: 10.1021/ct400699q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Modeling solute polarizability is a key ingredient for improving the description of solvation phenomena. In recent years, polarizable molecular mechanics force fields have emerged that circumvent the limitations of classical fixed charge force fields by the ability to adapt their electrostatic potential distribution to a polarizing environment. Solvation phenomena are characterized by the solute's excess chemical potential, which can be computed by expensive fully atomistic free energy simulations. The alternative is to employ an implicit solvent model, which poses a challenge to the formulation of the solute-solvent interaction term within a polarizable framework. Here, we adapt the three-dimensional reference interaction site model (3D RISM) integral equation theory as a solvent model, which analytically yields the chemical potential, to the polarizable AMOEBA force field using an embedding cluster (EC-RISM) strategy. The methodology is analogous to our earlier approach to the coupling of a quantum-chemical solute description with a classical 3D RISM solvent. We describe the conceptual physical and algorithmic basis as well as the performance for several benchmark cases as a proof of principle. The results consistently show reasonable agreement between AMOEBA and quantum-chemical free energies in solution in general and allow for separate assessment of energetic and solvation-related contributions. We find that, depending on the parametrization, AMOEBA reproduces the chemical potential in better agreement with reference quantum-chemical calculations than the intramolecular energies, which suggests possible routes toward systematic improvement of polarizable force fields.
Collapse
Affiliation(s)
- Franziska Hoffgaard
- Physikalische Chemie III, TU Dortmund , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jochen Heil
- Physikalische Chemie III, TU Dortmund , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Stefan M Kast
- Physikalische Chemie III, TU Dortmund , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
180
|
He X, Lopes PEM, MacKerell AD. Polarizable empirical force field for acyclic polyalcohols based on the classical Drude oscillator. Biopolymers 2013; 99:724-38. [PMID: 23703219 PMCID: PMC3902549 DOI: 10.1002/bip.22286] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/05/2013] [Indexed: 01/12/2023]
Abstract
A polarizable empirical force field for acyclic polyalcohols based on the classical Drude oscillator is presented. The model is optimized with an emphasis on the transferability of the developed parameters among molecules of different sizes in this series and on the condensed-phase properties validated against experimental data. The importance of the explicit treatment of electronic polarizability in empirical force fields is demonstrated in the cases of this series of molecules with vicinal hydroxyl groups that can form cooperative intra- and intermolecular hydrogen bonds. Compared to the CHARMM additive force field, improved treatment of the electrostatic interactions avoids overestimation of the gas-phase dipole moments resulting in significant improvement in the treatment of the conformational energies and leads to the correct balance of intra- and intermolecular hydrogen bonding of glycerol as evidenced by calculated heat of vaporization being in excellent agreement with experiment. Computed condensed phase data, including crystal lattice parameters and volumes and densities of aqueous solutions are in better agreement with experimental data as compared to the corresponding additive model. Such improvements are anticipated to significantly improve the treatment of polymers in general, including biological macromolecules.
Collapse
Affiliation(s)
- Xibing He
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Pedro E. M. Lopes
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
| |
Collapse
|
181
|
Desmond JL, Rodger PM, Walsh TR. Testing the inter-operability of the CHARMM and SPC/Fw force fields for conformational sampling. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.824574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
182
|
Lin B, He X, MacKerell AD. A comparative Kirkwood-Buff study of aqueous methanol solutions modeled by the CHARMM additive and Drude polarizable force fields. J Phys Chem B 2013; 117:10572-80. [PMID: 23947568 DOI: 10.1021/jp4061889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A comparative study on aqueous methanol solutions modeled by the CHARMM additive and Drude polarizable force fields was carried out by employing Kirkwood-Buff analysis. It was shown that both models reproduced the experimental Kirkwood-Buff integrals and excess coordination numbers adequately well over the entire concentration range. The Drude model showed significant improvement over the additive model in solution densities, partial molar volumes, excess molar volumes, concentration-dependent diffusion constants, and dielectric constants. However, the additive model performed somewhat better than the Drude model in reproducing the activity derivative, excess molar Gibbs energy, and excess molar enthalpy of mixing. This is due to the additive achieving a better balance among solute-solute, solute-solvent, and solvent-solvent interactions, indicating the potential for improvements in the Drude polarizable alcohol model.
