151
|
Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater 2020; 102:13-34. [PMID: 31759124 DOI: 10.1016/j.actbio.2019.11.027] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Among various nanoparticles, superparamagnetic iron oxide nanoparticles (SPIONs) have been increasingly studied for their excellent superparamagnetism, magnetic heating properties, and enhanced magnetic resonance imaging (MRI). The conjugation of SPIONs with drugs to obtain delivery nanosystems has several advantages including magnetic targeted functionalization, in vivo imaging, magnetic thermotherapy, and combined delivery of anticancer agents. To further increase the targeting efficiency of drugs through a delivery nanosystem based on SPIONs, additional targeting moieties including transferrin, antibodies, aptamers, hyaluronic acid, folate, and targeting peptides are coated onto the surface of SPIONs. Therefore, this review summarizes the latest progresses in the conjugation of targeting molecules and drug delivery nanosystems based on SPIONs, especially focusing on their performances to develop efficient targeted drug delivery systems for tumor therapy. STATEMENT OF SIGNIFICANCE: Some magnetic nanoparticle-based nanocarriers loaded with drugs were evaluated in patients and did not produce convincing results, leading to termination of clinical development in phase II/III. An alternative strategy for drug delivery systems based on SPIONs is the conjugation of these systems with targeting segments such as transferrin, antibodies, aptamers, hyaluronic acid, folate, and targeting peptides. These targeting moieties can be recognized by specific integrin/receptors that are overexpressed specifically on the tumor cell surface, resulting in minimizing dosage and reducing off-target effects. This review focuses on magnetic nanoparticle-based nonviral drug delivery systems with targeting moieties to deliver anticancer drugs, with an aim to provide suggestions on the development of SPIONs through discussion.
Collapse
|
152
|
Wang Y, Han L, Liu F, Yang F, Jiang X, Sun H, Feng F, Xue J, Liu W. Targeted degradation of anaplastic lymphoma kinase by gold nanoparticle-based multi-headed proteolysis targeting chimeras. Colloids Surf B Biointerfaces 2020; 188:110795. [PMID: 31991291 DOI: 10.1016/j.colsurfb.2020.110795] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Accepted: 01/12/2020] [Indexed: 02/01/2023]
Abstract
Anaplastic lymphoma kinase (ALK) is a major target in treating non-small-cell lung cancer, and several ALK inhibitors have been developed to antagonize its kinase activity. However, patients treated with inhibitors ultimately develop drug resistance. Therefore, therapies with new mechanisms of action are needed. Proteolysis targeting chimeras (PROTACs) are molecules that comprise a ligand for binding a protein of interest (POI), a connecting linker and a ligand for recruiting E3 ligase, and cause degradation of the target POI. Here, the first multi-headed PROTAC, as a proof of concept, is developed as a gold nanoparticle (GNP)-based drug delivery system for delivering PROTACs to target ALK. Pegylated GNPs loaded with both ceritinib and pomalidomide molecules, termed Cer/Pom-PEG@GNPs, showed good stability in several media. The GNP conjugates potently decreased the levels of ALK fusion proteins in a dose- and time-dependent manner, and specifically inhibited the proliferation of NCI-H2228 cells. In comparison with small molecule PROTACs, the new multi-headed PROTAC promoted the formation of coacervates of POIs/multi-headed PROTAC/E3 ubiquitin ligases, and POI and E3 ubiquitin ligase interacted through multidirectional ligands and a flexible linker, thereby avoiding the need for complicated structure optimization of PROTACs. In conclusion, Cer/Pom-PEG@GNPs can degrade intracellular ALK fusion proteins with minor off-target toxicity and can be applied in patients resistant to ALK inhibitors. As a nano-based drug carrier, Cer/Pom-PEG@GNPs have the potential to enable prolonged circulation and specifically distribute drugs to tumor regions in vivo; thus, further investigation is warranted.
Collapse
Affiliation(s)
- Yingming Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Fulei Liu
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, Shandong, 271000, China; Pharmaceutical Department, Taian City Central Hospital, Taian, Shandong 271000, China
| | - Fubai Yang
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Haopeng Sun
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, Shandong, 271000, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Jingwei Xue
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, Shandong, 271000, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
153
|
Gonçalves M, Mignani S, Rodrigues J, Tomás H. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. J Control Release 2020; 317:347-374. [PMID: 31751636 DOI: 10.1016/j.jconrel.2019.11.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of death worldwide and, as such, efforts are being done to find new chemotherapeutic drugs or, alternatively, novel approaches for the delivery of old ones. In this scope, when used as vehicles for drugs, nanomaterials may potentially maximize the efficacy of the treatment and reduce its side effects, for example by a change in drug's pharmacokinetics, cell targeting and/or specific stimuli-responsiveness. This is the case of doxorubicin (DOX) that presents a broad spectrum of activity and is one of the most widely used chemotherapeutic drugs as first-line treatment. Indeed, DOX is a very interesting example of a drug for which several nanosized delivery systems have been developed over the years. While it is true that some of these systems are already in the market, it is also true that research on this subject remains very active and that there is a continuing search for new solutions. In this sense, this review takes the example of doxorubicin, not so much with the focus on the drug itself, but rather as a case study around which very diverse and imaginative nanotechnology approaches have emerged.
Collapse
Affiliation(s)
- Mara Gonçalves
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Serge Mignani
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
154
|
Saghaeian Jazi M. A Mini-Review of Nanotechnology and Prostate Cancer: Approaches in Early Diagnosis. JOURNAL OF CLINICAL AND BASIC RESEARCH 2020. [DOI: 10.29252/jcbr.4.1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
155
|
Early detection of cancer: Focus on antibody coated metal and magnetic nanoparticle-based biosensors. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
156
|
Trivedi M, Johri P, Singh A, Singh R, Tiwari RK. Latest Tools in Fight Against Cancer: Nanomedicines. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
157
|
Hu B, Ye LS. Endoscopic applications of magnets for the treatment of gastrointestinal diseases. World J Gastrointest Endosc 2019; 11:548-560. [PMID: 31839874 PMCID: PMC6885730 DOI: 10.4253/wjge.v11.i12.548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/21/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Endoscopic treatment of gastrointestinal diseases has developed rapidly in recent years, due to its minimally invasive nature. One of the main contributing factors for this progress is the improvement of endoscopic instruments, which are essential for facilitating safe and effective endoscopic interventions. However, the slow learning curve required in the implementation of many advanced endoscopic procedures using standard devices is associated with a high risk of complications. Other routine procedures may also be complicated by unexpected difficulties. Based on the ferromagnetic properties of many objects, both internal and external magnetic devices have been developed and applied for multiple endoscopic interventions. The applications of magnets, mainly including compression, anchoring and traction, facilitate many difficult procedures and make it feasible to operate procedures that were previously impossible. Other novel endoscopic applications, such as magnetic nanoparticles, are also under development. In this article, we reviewed published studies of endoscopic applications of magnets for the treatment of gastrointestinal diseases such as precancerous lesions and cancer, obstruction, stricture, congenital and acquired malformations, motility disorders, and ingestion of foreign bodies. Since several endoscopic applications of magnets may also be relevant to surgery, we included them in this review.
