151
|
Shadjou N, Hasanzadeh M. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. J Biomed Mater Res A 2016; 104:1250-75. [DOI: 10.1002/jbm.a.35645] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nasrin Shadjou
- Department of Nanochemistry; Nano Technology Research Center and Faculty of Chemistry, Urmia University; Urmia Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences; Tabriz 51664 Iran
| |
Collapse
|
152
|
Torres-Giner S, Pérez-Masiá R, Lagaron JM. A review on electrospun polymer nanostructures as advanced bioactive platforms. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24274] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Rocío Pérez-Masiá
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| |
Collapse
|
153
|
Ramalingam K, Castro R, Pires P, Shi X, Rodrigues J, Xiao S, Tomás H. Gene delivery using dendrimer/pDNA complexes immobilized in electrospun fibers using the Layer-by-Layer technique. RSC Adv 2016; 6:97116-97128. [DOI: 10.1039/c6ra22444j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dendrimer/pDNA complexes can be immobilized in PLGA fibers through the Layer-by-Layer technique and direct hMSCs towards osteogenic differentiation.
Collapse
Affiliation(s)
- Kirthiga Ramalingam
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - Rita Castro
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - Pedro Pires
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - Shili Xiao
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| | - Helena Tomás
- CQM – Centro de Química da Madeira
- MMRG
- Universidade da Madeira
- Campus da Penteada
- 9000-390 Funchal
| |
Collapse
|
154
|
Khambete H, Keservani RK, Kesharwani RK, Jain NP, Jain CP. Emerging trends of nanobiomaterials in hard tissue engineering. NANOBIOMATERIALS IN HARD TISSUE ENGINEERING 2016:63-101. [DOI: 10.1016/b978-0-323-42862-0.00003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
155
|
Sachot N, Castaño O, Oliveira H, Martí-Muñoz J, Roguska A, Amedee J, Lewandowska M, Planell JA, Engel E. A novel hybrid nanofibrous strategy to target progenitor cells for cost-effective in situ angiogenesis. J Mater Chem B 2016; 4:6967-6978. [DOI: 10.1039/c6tb02162j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ti-doped calcium phosphate ormoglasses combined with biodegradable PLA promote an efficient and low-cost angiogenesis by the generation of high Ca2+concentrated interfaces that induce a high yield of tubulogenesis, with the gain in interface–cell interaction and instructivity.
Collapse
Affiliation(s)
- N. Sachot
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - O. Castaño
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - H. Oliveira
- Inserm U1026
- Tissue Bioengineering
- University of Bordeaux
- 33076 Bordeaux
- France
| | - J. Martí-Muñoz
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - A. Roguska
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - J. Amedee
- Inserm U1026
- Tissue Bioengineering
- University of Bordeaux
- 33076 Bordeaux
- France
| | - M. Lewandowska
- Faculty of Materials Science and Engineering
- Warsaw University of Technology
- 02-507 Warsaw
- Poland
| | - J. A. Planell
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| | - E. Engel
- Biomaterials for Regenerative Therapies
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- CIBER en Bioingeniería
| |
Collapse
|
156
|
Terranova L, Mallet R, Perrot R, Chappard D. Polystyrene scaffolds based on microfibers as a bone substitute; development and in vitro study. Acta Biomater 2016; 29:380-388. [PMID: 26518105 DOI: 10.1016/j.actbio.2015.10.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022]
Abstract
We created non-resorbable porous scaffolds of polystyrene by electrospinning usable as a bone grafting material. Aligned and random fibers were prepared with a diameter ranging from 1 to 4.5μm. Influence of microfiber diameter and alignment were determined by culturing MC3T3 osteoblast-like cells and evaluation of adherence, proliferation and differentiation at day 14 and 28 on the scaffolds. Scanning electron microscopy (SEM), nanocomputed tomography (nanoCT) and confocal microscopy were used to observe microfibers and morphology of cells seeded on the scaffolds. Nile Red was used to label the fibers, DAPI for nuclear staining and calcein for the