Collapse
Affiliation(s)
- Bin Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , 20 Penn Street HSFII, Baltimore, Maryland 21201, United States
| | | | | |
Collapse
|
183
|
Lin B, Lopes PEM, Roux B, MacKerell AD. Kirkwood-Buff analysis of aqueous N-methylacetamide and acetamide solutions modeled by the CHARMM additive and Drude polarizable force fields. J Chem Phys 2013; 139:084509. [PMID: 24007020 PMCID: PMC3772949 DOI: 10.1063/1.4818731] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/04/2013] [Indexed: 11/14/2022] Open
Abstract
Kirkwood-Buff analysis was performed on aqueous solutions of N-methylacetamide and acetamide using the Chemistry at HARvard Molecular Mechanics additive and Drude polarizable all-atom force fields. Comparison of a range of properties with experimental results, including Kirkwood-Buff integrals, excess coordination numbers, solution densities, partial molar values, molar enthalpy of mixing, showed both models to be well behaved at higher solute concentrations with the Drude model showing systematic improvement at lower solution concentrations. However, both models showed difficulties reproducing experimental activity derivatives and the excess Gibbs energy, with the Drude model performing slightly better. At the molecular level, the improved agreement of the Drude model at low solute concentrations is due to increased structure in the solute-solute and solute-solvent interactions. The present results indicate that the explicit inclusion of electronic polarization leads to improved modeling of dilute solutions even when those properties are not included as target data during force field optimization.
Collapse
Affiliation(s)
- Bin Lin
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn Street HSFII, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
184
|
Baker CM, Best RB. Insights into the Binding of Intrinsically Disordered Proteins from Molecular Dynamics Simulation. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013; 4:182-198. [PMID: 34354764 DOI: 10.1002/wcms.1167] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intrinsically disordered proteins (IDPs) are a class of protein that, in the native state, possess no well-defined secondary or tertiary structure, existing instead as dynamic ensembles of conformations. They are biologically important, with approximately 20% of all eukaryotic proteins disordered, and found at the heart of many biochemical networks. To fulfil their biological roles, many IDPs need to bind to proteins and/or nucleic acids. And while unstructured in solution, IDPs typically fold into a well-defined three-dimensional structure upon interaction with a binding partner. The flexibility and structural diversity inherent to IDPs makes this coupled folding and binding difficult to study at atomic resolution by experiment alone, and computer simulation currently offers perhaps the best opportunity to understand this process. But simulation of coupled folding and binding is itself extremely challenging; these molecules are large and highly flexible, and their binding partners, such as DNA or cyclins, are also often large. Therefore, their study requires either or both simplified representations and advanced enhanced sampling schemes. It is not always clear that existing simulation techniques, optimized for studying folded proteins, are well-suited to IDPs. In this article, we examine the progress that has been made in the study of coupled folding and binding using molecular dynamics simulation. We summarise what has been learnt, and examine the state of the art in terms of both methodologies and models. We also consider the lessons to be learnt from advances in other areas of simulation and highlight the issues that remain of be addressed.
Collapse
Affiliation(s)
- Christopher M Baker
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
185
|
Shi Y, Xia Z, Zhang J, Best R, Wu C, Ponder JW, Ren P. The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. J Chem Theory Comput 2013; 9:4046-4063. [PMID: 24163642 DOI: 10.1021/ct4003702] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of the AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Simulation) force field for proteins is presented. The current version (AMOEBA-2013) utilizes permanent electrostatic multipole moments through the quadrupole at each atom, and explicitly treats polarization effects in various chemical and physical environments. The atomic multipole electrostatic parameters for each amino acid residue type are derived from high-level gas phase quantum mechanical calculations via a consistent and extensible protocol. Molecular polarizability is modeled via a Thole-style damped interactive induction model based upon distributed atomic polarizabilities. Inter- and intramolecular polarization is treated in a consistent fashion via the Thole model. The intramolecular polarization model ensures transferability of electrostatic parameters among different conformations, as demonstrated by the agreement between QM and AMOEBA electrostatic potentials, and dipole moments of dipeptides. The backbone and side chain torsional parameters were determined by comparing to gas-phase QM (RI-TRIM MP2/CBS) conformational energies of dipeptides and to statistical distributions from the Protein Data Bank. Molecular dynamics simulations are reported for short peptides in explicit water to examine their conformational properties in solution. Overall the calculated conformational free energies and J-coupling constants are consistent with PDB statistics and experimental NMR results, respectively. In addition, the experimental crystal structures of a number of proteins are well maintained during molecular dynamics (MD) simulation. While further calculations are necessary to fully validate the force field, initial results suggest the AMOEBA polarizable multipole force field is able to describe the structure and energetics of peptides and proteins, in both gas-phase and solution environments.