Collapse
Affiliation(s)
- Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lian-Song Ye
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
158
|
Avval ZM, Malekpour L, Raeisi F, Babapoor A, Mousavi SM, Hashemi SA, Salari M. Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev 2019; 52:157-184. [PMID: 31834823 DOI: 10.1080/03602532.2019.1697282] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this article, the recent applications of different types of magnetic nanoparticles such as α-Fe2O3 (hematite), γ-Fe2O3 (maghemite), Fe3O4 (magnetite), hexagonal (MFe12O19), garnet (M3Fe5O12) and spinel (MFe2O4), where M represents one or more bivalent transition metals (Mn, Fe, Co, Ni, Ba, Sr, Cu, and Zn), and different materials for coating the surface of magnetic nanoparticles like poly lactic acid (PLA), doxorubicin hydrophobic (DOX-HCL), paclitaxel (PTX), EPPT-FITC, oleic acid, tannin, 3-Aminopropyltriethoxysilane (APTES), multi-wall carbon nanotubes (CNTs), polyethylenimine (PEI) and polyarabic acid in drug delivery, biomedicine and treatment of cancer, specially chemotherapy, are reviewed. MNPs possess large surface area to volume ratios because of their nano-size, low surface charge at physiological pH and they aggregate easily in solution due to their essential magnetic nature. These materials are widely used in biology and medicine in many cases. One targeted delivery technique that has gained prominence in recent years is the use of magnetic nanoparticles. In these systems, therapeutic compounds are attached to biocompatible magnetic nanoparticles and magnetic fields generated outside the body are focused on specific targets in vivo. The fields capture the particle complex, resulting in enhanced delivery to the target site. Also, the application of brand new supermagnetic nanoparticles, like Ba,SrFe12O19, is considered and studied in this paper.
Collapse
Affiliation(s)
| | - Leila Malekpour
- Department of Chemistry, Payame Noor University, Ardabil, Iran
| | - Farzad Raeisi
- Department of Chemistry, Payame Noor University, Ardabil, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Salari
- Department of Civil and Environmental Engineering, Sirjan University of Technology, Kerman, Iran
| |
Collapse
|
159
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
160
|
Silva AS, Santos LF, Mendes MC, Mano JF. Multi-layer pre-vascularized magnetic cell sheets for bone regeneration. Biomaterials 2019; 231:119664. [PMID: 31855623 DOI: 10.1016/j.biomaterials.2019.119664] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
The lack of effective strategies to produce vascularized 3D bone transplants in vitro, hampers the development of thick-constructed bone, limiting the translational of lab-based engineered system to clinical practices. Cell sheet (CS) engineering techniques provide an excellent microenvironment for vascularization since the technique can maintain the intact cell matrix, crucial for angiogenesis. In an attempt to develop hierarchical vascularized 3D cellular constructs, we herein propose the construction of stratified magnetic responsive heterotypic CSs by making use of iron oxide nanoparticles previously internalized within cells. Magnetic force-based CS engineering allows for the construction of thick cellular multilayers. Results show that osteogenesis is achieved due to a synergic effect of human umbilical vein endothelial cells (HUVECs) and adipose-derived stromal cells (ASCs), even in the absence of osteogenic differentiating factors. Increased ALP activity, matrix mineralization, osteopontin and osteocalcin detection were achieved over a period of 21 days for the heterotypic CS conformation (ASCs/HUVECs/ASCs), over the homotypic one (ASCs/ASCs), corroborating our findings. Moreover, the validated crosstalk between BMP-2 and VEGF releases triggers not only the recruitment of blood vessels, as demonstrated in an in vivo CAM assay, as well as the osteogenesis of the 3D cell construct. The in vivo angiogenic profile also demonstrated preserved human vascular structures and human cells showed the ability to migrate and integrate within the chick vasculature.
Collapse
Affiliation(s)
- Ana S Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Lúcia F Santos
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria C Mendes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
161
|
Biocompatible Layers Obtained from Functionalized Iron Oxide Nanoparticles in Suspension. COATINGS 2019. [DOI: 10.3390/coatings9120773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Iron oxide nanoparticles have been extensively studied for challenges in applicable areas such as medicine, pharmacy, and the environment. The functionalization of iron oxide nanoparticles with dextran opens new prospects for application. Suspension characterization methods such as dynamic light scattering (DLS) and zeta potential (ZP) have allowed us to obtain information regarding the stability and hydrodynamic diameter of these suspended particles. For rigorous characterization of the suspension of dextran-coated iron oxide nanoparticles (D-MNPs), studies have been performed using ultrasound measurements. The results obtained from DLS and ZP studies were compared with those obtained from ultrasound measurements. The obtained results show a good stability of D-MNPs. A comparison between the D-MNP dimension obtained from transmission electron microscopy (TEM), X-ray diffraction (XRD), and DLS studies was also performed. A scanning electron spectroscopy (SEM) image of a surface D-MNP layer obtained from the stable suspension shows that the particles are spherical in shape. The topographies of the elemental maps of the D-MNP layer showed a uniform distribution of the constituent elements. The homogeneity of the layer was also observed. The morphology of the HeLa cells incubated for 24 and 48 h with the D-MNP suspension and D-MNP layers did not change relative to the morphology presented by the control cells. The cytotoxicity studies conducted at different time intervals have shown that a slight decrease in the HeLa cell viability after 48 h of incubation for both samples was observed.
Collapse
|
162
|
Man S, Li M, Zhou J, Wang H, Zhang J, Ma L. Polyethyleneimine coated Fe 3O 4 magnetic nanoparticles induce autophagy, NF-κB and TGF-β signaling pathway activation in HeLa cervical carcinoma cells via reactive oxygen species generation. Biomater Sci 2019; 8:201-211. [PMID: 31664285 DOI: 10.1039/c9bm01563a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fe3O4 magnetic nanoparticles (MNPs), as one of the most intensively researched NPs, have a range of applications in cancer treatments. In current research, we have focused on the influences of MNPs on cancer cells. We chose polyethyleneimine (PEI) coated MNPs (PEI-MNPs) as a model and they are colloidally stable in biological media. It can be proved that PEI-MNPs result in autophagy induction via mTOR-Akt-p70S6 K and ATG7 signaling pathways. For the first time, we have reported that PEI-MNPs activate both NF-κB and TGF-β signaling, two key pro-inflammatory pathways, in cancer cells. More significantly, we have found that autophagy induction and NF-κB and TGF-β activation can be efficiently suppressed through the inhibition of PEI-MNP dependent reactive oxygen species (ROS) over-production. ROS are deemed as a 'double edge sword' for cancer cells, owing to the cancer-suppressing and cancer-promoting actions. Our findings would be useful for designing MNPs induced ROS anti-cancer strategies or diminishing long-term toxic effects.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Miao Li
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jin Zhou
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Haiyue Wang
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jinyan Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Long Ma
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
163
|
Samrot AV, Sahithya CS, Selvarani A J, Pachiyappan S, Kumar S S. Surface-Engineered Super-Paramagnetic Iron Oxide Nanoparticles For Chromium Removal. Int J Nanomedicine 2019; 14:8105-8119. [PMID: 31632021 PMCID: PMC6790408 DOI: 10.2147/ijn.s214236] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/15/2019] [Indexed: 01/20/2023] Open
Abstract
Background Super-paramagnetic iron oxide nanoparticles (SPIONs) are widely used metal nanoparticles for various applications for its magnetic property and biocompatibility. In recent years, pollution of our environment especially with heavy metals in waterbodies has become a major threat and has left us very minimal sources of freshwater to drink. SPIONs or surface modified SPIONs can be used to remove these heavy metals Methods SPIONs were synthesized by co-precipitation method and further coated with a biopolymer, chitosan. Chromium solution was treated with the synthesized SPIONs to study the efficiency of chromium removal by surface adsorption. Later, the adsorption was analysed by direct and indirect analysis methods using UV-VIS spectrophotometry and isotherm studies. Results Stable chitosan-coated SPIONs were synthesized and they adsorbed chromium better than the uncoated SPIONs, where it was adsorbing up to 100 ppm. Adsorption was found to be increasing with decrease in pH. Conclusion The surface-modified SPIONs expressed cumulative adsorption action. Even after the adsorption studies, chitosan-coated SPIONs were possessing magnetic property. Thus, the surface-modified SPIONs can become an ideal nanotechnology tool to remove the chromium from groundwater.