calcium/phosphate deposits. MC3T3 were more adherent on the randomly distributed fibers having the highest diameter. MC3T3 proliferated equally on scaffolds made with aligned fibers but cell density was lower on random fibers with the smaller diameter. Alkaline phosphatase activity (a marker of osteoblastic differentiation) was not influenced by the fibers apart from on random fibers with the smallest diameter. Calcospherites also developed at the surface of the fibers in long term culture. Cytometric determination of the nuclei shape factors evidenced that cells were elongated along the main direction of fibers only on the aligned fibers. This study shows that porous scaffolds based on microfibers allow adhesion, spreading, orientation and proliferation of cells. STATEMENT OF SIGNIFICANCE We prepared polystyrene porous scaffolds composed of microfibers as a bone substitute by electrospinning. Polystyrene is a cytocompatible and non-resorbable polymer which can support osteoconduction. Scaffolds with different micro-diameters and orientation, (aligned and random) were seeded with osteoblast-like cells to evaluate cell adherence, proliferation and differentiation. Characterization of microfibers and cell morphology was done by scanning electron microscopy, nanocomputed tomography and confocal microscopy. We evidenced that initial adherence of cells was increased on randomly disposed fibers with a high diameter (3.5μm). Cell proliferation and differentiation seems not to be influenced by fiber diameter and orientation, apart from random fibers of 1μm diameter which had a lower cell attachment. Morphometric analysis of cell nuclei showed that cells were stretched along the aligned fibers.
Collapse
|
157
|
Guarino V, Cirillo V, Ambrosio L. Bicomponent electrospun scaffolds to design extracellular matrix tissue analogs. Expert Rev Med Devices 2015; 13:83-102. [PMID: 26619260 DOI: 10.1586/17434440.2016.1126505] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the last decade, bicomponent fibers have been proposed to fabricate bio-inspired systems for tissue repair, regenerative medicine, medical healthcare and clinical applications. In comparison with monocomponent fibers, key advantage concerns their ability of self-adapting to the physiological conditions through an extended pattern of signals--morphological, chemical and physical ones--confined at the single fiber level. Hydrophobic/hydrophilic phases may be variously organized by tuneable processing modes (i.e., blending, core/shell, interweaving) thus offering different benefits in terms of biological activity, fluid sorption and molecular transport properties (first generation). The possibility to efficiently graft cell-adhesive proteins and peptide sequences onto the fiber surface mediated by spacers or impregnating hydrogels allows to trigger cell late activities by a controlled and sustained release in vitro of specific biomolecules (i.e., morphogens, growth factors). Here, we introduce an overview of current approaches based on bicomponent fiber use as extra cellular matrix analogs with cell-instructive functions and hierarchal organization of living tissues.
Collapse
Affiliation(s)
- Vincenzo Guarino
- a Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology , National Research Council of Italy , 80125 Naples , Italy
| | - Valentina Cirillo
- a Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology , National Research Council of Italy , 80125 Naples , Italy
| | - Luigi Ambrosio
- a Institute for Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology , National Research Council of Italy , 80125 Naples , Italy
| |
Collapse
|
158
|
Hydrogel-laden paper scaffold system for origami-based tissue engineering. Proc Natl Acad Sci U S A 2015; 112:15426-31. [PMID: 26621717 DOI: 10.1073/pnas.1504745112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.
Collapse
|
159
|
Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2015. [DOI: 10.1007/s40883-015-0004-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
160
|
Gao X, Zhang X, Song J, Xu X, Xu A, Wang M, Xie B, Huang E, Deng F, Wei S. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Int J Nanomedicine 2015; 10:7109-28. [PMID: 26604759 PMCID: PMC4655957 DOI: 10.2147/ijn.s94045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering.