Collapse
Affiliation(s)
- Yue Shi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | | | | | | | | | | | | |
Collapse
|
186
|
Tröster P, Lorenzen K, Schwörer M, Tavan P. Polarizable water models from mixed computational and empirical optimization. J Phys Chem B 2013; 117:9486-500. [PMID: 23844727 DOI: 10.1021/jp404548k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we suggest a mixed computational and empirical approach serving to optimize the parameters of complex and polarizable molecular mechanics (PMM) models for complicated liquids. The computational part of the parameter optimization relies on hybrid calculations combining density functional theory (DFT) for a solute molecule with a PMM treatment of its solvent environment at well-defined thermodynamic conditions. As an application we have developed PMM models for water featuring ν = 3, 4, and 5 points of force action, a Gaussian inducible dipole and a Buckingham potential at the oxygen, the experimental liquid phase geometry, the experimental gas phase polarizability α(exp)(g) = 1.47 ų, and, for ν = 4 and 5, the gas phase value μ(exp)(g) = 1.855 D for the static dipole moment. The widths of the Gaussian dipoles and, for ν = 4 and 5, also the electrostatic geometries of these so-called TLνP models are derived from self-consistent DFT/PMM calculations, and the parameters of the Buckingham potentials (and the static TL3P dipole moment) are estimated from molecular dynamics (MD) simulations. The high quality of the resulting models is demonstrated for the observables targeted during optimization (potential energy per molecule, pressure, radial distribution functions) and a series of predicted properties (quadrupole moments, density at constant pressure, dielectric constant, diffusivity, viscosity, compressibility, heat capacity) at certain standard conditions. Remaining deficiencies and possible ways for their removal are discussed.
Collapse
Affiliation(s)
- Philipp Tröster
- Lehrstuhl für Biomolekulare Optik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstrasse 67, D-80538 München, Germany
| | | | | | | |
Collapse
|
187
|
Huang L, Roux B. AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON AB INITIO TARGET DATA. J Chem Theory Comput 2013; 9. [PMID: 24223528 DOI: 10.1021/ct4003477] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Classical molecular dynamics (MD) simulations based on atomistic models are increasingly used to study a wide range of biological systems. A prerequisite for meaningful results from such simulations is an accurate molecular mechanical force field. Most biomolecular simulations are currently based on the widely used AMBER and CHARMM force fields, which were parameterized and optimized to cover a small set of basic compounds corresponding to the natural amino acids and nucleic acid bases. Atomic models of additional compounds are commonly generated by analogy to the parameter set of a given force field. While this procedure yields models that are internally consistent, the accuracy of the resulting models can be limited. In this work, we propose a method, General Automated Atomic Model Parameterization (GAAMP), for generating automatically the parameters of atomic models of small molecules using the results from ab initio quantum mechanical (QM) calculations as target data. Force fields that were previously developed for a wide range of model compounds serve as initial guess, although any of the final parameter can be optimized. The electrostatic parameters (partial charges, polarizabilities and shielding) are optimized on the basis of QM electrostatic potential (ESP) and, if applicable, the interaction energies between the compound and water molecules. The soft dihedrals are automatically identified and parameterized by targeting QM dihedral scans as well as the energies of stable conformers. To validate the approach, the solvation free energy is calculated for more than 200 small molecules and MD simulations of 3 different proteins are carried out.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biochemistry and Molecular Biology University of Chicago 929 East 57th Street, Chicago, IL 60637
| | | |
Collapse
|
188
|
Baker CM, Best RB. Matching of additive and polarizable force fields for multiscale condensed phase simulations. J Chem Theory Comput 2013; 9:2826-2837. [PMID: 23997691 PMCID: PMC3752912 DOI: 10.1021/ct400116g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inclusion of electronic polarization effects is one of the key aspects in which the accuracy of current biomolecular force fields may be improved. The principal drawback of such approaches is the computational cost, which typically ranges from 3 - 10 times that of the equivalent additive model, and may be greater for more sophisticated treatments of polarization or other many-body effects. Here, we present a multiscale approach which may be used to enhance the sampling in simulations with polarizable models, by using the additive model as a tool to explore configuration space. We use a method based on information theory to determine the charges for an additive model that has optimal overlap with the polarizable one, and we demonstrate the feasibility of enhancing sampling via a hybrid replica exchange scheme for several model systems. An additional advantage is that, in the process, we obtain a systematic method for deriving charges for an additive model that will be the natural complement to its polarizable parent. The additive charges are found by an effective coarse-graining of the polarizable force field, rather than by ad hoc procedures.