Collapse
Affiliation(s)
- Antony V Samrot
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Jenifer Selvarani A
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Senthilkumar Pachiyappan
- Department of Chemical Engineering, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Suresh Kumar S
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia.,Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia
| |
Collapse
|
164
|
Wang XM, Guo PF, Hu ZJ, Chen ML, Wang JH. DMSA-Functionalized Mesoporous Alumina with a High Capacity for Selective Isolation of Immunoglobulin G. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36286-36295. [PMID: 31491081 DOI: 10.1021/acsami.9b13718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel dimercaptosuccinic acid-functionalized mesoporous alumina (DMSA-MA) is synthesized by the dicarboxylic acid groups of dimercaptosuccinic acid molecules coordinating to the Al3+ ions located in the mesostructure. The as-prepared DMSA-MA composites possess a large surface area of 91.17 m2/g as well as a uniform pore size and a high pore volume of 17.22 nm and 0.23 cm3/g, respectively. DMSA coating of mesostructures significantly enhanced their selectivity for glycoprotein adsorption through a powerful hydrophilic binding force, and the maximum adsorption capacity of immunoglobulin G (IgG) can reach 2298.6 mg g-1. The captured IgG could be lightly stripped from the DMSA-MA composites with an elution rate of 98.3% by using 0.5 wt % CTAB solution as the elution reagent. DMSA-MA is further employed as a sorbent for the enrichment of IgG heavy chain and light chain from human serum sample. SDS-PAGE assay results showed the obtained IgG with high purity compared to that of the standard solution of IgG.
Collapse
Affiliation(s)
- Xi-Ming Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Zheng-Jie Hu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| |
Collapse
|
165
|
Efficient microwave synthesis, functionalisation and biocompatibility studies of SPION based potential nano-drug carriers. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01153-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
166
|
Paris JL, Baeza A, Vallet-Regí M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin Drug Deliv 2019; 16:1095-1112. [DOI: 10.1080/17425247.2019.1662786] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Juan L. Paris
- Department of Life Sciences, Nano4Health Unit, Nanomedicine Group. International Iberian Nanotechnology Laboratory (INL). Av. Mestre José Veiga s/n, Braga, Portugal
| | - Alejandro Baeza
- Materials and Aeroespatial Production Department, Polymer Materials Research Group, Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas (Unidad Docente de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
167
|
Hashemian M, Ghasemi-Kasman M, Ghasemi S, Akbari A, Moalem-Banhangi M, Zare L, Ahmadian SR. Fabrication and evaluation of novel quercetin-conjugated Fe 3O 4-β-cyclodextrin nanoparticles for potential use in epilepsy disorder. Int J Nanomedicine 2019; 14:6481-6495. [PMID: 31496698 PMCID: PMC6698168 DOI: 10.2147/ijn.s218317] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the numerous pharmacological activities of quercetin, its biomedical application has been hampered, because of poor water solubility and low oral bioavailability. In the present study, we fabricated a novel form of quercetin-conjugated Fe3O4-β-cyclodextrin (βCD) nanoparticles (NPs), and the effect of these prepared NPs was evaluated in a chronic model of epilepsy. METHODS Quercetin-loaded NPs were prepared using an iron oxide core coated with βCD and pluronic F68 polymer. The chronic model of epilepsy was developed by intraperitoneal injection of pentylenetetrazole (PTZ) at dose of 36.5 mg/kg every second day. Quercetin or its nanoformulation at doses of 25 or 50 mg/kg were administered intraperitoneally 10 days before PTZ injections and their applications continued 1 hour before each PTZ injection. Immunostaining was performed to evaluate the neuronal density and astrocyte activation of hippocampi. RESULTS Our data showed successful fabrication of quercetin onto Fe3O4-βCD NPs. In comparison to free quercetin, quercetin NPs markedly reduced seizure behavior, neuronal loss, and astrocyte activation in a PTZ-induced kindling model. CONCLUSION Overall, quercetin-Fe3O4-βCD NPs might be regarded as an ideal therapeutic approach in epilepsy disorder.
Collapse
Affiliation(s)
- Mona Hashemian
- Student Research Committee, Babol University of Medical Sciences
, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Atefeh Akbari
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
| | | | - Leila Zare
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences
, Babol, Iran
| | | |
Collapse
|
168
|
Jabalera Y, Fernández-Vivas A, Iglesias GR, Delgado ÁV, Jimenez-Lopez C. Magnetoliposomes of mixed biomimetic and inorganic magnetic nanoparticles as enhanced hyperthermia agents. Colloids Surf B Biointerfaces 2019; 183:110435. [PMID: 31430636 DOI: 10.1016/j.colsurfb.2019.110435] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
Recently, liposomes have been explored as a potential solution to improve the biocompatibility and the colloidal stability of magnetic nanoparticles. Protocols have been developed for producing magnetoliposomes of magnetite nanoparticles obtained inorganically (MNPs). However, the biomimetic synthesis of magnetite using heterologous proteins from magnetotactic bacteria has become a real alternative to produce novel biomimetic magnetic nanoparticles (BMNPs). Among these, the BMNPs obtained in presence of MamC protein from Magnetococcus marinus MC-1 have been proposed as excellent candidates to be potentially used as drug nanocarriers and as hyperthermia agents. However, their colloidal stability still needs to be improved while maintaining their magnetic properties intact. One possibility explored in this manuscript is to form magnetoliposomes that contain BMNPs. Indeed, the protocols developed for producing magnetoliposomes of MNPs need to be tested and modified to be able to include BMNPs. In this context, a protocol has been developed to produce both magnetoliposomes filled with MNPs and/or BMNPs and their potential as hyperthermia agents was tested. In fact, for the first time, these two types of nanoparticles were mixed in different proportions to test the composition that would optimize such as behaviour as hyperthermia agents. Interestingly, it was observed that the hyperthermia behaviour of the magnetoliposomes greatly improved if they were filled with a mixture of MNPs and BMNPs. These results indicate that these magnetoliposomes display optimal characteristics to become a potential agent for hyperthermia and that the opening of those liposomes could be externally controlled by applying an alternate magnetic field.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, Spain
| | | | - Guillermo R Iglesias
- Department of Applied Physics, Faculty of Sciences, University of Granada, Spain
| | - Ángel V Delgado
- Department of Applied Physics, Faculty of Sciences, University of Granada, Spain
| | | |
Collapse
|
169
|
Jabalera Y, Garcia-Pinel B, Ortiz R, Iglesias G, Cabeza L, Prados J, Jimenez-Lopez C, Melguizo C. Oxaliplatin-Biomimetic Magnetic Nanoparticle Assemblies for Colon Cancer-Targeted Chemotherapy: An In Vitro Study. Pharmaceutics 2019; 11:E395. [PMID: 31390773 PMCID: PMC6723246 DOI: 10.3390/pharmaceutics11080395] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/29/2023] Open
Abstract
Conventional chemotherapy against colorectal cancer (CRC), the third most common cancer in the world, includes oxaliplatin (Oxa) which induces serious unwanted side effects that limit the efficiency of treatment. Therefore, alternative therapeutic approaches are urgently required. In this work, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC were coupled to Oxa to evaluate the potential of the Oxa-BMNP nanoassembly for directed local delivery of the drug as a proof of concept for the future development of targeted chemotherapy against CRC. Electrostatic interactions between Oxa and BMNPs trigger the formation of the nanoassembly and keep it stable at physiological pH. When the BMNPs become neutral at acidic pH values, the Oxa is released, and such a release is greatly potentiated by hyperthermia. The coupling of the drug with the BMNPs improves its toxicity to even higher levels than the soluble drug, probably because of the fast internalization of the nanoassembly by tumor cells through endocytosis. In addition, the BMNPs are cytocompatible and non-hemolytic, providing positive feedback as a proof of concept for the nanoassembly. Our study clearly demonstrates the applicability of Oxa-BMNP in colon cancer and offers a promising nanoassembly for targeted chemotherapy against this type of tumor.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Beatriz Garcia-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Guillermo Iglesias
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain.