Collapse
Affiliation(s)
- Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, Beijing, People's Republic of China ; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, Beijing, People's Republic of China
| | - Xiaohong Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, Beijing, People's Republic of China ; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, Beijing, People's Republic of China
| | - Xiao Xu
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Anxiu Xu
- College of Stomatology, Chongqing Medical University, Chongqing, Beijing, People's Republic of China
| | - Mengke Wang
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Bingwu Xie
- College of Stomatology, Chongqing Medical University, Chongqing, Beijing, People's Republic of China
| | - Enyi Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, Beijing, People's Republic of China
| | - Feng Deng
- College of Stomatology, Chongqing Medical University, Chongqing, Beijing, People's Republic of China ; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, Beijing, People's Republic of China
| | - Shicheng Wei
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, Beijing, People's Republic of China ; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China ; Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
161
|
Pasuri J, Holopainen J, Kokkonen H, Persson M, Kauppinen K, Lehenkari P, Santala E, Ritala M, Tuukkanen J. Osteoclasts in the interface with electrospun hydroxyapatite. Colloids Surf B Biointerfaces 2015; 135:774-783. [DOI: 10.1016/j.colsurfb.2015.08.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022]
|
162
|
Razavi S, Karbasi S, Morshed M, Zarkesh Esfahani H, Golozar M, Vaezifar S. Cell Attachment and Proliferation of Human Adipose-Derived Stem Cells on PLGA/Chitosan Electrospun Nano-Biocomposite. CELL JOURNAL 2015; 17:429-37. [PMID: 26464814 PMCID: PMC4601863 DOI: 10.22074/cellj.2015.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/04/2014] [Indexed: 11/04/2022]
Abstract
Objective In this study, nano-biocomposite composed of poly (lactide-co-glycolide)
(PLGA) and chitosan (CS) were electrospun through a single nozzle by dispersing the CS
nano-powders in PLGA solution. The cellular behavior of human adipose derived stem
cells (h-ADSCs) on random and aligned scaffolds was then evaluated.
Materials and Methods In this experimental study, the PLGA/CS scaffolds were prepared
at the different ratios of 90/10, 80/20, and 70/30 (w/w) %. Morphology, cell adhesion and prolif-
eration rate of h-ADSCs on the scaffolds were assessed using scanning electron microscope
(SEM), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and trypan
blue staining respectively.
Results H-ADSCs seeded on the matrices indicated that the PLGA/CS composite matrix
with aligned nanofibres and higher content of CS nano-powders gave significantly better
performance than others in terms of cell adhesion and proliferation rate (P<0.05).
Conclusion We found that CS enhanced cell adhesion and proliferation rate, and
aligned nanofibers guided cell growth along the longitudinal axis of the nanofibers,
which would provide a beneficial approach for tissue engineering.
Collapse
Affiliation(s)
- Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Morshed
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | | | - Mohammad Golozar
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Sedigheh Vaezifar
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
163
|
Mottaghitalab F, Hosseinkhani H, Shokrgozar MA, Mao C, Yang M, Farokhi M. Silk as a potential candidate for bone tissue engineering. J Control Release 2015; 215:112-28. [DOI: 10.1016/j.jconrel.2015.07.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
|
164
|
Ribeiro Neto WA, de Paula ACC, Martins TM, Goes AM, Averous L, Schlatter G, Suman Bretas RE. Poly (butylene adipate-co-terephthalate)/hydroxyapatite composite structures for bone tissue recovery. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
165
|
Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci 2015. [DOI: 10.1002/app.42883] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ramin Khajavi
- Nanotechnology Research Center, South Tehran Branch, Islamic Azad University; Tehran Iran
| | - Mina Abbasipour
- Department of Textile Engineering; Science and Research Branch, Islamic Azad University; Tehran Iran
| | - Abbas Bahador
- Department of Medical Microbiology, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
166
|
Yang SY, Hwang TH, Che L, Oh JS, Ha Y, Ryu W. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Biomed Mater 2015; 10:035011. [DOI: 10.1088/1748-6041/10/3/035011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
167
|
Seo SJ, Lee SY, Choi SJ, Kim HW. Tumor-Targeting Co-Delivery of Drug and Gene from Temperature-Triggered Micelles. Macromol Biosci 2015; 15:1198-204. [PMID: 25990042 DOI: 10.1002/mabi.201500137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/04/2015] [Indexed: 01/24/2023]
Abstract
Co-delivery strategy using multifunctional nanocarriers is an attractive option for the synergistic and enhanced effects in cancer treatment, but one system integrating multiple functions for controlled release at the target is still challenging. Herein, this study shows the synthesis and characterization of our stimulus-responsive co-delivery system for the controlled release into tumors, which is composed of polyethylenimine (PEI)-linked Pluronic F127 (PF127) and folic acid (FA), called PF127-PEI-FA. PF127-PEI-FA system facilitated drug loading and gene complex formation, and showed controlled release behaviors in response to hitting temperature to hyperthermia. PF127-PEI-FA system was demonstrated to be biocompatible and showed receptor-mediated gene delivery. The results of our multifunctional nanocarrier system that enabled co-delivery suggest a promising potential for controlled drug release at targeted areas. However, further in-depth studies on the use of therapeutic drugs and genes in multiple cell types and the animal response are required.