Collapse
Affiliation(s)
- Christopher M. Baker
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Robert B. Best
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, U.S.A
| |
Collapse
|
189
|
Wang Q, Suzuki K, Nagashima U, Tachikawa M, Yan S. Path integral molecular dynamic study of nuclear quantum effect on small chloride water clusters of Cl−(H2O)1–4. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
190
|
Timko J, Kuyucak S. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations. J Chem Phys 2013. [PMID: 23206041 DOI: 10.1063/1.4768247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
Collapse
Affiliation(s)
- Jeff Timko
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
191
|
Riahi S, Rowley CN. A Drude Polarizable Model for Liquid Hydrogen Sulfide. J Phys Chem B 2013; 117:5222-9. [DOI: 10.1021/jp401847s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Saleh Riahi
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B
3X7, Canada
| | - Christopher N. Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B
3X7, Canada
| |
Collapse
|
192
|
Gerig JT. Investigation of Ethanol–Peptide and Water–Peptide Interactions through Intermolecular Nuclear Overhauser Effects and Molecular Dynamics Simulations. J Phys Chem B 2013; 117:4880-92. [DOI: 10.1021/jp4007526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J. T. Gerig
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
193
|
Sakuma H, Ichiki M, Kawamura K, Fuji-ta K. Prediction of physical properties of water under extremely supercritical conditions: A molecular dynamics study. J Chem Phys 2013; 138:134506. [DOI: 10.1063/1.4798222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
194
|
Kiewisch K, Jacob CR, Visscher L. Quantum-Chemical Electron Densities of Proteins and of Selected Protein Sites from Subsystem Density Functional Theory. J Chem Theory Comput 2013; 9:2425-40. [DOI: 10.1021/ct3008759] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karin Kiewisch
- Amsterdam Center for Multiscale
Modeling, VU University Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
| | - Christoph R. Jacob
- Center for Functional Nanostructures
and Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1a, 76131 Karlsruhe,
Germany
| | - Lucas Visscher
- Amsterdam Center for Multiscale
Modeling, VU University Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
195
|
Stukan MR, Asmadi A, Abdallah W. Bulk properties of SWM4-NDP water model at elevated temperature and pressure. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2012.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
196
|
Shaikh S, Li J, Enkavi G, Wen PC, Huang Z, Tajkhorshid E. Visualizing functional motions of membrane transporters with molecular dynamics simulations. Biochemistry 2013; 52:569-87. [PMID: 23298176 PMCID: PMC3560430 DOI: 10.1021/bi301086x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/21/2012] [Indexed: 01/08/2023]
Abstract
Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.
Collapse
Affiliation(s)
- Saher
A. Shaikh
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jing Li
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Giray Enkavi
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zhijian Huang
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
197
|
Medders GR, Babin V, Paesani F. A Critical Assessment of Two-Body and Three-Body Interactions in Water. J Chem Theory Comput 2013; 9:1103-14. [PMID: 26588754 DOI: 10.1021/ct300913g] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The microscopic behavior of water under different conditions and in different environments remains the subject of intense debate. A great number of the controversies arise due to the contradictory predictions obtained within different theoretical models. Relative to conclusions derived from force fields or density functional theory, there is comparably less room to dispute highly correlated electronic structure calculations. Unfortunately, such ab initio calculations are severely limited by system size. In this study, a detailed analysis of the two- and three-body water interactions evaluated at the CCSD(T) level is carried out to quantitatively assess the accuracy of several force fields, DFT models, and ab initio based interaction potentials that are commonly used in molecular simulations. On the basis of this analysis, a new model, HBB2-pol, is introduced which is capable of accurately mapping CCSD(T) results for water dimers and trimers into an efficient analytical function. The accuracy of HBB2-pol is further established through comparison with the experimentally determined second and third virial coefficients.
Collapse
Affiliation(s)
- Gregory R Medders
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92103, United States
| | - Volodymyr Babin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92103, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92103, United States
| |
Collapse
|
198
|
Akin-Ojo O, Szalewicz K. How well can polarization models of pairwise nonadditive forces describe liquid water? J Chem Phys 2013; 138:024316. [DOI: 10.1063/1.4773821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Omololu Akin-Ojo
- Theoretical Physics Department, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Nigeria
| | | |
Collapse
|
199
|
Lev B, Noskov SY. Role of protein matrix rigidity and local polarization effects in the monovalent cation selectivity of crystallographic sites in the Na-coupled aspartate transporter GltPh. Phys Chem Chem Phys 2013; 15:2397-404. [DOI: 10.1039/c2cp42860a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
200
|
Abstract
This chapter provides an overview of the most common methods for including an explicit description of electronic polarization in molecular mechanics force fields: the induced point dipole, shell, and fluctuating charge models. The importance of including polarization effects in biomolecular simulations is discussed, and some of the most important achievements in the development of polarizable biomolecular force fields to date are highlighted.
Collapse
Affiliation(s)
- Hanne S Antila
- Department of Chemistry, Aalto University, Espoo, Finland
| | | |
Collapse
|