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain.
| | - Concepcion Jimenez-Lopez
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| |
Collapse
|
170
|
Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
171
|
Vallabani NVS, Singh S, Karakoti AS. Magnetic Nanoparticles: Current Trends and Future Aspects in Diagnostics and Nanomedicine. Curr Drug Metab 2019; 20:457-472. [DOI: 10.2174/1389200220666181122124458] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/23/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Background:
Biomedical applications of Magnetic Nanoparticles (MNPs) are creating a major impact on
disease diagnosis and nanomedicine or a combined platform called theranostics. A significant progress has been
made to engineer novel and hybrid MNPs for their multifunctional modalities such as imaging, biosensors, chemotherapeutic
or photothermal and antimicrobial agents. MNPs are successfully applied in biomedical applications
due to their unique and tunable properties such as superparamagnetism, stability, and biocompatibility. Approval of
ferumoxytol (feraheme) for MRI and the fact that several Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are
currently undergoing clinical trials have paved a path for future MNPs formulations. Intensive research is being
carried out in designing and developing novel nanohybrids for multiple applications in nanomedicine.
Objective:
The objective of the present review is to summarize recent developments of MNPs in imaging modalities
like MRI, CT, PET and PA, biosensors and nanomedicine including their role in targeting and drug delivery. Relevant
theory and examples of the use of MNPs in these applications have been cited and discussed to create a thorough
understanding of the developments in this field.
Conclusion:
MNPs have found widespread use as contrast agents in imaging modalities, as tools for bio-sensing, and
as therapeutic and theranostics agents. Multiple formulations of MNPs are in clinical testing and may be accepted in
clinical settings in near future.
Collapse
Affiliation(s)
- Naga Veera Srikanth Vallabani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ajay Singh Karakoti
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
172
|
Liu W, Lo YL, Hsu C, Wu YT, Liao ZX, Wu WJ, Chen YJ, Kao C, Chiu CC, Wang LF. CS-PEI/Beclin-siRNA Downregulate Multidrug Resistance Proteins and Increase Paclitaxel Therapeutic Efficacy against NSCLC. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:477-490. [PMID: 31336235 PMCID: PMC6656922 DOI: 10.1016/j.omtn.2019.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Paclitaxel (PTX) is a widely used chemotherapy drug; however, frequent use causes multidrug resistance (MDR), which limits the utility of PTX against advanced non-small-cell lung cancer (NSCLC). PTX-resistant subline (NCI-H23-TXR) was established in vitro by exposing NCI-H23 cells to gradually increased concentrations of PTX in culture medium. Distinct Beclin expression of autophagy level was observed between resistant NCI-H23-TXR and parental NCI-H23 cells. Beclin-small interfering RNA (siRNA) was selected to restore sensitivity of PTX against NCI-H23-TXR. Chondroitin sulfate-polyethylenimine (CS-PEI) was constructed for delivery and protection of Beclin-siRNA. To delineate the underlying molecular mechanism of Beclin knockdown, we analyzed different MDR expression proteins of two cells using western blot, and the corresponding genes were confirmed by real-time PCR. Compared with NCI-H23, NCI-H23-TXR had higher expression levels in P-glycoprotein (P-gp) and multidrug resistance protein 7 (ABCC10). Knockdown of Beclin simultaneously inhibited P-gp and ABCC10, and renewed the sensitivity of PTX against NCI-H23-TXR. Research on zebrafish embryos revealed that tumor sizes decreased in NCI-H23 tumor xenografts but remained intact in NCI-H23-TXR tumor xenografts as zebrafish were treated with 1 μg/mL PTX. In contrast, the tumor sizes decreased in NCI-H23-TXR tumor xenografts with zebrafish pre-transfected with CS-PEI/Beclin-siRNA followed by the same treatment of PTX. The role of autophagy was associated with MDR development. This study paves the way for a new avenue of PTX in MDR-related lung cancer therapy using CS-PEI as a gene delivery carrier.
Collapse
Affiliation(s)
- Wangta Liu
- Department of Biotechnology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Lun Lo
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Physiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin Hsu
- Department of Physiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yi-Ting Wu
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Wen-Jeng Wu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Jou Chen
- School of Medicine, Chang Guan University, Taoyuan City 33302, Taiwan
| | - Chieh Kao
- School of Medicine for International Students, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
173
|
Thitichai N, Thanapongpibul C, Theerasilp M, Sungkarat W, Nasongkla N. Study of biodistribution and systemic toxicity of glucose functionalized SPIO/DOX micelles. Pharm Dev Technol 2019; 24:935-946. [PMID: 30652923 DOI: 10.1080/10837450.2019.1569679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study examined the cytotoxicity and magnetic resonance imaging (MRI) distribution of cancer-targeted, MRI-visible polymeric micelles that encapsulate doxorubicin (DOX) and superparamagnetic iron oxide (SPIO) and are conjugated with glucose as a targeting ligand. In this study, the micelles were investigated the clinical potential of glucose-micelles, in vitro cytotoxicity assays of nonencapsulating or SPIO-and-DOX-coencapsulating micelles were performed on L929 mouse fibroblasts, and we found that glucose-micelles did not exert in vitro cytotoxic effects. Next, in vitro MRI detectability of glucose SPIO micelles was evaluated at the loaded SPIO content of 2.5% and 50%, and it was found that glucose-micelles can increase MRI relaxivity (r2*) at high SPIO loading. Furthermore, 50% SPIO micelles persisted in the blood circulation for up to 5 days (slow liver clearance) as determined by in vivo MRI. For in vivo toxicity evaluation, 50% SPIO/DOX micelles at a dose up to 18 (mg DOX)/(kg body weight) showed no impact on animal health according to clinical chemistry and clinical hematology laboratory testing. Altogether, these results indicate that glucose-micelles can serve as an effective and safe drug delivery system.
Collapse
Affiliation(s)
- Nussana Thitichai
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University, Puttamonthon , Nakorn Pathom , Thailand.,b Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Mahidol University , Bangkok , Thailand
| | - Chalaisorn Thanapongpibul
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University, Puttamonthon , Nakorn Pathom , Thailand
| | - Man Theerasilp
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University, Puttamonthon , Nakorn Pathom , Thailand.,c Department of Materials Science and Engineering School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Rayong , Thailand
| | - Witaya Sungkarat
- d Advanced Diagnostic Imaging Center (AIMC), Faculty of Medicine , Ramathibodi Hospital, Mahidol University , Bangkok , Thailand
| | - Norased Nasongkla
- a Department of Biomedical Engineering, Faculty of Engineering , Mahidol University, Puttamonthon , Nakorn Pathom , Thailand.,b Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Mahidol University , Bangkok , Thailand
| |
Collapse
|
174
|
Doxorubicin loaded carboxymethyl Assam bora rice starch coated superparamagnetic iron oxide nanoparticles as potential antitumor cargo. Heliyon 2019; 5:e01955. [PMID: 31294107 PMCID: PMC6595192 DOI: 10.1016/j.heliyon.2019.e01955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/30/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, polysaccharide-decorated superparamagnetic iron oxide nanoparticles (SPIONs) have gained attention in the field of “nanotheranostics” with integrated diagnostic and therapeutic functions. Carboxymethyl Assam bora rice starch-stabilized SPIONs (CM-ABRS SPIONs), synthesized by co-precipitation method, has already shown exciting potential towards magnetic drug targeting potential. After establishing it as a promisable targeting carrier, the present study is focused on the next step i.e. to evaluate its In vitro anti-tumor potential by loading anticancer drug “Doxorubicin hydrochloride (DOX)” onto CM-ABRS SPIONs. DOX-loaded CM-ABRS SPIONs were physico-chemically characterized by DLS, zeta-potential, TEM, FT-IR, XRD, and VSM analysis. Spectroflourimetric analysis confirmed the maximum loading of DOX up to 6% (w/w) onto CM-ABRS SPIONs via electrostatic interactions. Further, molecular level drug performance was investigated by docking study against receptors (HER-2 and Folate receptor-α) over expressed in cancer cells and MTT assay (in MCF-7 and HeLa cell line), which conferred promisable results of DOX-CM-ABRS SPIONs as compared to standard DOX solution.