Collapse
Affiliation(s)
- Seog-Jin Seo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 330-714, Republic of Korea. .,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea.
| | - Seon-Young Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 330-714, Republic of Korea.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Seong-Jun Choi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 330-714, Republic of Korea.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 330-714, Republic of Korea. .,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea. .,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 330-714, Republic of Korea.
| |
Collapse
|
168
|
Singh RK, Jin GZ, Mahapatra C, Patel KD, Chrzanowski W, Kim HW. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8088-8098. [PMID: 25768431 DOI: 10.1021/acsami.5b00692] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoscale scaffolds that characterize high bioactivity and the ability to deliver biomolecules provide a 3D microenvironment that controls and stimulates desired cellular responses and subsequent tissue reaction. Herein novel nanofibrous hybrid scaffolds of polycaprolactone shelled with mesoporous silica (PCL@MS) were developed. In this hybrid system, the silica shell provides an active biointerface, while the 3D nanoscale fibrous structure provides cell-stimulating matrix cues suitable for bone regeneration. The electrospun PCL nanofibers were coated with MS at controlled thicknesses via a sol-gel approach. The MS shell improved surface wettability and ionic reactions, involving substantial formation of bone-like mineral apatite in body-simulated medium. The MS-layered hybrid nanofibers showed a significant improvement in mechanical properties, in terms of both tensile strength and elastic modulus, as well as in nanomechanical surface behavior, which is favorable for hard tissue repair. Attachment, growth, and proliferation of rat mesenchymal stem cells were significantly improved on the hybrid scaffolds, and their osteogenic differentiation and subsequent mineralization were highly up-regulated by the hybrid scaffolds. Furthermore, the mesoporous surface of the hybrid scaffolds enabled the loading of a series of bioactive molecules, including small drugs and proteins at high levels. The release of these molecules was sustainable over a long-term period, indicating the capability of the hybrid scaffolds to deliver therapeutic molecules. Taken together, the multifunctional hybrid nanofibrous scaffolds are considered to be promising therapeutic platforms for stimulating stem cells and for the repair and regeneration of bone.
Collapse
Affiliation(s)
| | | | | | | | - Wojciech Chrzanowski
- §The Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
169
|
Pelipenko J, Kocbek P, Kristl J. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. Int J Pharm 2015; 484:57-74. [DOI: 10.1016/j.ijpharm.2015.02.043] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
|
170
|
Zhang M, Xu WY, Wang JM, Luan JS, Dong HN, Zhang YJ, Li XQ, Sun DH. Preparation and characterization ofRana chensinensisskin extract/poly(ε-caprolactone) electrospun membranes as antibacterial fibrous mats. J Appl Polym Sci 2015. [DOI: 10.1002/app.42030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mei Zhang
- College of Quartermaster Technology, Jilin University; Changchun 130062 China
| | - Wen-Yu Xu
- College of Quartermaster Technology, Jilin University; Changchun 130062 China
| | - Jia-Mian Wang
- College of Quartermaster Technology, Jilin University; Changchun 130062 China
| | - Jia-Shuang Luan
- College of Quartermaster Technology, Jilin University; Changchun 130062 China
| | - He-Nan Dong
- College of Quartermaster Technology, Jilin University; Changchun 130062 China
| | - Yu-Jing Zhang
- College of Quartermaster Technology, Jilin University; Changchun 130062 China
| | - Xue-Qi Li
- College of Quartermaster Technology, Jilin University; Changchun 130062 China
| | - Da-Hui Sun
- Norman Bethune First Hospital, Jilin University; Changchun 130021 China
| |
Collapse
|