Collapse
|
175
|
Du Y, Liu X, Liang Q, Liang XJ, Tian J. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy. NANO LETTERS 2019; 19:3618-3626. [PMID: 31074627 DOI: 10.1021/acs.nanolett.9b00630] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Two major technical challenges of magnetic hyperthermia are quantitative assessment of agent distribution during and following administration and achieving uniform heating of the tumor at the desired temperature without damaging the surrounding tissues. In this study, we developed a multimodal MRI/MPI theranostic agent with active biological targeting for improved magnetic hyperthermia therapy (MHT). First, by systematically elucidating the magnetic nanoparticle magnetic characteristics and the magnetic resonance imaging (MRI) and magnetic particle imaging (MPI) signal enhancement effects, which are based on the magnetic anisotropy, size, and type of nanoparticles, we found that 18 nm iron oxide NPs (IOs) could be used as superior nanocrystallines for high performance of MRI/MPI contrast agents in vitro. To improve the delivery uniformity, we then targeted tumors with the 18 nm IOs using a tumor targeting peptide, CREKA. Both MRI and MPI signals showed that the targeting agent improves the intratumoral delivery uniformity of nanoparticles in a 4T1 orthotopic mouse breast cancer model. Lastly, the in vivo antitumor MHT effect was evaluated, and the data showed that the improved targeting and delivery uniformity enables more effective magnetic hyperthermia cancer ablation than otherwise identical, nontargeting IOs. This preclinical study of image-guided MHT using cancer-targeting IOs and a novel MPI system paves the way for new MHT strategies.
Collapse
Affiliation(s)
- Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoli Liu
- University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road, Zhongguancun , Beijing 100190 , China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xing-Jie Liang
- University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road, Zhongguancun , Beijing 100190 , China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine , Beihang University , Beijing 100190 , China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710126 , China
| |
Collapse
|
176
|
Ecotoxicity Assessment of Fe 3O 4 Magnetic Nanoparticle Exposure in Adult Zebrafish at an Environmental Pertinent Concentration by Behavioral and Biochemical Testing. NANOMATERIALS 2019; 9:nano9060873. [PMID: 31181856 PMCID: PMC6631370 DOI: 10.3390/nano9060873] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Magnetic Nanoparticles (MNPs) are widely being investigated as novel promising multifunctional agents, specifically in the fields of development for theranostics, electronics, waste water treatment, cosmetics, and energy storage devices. Unique, superior, and indispensable properties of magnetization, heat transfer, and melting temperature make MNPs emerge in the field of therapeutics in future healthcare industries. However, MNPs ecotoxicity as well as behavioral toxicity is still unexplored. Ecotoxicity analysis may assist investigate MNPs uptake mechanism and its influence on bioavailability under a given set of environmental factors, which can be followed to investigate the biomagnification of MNPs in the environment and health risk possessed by them in an ecological food chain. In this study, we attempted to determine the behavioral changes in zebrafishes at low (1 ppm) or high (10 ppm) concentration levels of Fe3O4 MNPs. The synthesized Fe3O4 MNPs sized at 15 nm were characterized by the transmission electron microscope (TEM), the superconducting quantum interference device (SQUID) magnetometer, and the multiple behavior tests for novel tank, mirror biting, conspecific social interaction, shoaling, circadian rhythm, and short-term memory of zebrafish under MNPs chronic exposure were demonstrated. Low concentration MNP exposure did not trigger alteration for majority behavioral and biochemical tests in adult zebrafish. However, tight shoal groups were observed at a high concentration of MNPs exposure along with a modest reduction in fish exploratory behavior and a significant reduction in conspecific social interaction behavior. By using enzyme-linked immunosorbent assays (ELISA), we found a high dose of MNPs exposure significantly elevated cortisol, acetylcholine, and catalase levels while reducing serotonin, acetylcholine esterase, and dopamine levels in the brain. Our data demonstrates chronic MNPs exposure at an environmentally-relevant dose is relatively safe by supporting evidence from an array of behavioral and biochemical tests. This combinational approach using behavioral and biochemical tests would be helpful for understanding the MNPs association with anticipated colloids and particles effecting bioavailability and uptake into cells and organisms.
Collapse
|
177
|
Anderson SD, Gwenin VV, Gwenin CD. Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. NANOSCALE RESEARCH LETTERS 2019; 14:188. [PMID: 31147786 PMCID: PMC6542970 DOI: 10.1186/s11671-019-3019-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/17/2019] [Indexed: 05/12/2023]
Abstract
Medicine is constantly looking for new and improved treatments for diseases, which need to have a high efficacy and be cost-effective, creating a large demand on scientific research to discover such new treatments. One important aspect of any treatment is the ability to be able to target only the illness and not cause harm to another healthy part of the body. For this reason, metallic nanoparticles have been and are currently being extensively researched for their possible medical uses, including medical imaging, antibacterial and antiviral applications. Superparamagnetic metal nanoparticles possess properties that allow them to be directed around the body with a magnetic field or directed to a magnetic implant, which opens up the potential to conjugate various bio-cargos to the nanoparticles that could then be directed for treatment in the body. Here we report on some of the current bio-medical applications of various metal nanoparticles, including single metal nanoparticles, functionalized metal nanoparticles, and core-shell metal nanoparticles using a core of Fe3O4 as well as synthesis methods of these core-shell nanoparticles.
Collapse
Affiliation(s)
- Simon D Anderson
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2UW, UK
| | - Vanessa V Gwenin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2UW, UK
| | - Christopher D Gwenin
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2UW, UK.
| |
Collapse
|
178
|
Magnetic Particle Imaging in Neurosurgery. World Neurosurg 2019; 125:261-270. [DOI: 10.1016/j.wneu.2019.01.180] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023]
|
179
|
Kohama N, Suwabe C, Ishii H, Hayashi K, Nagao D. Characterization on magnetophoretic velocity of the cluster of submicron-sized composite particles applicable to magnetic separation and purification. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
180
|
Qian X, Zhang J, Gu Z, Chen Y. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials 2019; 211:1-13. [PMID: 31075521 DOI: 10.1016/j.biomaterials.2019.04.023] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 01/18/2023]
Abstract
It is the challenging goal in cancer biomedicine to search novel cancer-therapeutic modality with concurrent high therapeutic efficiency on combating cancer and low side effects to normal cells/tissues. The recently developed nanocatalytic cancer therapy based on catalytic Fenton reaction represents one of the promising paradigms for potential clinical translation, which has got fast progress very recently. This progress report discusses the rational design and fabrication of Fenton reaction-based nanocatalysts for triggering the in-situ Fenton chemical reaction within tumor microenvironment to generate highly toxic hydroxyl radicals (•OH), which is highly efficient for killing the cancer cells and suppressing the tumor growth. Several strategies for optimizing the nanocatalytic cancer-therapeutic efficiency of Fenton reaction have been highlighted, including screening high-performance Fenton nanocatalysts, increasing peroxide-hydrogen amounts as the reactants, changing the Fenton-reaction conditions (e.g., temperature, acidity and photo-triggering), and Fenton reaction-based synergistic cancer therapy such as some sequential nanocatalytic reactions with improved therapeutic outcome. The facing challenges and future developments of Fenton reaction-based nanocatalytic cancer therapy are also discussed for further promoting the clinical translation of this emerging cancer-therapeutic modality to benefit the cancer patients.
Collapse
Affiliation(s)
- Xiaoqin Qian
- Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, PR China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| | - Zi Gu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yu Chen
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| |
Collapse
|
181
|
Soares GA, Prospero AG, Calabresi MF, Rodrigues DS, Simoes LG, Quini CC, Matos RR, Pinto LA, Sousa-Junior AA, Bakuzis AF, Mancera PA, Miranda JRA. Multichannel AC Biosusceptometry System to Map Biodistribution and Assess the Pharmacokinetic Profile of Magnetic Nanoparticles by Imaging. IEEE Trans Nanobioscience 2019; 18:456-462. [PMID: 30998477 DOI: 10.1109/tnb.2019.2912073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, the application of a technique to evaluate in vivo biodistribution of magnetic nanoparticles (MNP) is addressed: the Multichannel AC Biosusceptometry System (MC-ACB). It allows real-time assessment of magnetic nanoparticles in both bloodstream clearance and liver accumulation, where a complex network of inter-related cells is responsible for MNP uptake. Based on the acquired MC-ACB images, we propose a mathematical model which helps to understand the distribution and accumulation pharmacokinetics of MNP. The MC-ACB showed a high time resolution to detect and monitor MNP, providing sequential images over the particle biodistribution. Utilizing the MC-ACB instrument, we assessed regions corresponding to the heart and liver, and we determined the MNP transfer rates between the bloodstream and the liver. The pharmacokinetic model resulted in having a strong correlation with the experimental data, suggesting that the MC-ACB is a valuable and accessible imaging device to assess in vivo and real-time pharmacokinetic features of MNP.
Collapse
|
182
|
Development of a Two-Way Coupled Eulerian–Lagrangian Computational Magnetic Nanoparticle Targeting Model for Pulsatile Flow in a Patient-Specific Diseased Left Carotid Bifurcation Artery. Cardiovasc Eng Technol 2019; 10:299-313. [DOI: 10.1007/s13239-019-00411-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
|
183
|
Ansari SAMK, Ficiarà E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, Cavalli R, Guiot C, D'Agata F. Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for Biomedical Applications in the Central Nervous System. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E465. [PMID: 30717431 PMCID: PMC6384775 DOI: 10.3390/ma12030465] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Magnetic Nanoparticles (MNPs) are of great interest in biomedicine, due to their wide range of applications. During recent years, one of the most challenging goals is the development of new strategies to finely tune the unique properties of MNPs, in order to improve their effectiveness in the biomedical field. This review provides an up-to-date overview of the methods of synthesis and functionalization of MNPs focusing on Iron Oxide Nanoparticles (IONPs). Firstly, synthesis strategies for fabricating IONPs of different composition, sizes, shapes, and structures are outlined. We describe the close link between physicochemical properties and magnetic characterization, essential to developing innovative and powerful magnetic-driven nanocarriers. In conclusion, we provide a complete background of IONPs functionalization, safety, and applications for the treatment of Central Nervous System disorders.
Collapse
Affiliation(s)
| | - Eleonora Ficiarà
- Department of Neuroscience, University of Turin, 10124 Turin, Italy.
| | | | - Ilaria Stura
- Department of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy.
| | - Ornella Abollino
- Department of Chemistry, University of Turin, 10124 Turin, Italy.
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy.
| | - Caterina Guiot
- Department of Neuroscience, University of Turin, 10124 Turin, Italy.
| | - Federico D'Agata
- Department of Neuroscience, University of Turin, 10124 Turin, Italy.
| |
Collapse
|
184
|
Peng X, Wang B, Yang Y, Zhang Y, Liu Y, He Y, Zhang C, Fan H. Liver Tumor Spheroid Reconstitution for Testing Mitochondrial Targeted Magnetic Hyperthermia Treatment. ACS Biomater Sci Eng 2019; 5:1635-1644. [DOI: 10.1021/acsbiomaterials.8b01630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xuqi Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xuefu Street No. 1, Xi’an, 710127, China
- School of Chemical Engineering, Northwest University, Xuefu Street No. 1, Xi’an, 710069, China
| | - Bingquan Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xuefu Street No. 1, Xi’an 710127, China
| | - Yu Yang
- College of Life Science, Northwest University, Xuefu Street No. 1, Xi’an, 710069, China
| | - Yihan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xuefu Street No. 1, Xi’an, 710127, China
| | - Yonggang Liu
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Medical School Road NO. 1, Chongqing 400016, China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xuefu Street No. 1, Xi’an, 710127, China
| | - Ce Zhang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xuefu Street No. 1, Xi’an 710127, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xuefu Street No. 1, Xi’an, 710127, China
- School of Chemical Engineering, Northwest University, Xuefu Street No. 1, Xi’an, 710069, China
| |
Collapse
|
185
|
Miola M, Pakzad Y, Banijamali S, Kargozar S, Vitale-Brovarone C, Yazdanpanah A, Bretcanu O, Ramedani A, Vernè E, Mozafari M. Glass-ceramics for cancer treatment: So close, or yet so far? Acta Biomater 2019; 83:55-70. [PMID: 30415065 DOI: 10.1016/j.actbio.2018.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022]
Abstract
After years of research on the ability of glass-ceramics in bone regeneration, this family of biomaterials has shown revolutionary potentials in a couple of emerging applications such as cancer treatment. Although glass-ceramics have not yet reached their actual potential in cancer therapy, the relevant research activity is significantly growing in this field. It has been projected that this idea and the advent of magnetic bioactive glass-ceramics and mesoporous bioactive glasses could result in major future developments in the field of cancer. Undoubtedly, this strategy needs further developments to better answer the critical questions essential for clinical usage. This review aims to address the existing research developments on glass-ceramics for cancer treatment, starting with the current status and moving to future advances. STATEMENT OF SIGNIFICANCE: Although glass-ceramics have not yet reached their potential in cancer therapy, research activity is significantly growing. It has been speculated that this idea and the advent of modern glass-ceramics could result in significant future advances. Undoubtedly, this strategy needs further investigations and many critical questions have to be answered before it can be successfully applied for cancer treatment. This paper reviews the current state-of-the-art, starting with current products and moving onto recent developments in this field. According to our knowledge, there is a lack of a systematic review on the importance and developments of magnetic bioactive glass-ceramics and mesoporous bioactive glasses for cancer treatment, and it is expected that this review will be of interest to those working in this area.
Collapse
Affiliation(s)
- Marta Miola
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Yousef Pakzad
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 4777-14155, Tehran, Iran
| | - Sara Banijamali
- Engineering Ceramics Research Group, Ceramic Department, Materials and Energy Research Center (MERC), P.O. Box: 4777-14155, Tehran, Iran
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, P.O. Box 917794-8564, Mashhad, Iran
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Abolfazl Yazdanpanah
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Oana Bretcanu
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Arash Ramedani
- Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology, P.O. Box 11365-9466, Tehran, Iran; Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Enrica Vernè
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 4777-14155, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
186
|
Iravani S. Bio-Based Synthesis of Magnetic Nanoparticles and Their Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-16439-3_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
187
|
Madanayake NH, Rienzie R, Adassooriya NM. Nanoparticles in Nanotheranostics Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
188
|
Douzandeh-Mobarrez B, Ansari-Dogaheh M, Eslaminejad T, Kazemipour M, Shakibaie M. Preparation and Evaluation of the Antibacterial Effect of Magnetic Nanoparticles Containing Gentamicin: A Preliminary In vitro Study. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1559. [PMID: 31457030 PMCID: PMC6697835 DOI: 10.21859/ijb.1559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/04/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023]
Abstract
Background Magnetic nanoparticles (MNPs) loaded by various active compounds can be used for targeted drug delivery. Objectives: In the present study, the Fe3O4 magnetic nanoparticles that contained gentamicin were prepared and their antibacterial activities were studied. Materials and Methods MNPs containing gentamicin (G@SA-MNPs) were prepared using sodium alginate (SA) as a surface modifier. After and before coating, the prepared MNPs were characterized using transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Finally, the antibacterial effect of the MNPs was investigated by a conventional serial agar dilution method. Results Particle size distribution analysis showed that the size of MNPs, before and after coating, was in the range of 1–18 nm and 12–40 nm, respectively. The magnetization curve of G@SA-MNPs (with saturation magnetization of 27.9 emu.g-1) confirmed ferromagnetic property. Loading gentamicin on the surface of MNPs was qualitatively verified by FTIR spectrum. Quantitative analysis measurements indicated the gentamicin loading on SA-MNPs as 56.7 ± 5.4%. The measured MICs of G@SA-MNPs for Pseudomonas aeruginosa (PTTC 1574) was 1.28 µg.mL-1. The sub-MIC (0.64 µg.mL-1) concentration of G@SA-MNPs in nutrient broth could successfully inhibit the growth of P. aeruginosa for 14 hours. Conclusions Loading gentamicin on the SA-MNPs exhibited reasonable antibacterial effects against P. aeruginosa.
Collapse
Affiliation(s)
| | - Mehdi Ansari-Dogaheh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Kazemipour
- Department of Chemistry, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
189
|
Ryu Y, Kang JA, Kim D, Kim SR, Kim S, Park SJ, Kwon SH, Kim KN, Lee DE, Lee JJ, Kim HS. Programed Assembly of Nucleoprotein Nanoparticles Using DNA and Zinc Fingers for Targeted Protein Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802618. [PMID: 30398698 DOI: 10.1002/smll.201802618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/29/2018] [Indexed: 06/08/2023]
Abstract
With a growing number of intracellular drug targets and the high efficacy of protein therapeutics, the targeted delivery of active proteins with negligible toxicity is a challenging issue in the field of precision medicine. Herein, a programed assembly of nucleoprotein nanoparticles (NNPs) using DNA and zinc fingers (ZnFs) for targeted protein delivery is presented. Two types of ZnFs with different sequence specificities are genetically fused to a targeting moiety and a protein cargo, respectively. Double-stranded DNA with multiple ZnF-binding sequences is grafted onto inorganic nanoparticles, followed by conjugation with the ZnF-fused proteins, generating the assembly of NNPs with a uniform size distribution and high stability. The approach enables controlled loading of a protein cargo on the NNPs, offering a high cytosolic delivery efficiency and target specificity. The utility and potential of the assembly as a versatile protein delivery vehicle is demonstrated based on their remarkable antitumor activity and target specificity with negligible toxicity in a xenograft mice model.
Collapse
Affiliation(s)
- Yiseul Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jung Ae Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongup, 56212, South Korea
| | - Dasom Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Song-Rae Kim
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Seungmin Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seong Ji Park
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seung-Hae Kwon
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Kil-Nam Kim
- Division of Bio-Imaging, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongup, 56212, South Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
- Institute of Life Sciences (ILS), Kangwon National University, Chuncheon, 24341, South Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
190
|
Yu L, Hu P, Chen Y. Gas-Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801964. [PMID: 30066474 DOI: 10.1002/adma.201801964] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
The fast advances of theranostic nanomedicine enable the rational design and construction of diverse functional nanoplatforms for versatile biomedical applications, among which gas-generating nanoplatforms (GGNs) have emerged very recently as unique theranostic nanoplatforms for broad gas therapies. Here, the recent developments of the rational design and chemical construction of versatile GGNs for efficient gas therapies by either exogenous physical triggers or endogenous disease-environment responsiveness are reviewed. These gases involve some therapeutic gases that can directly change disease status, such as oxygen (O2 ), nitric oxide (NO), carbon monoxide (CO), hydrogen (H2 ), hydrogen sulfide (H2 S) and sulfur dioxide (SO2 ), and other gases such as carbon dioxide (CO2 ), dl-menthol (DLM), and gaseous perfluorocarbon (PFC) for supplementary assistance of the theranostic process. Abundant nanocarriers have been adopted for gas delivery into lesions, including poly(d,l-lactic-co-glycolic acid), micelles, silica/mesoporous silica, organosilica, MnO2 , graphene, Bi2 Se3 , upconversion nanoparticles, CaCO3 , etc. Especially, these GGNs have been successfully developed for versatile biomedical applications, including diagnostic imaging and therapeutic use. The biosafety issue, challenges faced, and future developments on the rational construction of GGNs are also discussed for further promotion of their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Luodan Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
191
|
In vitro and in vivo accumulation of magnetic nanoporous silica nanoparticles on implant materials with different magnetic properties. J Nanobiotechnology 2018; 16:96. [PMID: 30482189 PMCID: PMC6258308 DOI: 10.1186/s12951-018-0422-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
Background In orthopedic surgery, implant-associated infections are still a major problem. For the improvement of the selective therapy in the infection area, magnetic nanoparticles as drug carriers are promising when used in combination with magnetizable implants and an externally applied magnetic field. These implants principally increase the strength of the magnetic field resulting in an enhanced accumulation of the drug loaded particles in the target area and therewith a reduction of the needed amount and the risk of undesirable side effects. In the present study magnetic nanoporous silica core–shell nanoparticles, modified with fluorophores (fluorescein isothiocyanate/FITC or rhodamine B isothiocyanate/RITC) and poly(ethylene glycol) (PEG), were used in combination with metallic plates of different magnetic properties and with a magnetic field. In vitro and in vivo experiments were performed to investigate particle accumulation and retention and their biocompatibility. Results Spherical magnetic silica core–shell nanoparticles with reproducible superparamagnetic behavior and high porosity were synthesized. Based on in vitro proliferation and viability tests the modification with organic fluorophores and PEG led to highly biocompatible fluorescent particles, and good dispersibility. In a circular tube system martensitic steel 1.4112 showed superior accumulation and retention of the magnetic particles in comparison to ferritic steel 1.4521 and a Ti90Al6V4 control. In vivo tests in a mouse model where the nanoparticles were injected subcutaneously showed the good biocompatibility of the magnetic silica nanoparticles and their accumulation on the surface of a metallic plate, which had been implanted before, and in the surrounding tissue. Conclusion With their superparamagnetic properties and their high porosity, multifunctional magnetic nanoporous silica nanoparticles are ideal candidates as drug carriers. In combination with their good biocompatibility in vitro, they have ideal properties for an implant directed magnetic drug targeting. Missing adverse clinical and histological effects proved the good biocompatibility in vivo. Accumulation and retention of the nanoparticles could be influenced by the magnetic properties of the implanted plates; a remanent martensitic steel plate significantly improved both values in vitro. Therefore, the use of magnetizable implant materials in combination with the magnetic nanoparticles has promising potential for the selective treatment of implant-associated infections. Electronic supplementary material The online version of this article (10.1186/s12951-018-0422-6) contains supplementary material, which is available to authorized users.
Collapse
|
192
|
Chen D, Chen B, Yao F. Doxorubicin-Loaded PEG-CdTe Quantum Dots as a Smart Drug Delivery System for Extramedullary Multiple Myeloma Treatment. NANOSCALE RESEARCH LETTERS 2018; 13:373. [PMID: 30467726 PMCID: PMC6250610 DOI: 10.1186/s11671-018-2782-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/31/2018] [Indexed: 05/19/2023]
Abstract
New drug treatments still do not improve the prognosis of extramedullary multiple myeloma (EMM) patients. Luckily, high-dose chemotherapy can raise the prognosis, but is intolerant to most patients because of drug cytotoxicity. Nanoparticles (NPs) are used as drug carriers to prolong drug circulation time, control drug release, reduce drug toxicity and bioavailability, and target specific sites. In this work, doxorubicin (DOX) was loaded in polyethylene glycol-modified cadmium telluride quantum dots (PEG-CdTe QDs). PEG-CdTe-DOX facilitated intracellular drug accumulation through polyethylene organizational compatibility and released DOX into the microenvironment in a pH-controlled manner, which enhanced the therapeutic efficacy and the apoptosis rate of myeloma cells (PRMI8226). PEG-CdTe-DOX improved the anti-tumor activity of DOX by regulating the protein expressions of apoptosis-associated genes. In summary, PEG-CdTe-DOX provides a specific and effective clinical treatment for EMM patients.
Collapse
Affiliation(s)
- Dangui Chen
- Department of hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, 246003, People's Republic of China
| | - Bing Chen
- Department of hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| | - Fusheng Yao
- Department of hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, 246003, People's Republic of China.
| |
Collapse
|
193
|
Mignani S, Rodrigues J, Tomas H, Caminade AM, Laurent R, Shi X, Majoral JP. Recent therapeutic applications of the theranostic principle with dendrimers in oncology. SCIENCE CHINA MATERIALS 2018; 61:1367-1386. [DOI: 10.1007/s40843-018-9244-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 02/08/2023]
|
194
|
Effect of Metal Nanoparticles on the Catalytic Activity of Pectin (poly vinyl alcohol-co-polyacrylamide) Nanocomposite Hydrogels. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-1003-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
195
|
Surface dynamics associated with zinc oxide nanoparticles and biomolecules in presence of surfactants. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
196
|
Illés E, Szekeres M, Tóth IY, Farkas K, Földesi I, Szabó Á, Iván B, Tombácz E. PEGylation of Superparamagnetic Iron Oxide Nanoparticles with Self-Organizing Polyacrylate-PEG Brushes for Contrast Enhancement in MRI Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E776. [PMID: 30274317 PMCID: PMC6215243 DOI: 10.3390/nano8100776] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
For biomedical applications, superparamagnetic nanoparticles (MNPs) have to be coated with a stealth layer that provides colloidal stability in biological media, long enough persistence and circulation times for reaching the expected medical aims, and anchor sites for further attachment of bioactive agents. One of such stealth molecules designed and synthesized by us, poly(polyethylene glycol methacrylate-co-acrylic acid) referred to as P(PEGMA-AA), was demonstrated to make MNPs reasonably resistant to cell internalization, and be an excellent candidate for magnetic hyperthermia treatments in addition to possessing the necessary colloidal stability under physiological conditions (Illés et al. J. Magn. Magn. Mater. 2018, 451, 710⁻720). In the present work, we elaborated on the molecular background of the formation of the P(PEGMA-AA)-coated MNPs, and of their remarkable colloidal stability and salt tolerance by using potentiometric acid⁻base titration, adsorption isotherm determination, infrared spectroscopy (FT-IR ATR), dynamic light scattering, and electrokinetic potential determination methods. The P(PEGMA-AA)@MNPs have excellent blood compatibility as demonstrated in blood sedimentation, smears, and white blood cell viability experiments. In addition, blood serum proteins formed a protein corona, protecting the particles against aggregation (found in dynamic light scattering and electrokinetic potential measurements). Our novel particles also proved to be promising candidates for MRI diagnosis, exhibiting one of the highest values of r2 relaxivity (451 mM-1s-1) found in literature.
Collapse
Affiliation(s)
- Erzsébet Illés
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged, Hungary.
| | - Márta Szekeres
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged, Hungary.
| | - Ildikó Y Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged, Hungary.
| | - Katalin Farkas
- Department of Laboratory Medicine, University of Szeged, Semmelweis u. 6, H-6720 Szeged, Hungary.
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, Semmelweis u. 6, H-6720 Szeged, Hungary.
| | - Ákos Szabó
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 286, H-1519 Budapest, Hungary.
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 286, H-1519 Budapest, Hungary.
| | - Etelka Tombácz
- Department of Food Engineering, University of Szeged, Moszkvai krt. 5-7, H-6725 Szeged, Hungary.
| |
Collapse
|
197
|
Utilization of Chemically Synthesized Super Paramagnetic Iron Oxide Nanoparticles in Drug Delivery, Imaging and Heavy Metal Removal. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1454-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
198
|
Enteshari Najafabadi R, Kazemipour N, Esmaeili A, Beheshti S, Nazifi S. Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacol Toxicol 2018; 19:59. [PMID: 30253803 PMCID: PMC6156978 DOI: 10.1186/s40360-018-0249-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background Quercetin (QT) as a bioactive flavonoid has a potential therapeutic activity for numerous neuronal injuries and neurodegenerative diseases. However, the low absorption rate of QT, especially through the blood-brain barrier, restricts its bioactivity in the body. The current research took the advantage of superparamagnetic iron oxide nanoparticles (SPIONs) to enhance the bioavailability of quercetin. Methods Quercetin conjugated with SPIONs was prepared by means of nanoprecipitation method and was characterized by X-ray diffractometer, scanning electron microscope, and Fourier transformed infrared spectrometer analyses. Wistar male rats were orally fed by gavage with QT and QT-SPION at 50 and 100 mg/kg daily doses for 7 days. Using high-performance liquid chromatography (HPLC) method, biodistribution of QT was evaluated in plasma and brain tissue. Results The outcomes of this research revealed a higher concentration in the plasma and brain of the rats fed with QT-SPION in comparison to free QT. Conclusion The results of this study confirm that SPION as a targeted drug delivery system enhances the bioavailability of quercetin in the brain about ten folds higher than free quercetin and could be used for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abolghasem Esmaeili
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran.
| | - Siamak Beheshti
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box: 8174673441, Isfahan, Iran
| | - Saeed Nazifi
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
199
|
Magnetic Nanoparticles Applications for Amyloidosis Study and Detection: A Review. NANOMATERIALS 2018; 8:nano8090740. [PMID: 30231587 PMCID: PMC6164038 DOI: 10.3390/nano8090740] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/27/2022]
Abstract
Magnetic nanoparticles (MNPs) have great potential in biomedical and clinical applications because of their many unique properties. This contribution provides an overview of the MNPs mainly used in the field of amyloid diseases. The first part discusses their use in understanding the amyloid mechanisms of fibrillation, with emphasis on their ability to control aggregation of amyloidogenic proteins. The second part deals with the functionalization by various moieties of numerous MNPs’ surfaces (molecules, peptides, antibody fragments, or whole antibodies of MNPs) for the detection and the quantification of amyloid aggregates. The last part of this review focuses on the use of MNPs for magnetic-resonance-based amyloid imaging in biomedical fields, with particular attention to the application of gadolinium-based paramagnetic nanoparticles (AGuIX), which have been recently developed. Biocompatible AGuIX nanoparticles show favorable characteristics for in vivo use, such as nanometric and straightforward functionalization. Their properties have enabled their application in MRI. Here, we report that AGuIX nanoparticles grafted with the Pittsburgh compound B can actively target amyloid aggregates in the brain, beyond the blood–brain barrier, and remain the first step in observing amyloid plaques in a mouse model of Alzheimer’s disease.
Collapse
|
200
|
Marcus M, Smith A, Maswadeh A, Shemesh Z, Zak I, Motiei M, Schori H, Margel S, Sharoni A, Shefi O. Magnetic Targeting of Growth Factors Using Iron Oxide Nanoparticles. NANOMATERIALS 2018; 8:nano8090707. [PMID: 30201889 PMCID: PMC6163445 DOI: 10.3390/nano8090707] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022]
Abstract
Growth factors play an important role in nerve regeneration and repair. An attractive drug delivery strategy, termed “magnetic targeting”, aims to enhance therapeutic efficiency by directing magnetic drug carriers specifically to selected cell populations that are suitable for the nervous tissues. Here, we covalently conjugated nerve growth factor to iron oxide nanoparticles (NGF-MNPs) and used controlled magnetic fields to deliver the NGF–MNP complexes to target sites. In order to actuate the magnetic fields a modular magnetic device was designed and fabricated. PC12 cells that were plated homogenously in culture were differentiated selectively only in targeted sites out of the entire dish, restricted to areas above the magnetic “hot spots”. To examine the ability to guide the NGF-MNPs towards specific targets in vivo, we examined two model systems. First, we injected and directed magnetic carriers within the sciatic nerve. Second, we injected the MNPs intravenously and showed a significant accumulation of MNPs in mouse retina while using an external magnet that was placed next to one of the eyes. We propose a novel approach to deliver drugs selectively to injured sites, thus, to promote an effective repair with minimal systemic side effects, overcoming current challenges in regenerative therapeutics.
Collapse
Affiliation(s)
- Michal Marcus
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Alexandra Smith
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Ahmad Maswadeh
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Department of Neurosurgery, Sheba Medical Center, Ramat Gan 5290002, Israel.
| | - Ziv Shemesh
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Idan Zak
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Menachem Motiei
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Hadas Schori
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Shlomo Margel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Amos Sharoni
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Physics, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| |
Collapse
|