171
|
Luickx N, Van Den Vreken N, Segaert J, Declercq H, Cornelissen M, Verbeeck R. Optimization of the time efficient calcium phosphate coating on electrospun poly(d,l-lactide). J Biomed Mater Res A 2015; 103:2720-30. [DOI: 10.1002/jbm.a.35404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/15/2015] [Accepted: 01/27/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Nathalie Luickx
- Department of Basic Medical Sciences; Biomaterials Group, Ghent University; De Pintelaan 185 (Building B 4th Fl) B 9000 Ghent Belgium
| | - Natasja Van Den Vreken
- Department of Basic Medical Sciences; Biomaterials Group, Ghent University; De Pintelaan 185 (Building B 4th Fl) B 9000 Ghent Belgium
| | - Jonas Segaert
- Department of Basic Medical Sciences; Biomaterials Group, Ghent University; De Pintelaan 185 (Building B 4th Fl) B 9000 Ghent Belgium
| | - Heidi Declercq
- Department of Basic Medical Sciences; Histology Group, Ghent University; De Pintelaan 185 (Building B3 6th Fl) B 9000 Ghent Belgium
| | - Maria Cornelissen
- Department of Basic Medical Sciences; Histology Group, Ghent University; De Pintelaan 185 (Building B3 6th Fl) B 9000 Ghent Belgium
| | - Ronald Verbeeck
- Department of Basic Medical Sciences; Biomaterials Group, Ghent University; De Pintelaan 185 (Building B 4th Fl) B 9000 Ghent Belgium
| |
Collapse
|
172
|
Zheng J, Hua G, Yu J, Lin F, Wade MB, Reneker DH, Becker ML. Post-Electrospinning "Triclick" Functionalization of Degradable Polymer Nanofibers. ACS Macro Lett 2015; 4:207-213. [PMID: 35596433 DOI: 10.1021/mz500759n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
4-Dibenzocyclooctynol (DIBO) was used as an initiator for the ring-opening copolymerization of ε-caprolactone and 1,4,8-trioxaspiro[4.6]-9-undecanone (TOSUO) resulting in a series of DIBO end-functionalized copolymers. Following deprotection of the ketone group, the polymers were derivatized with aminooxyl-containing compounds by oxime ligation. Mixtures of keto- and alkyne-derivatized polymers were co-electrospun into well-defined nanofibers containing three separate chemical handles. Strain-promoted azide alkyne cycloaddition (SPAAC), oxime ligation, and copper-catalyzed azide alkyne cycloaddition (CuAAC) were used to sequentially functionalize the nanofibers first with fluorescent reporters and then separately with bioactive Gly-Arg-Gly-Asp-Ser (GRGDS), BMP-2 peptide, and dopamine. This translationally relevant approach facilitates the straightforward derivatization of diverse bioactive molecules that can be controllably tethered to the surface of nanofibers.
Collapse
Affiliation(s)
- Jukuan Zheng
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Geng Hua
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Jiayi Yu
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Fei Lin
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Mary Beth Wade
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Darrell H. Reneker
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science, ‡Department of Biomedical
Engineering, and §Integrated Bioscience
Program, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
173
|
Zhang S, Prabhakaran MP, Qin X, Ramakrishna S. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. J Biomater Appl 2015; 29:1394-406. [DOI: 10.1177/0885328214568467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nano/micro engineered polymeric materials offer expansive scope of biomimetic scaffolds for bone tissue engineering especially those involving electrospun biodegradable nanofibers incorporated with inorganic nanoparticles, thus mimicking the extracellular matrix of bone both structurally and chemically. For the first time, poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing natural poly-(α, β)-DL-aspartic acid and inorganic hydroxyapatite nanofibers were fabricated using poly-3-hydroxybutyrate-co-3-hydroxyvalerate: poly-(α, β)-DL-aspartic acid at a ratio of 80:20 (w/w) added with 1% (w/v) of hydroxyapatite, by the process of electrospinning. The surface morphology, chemical, and mechanical properties of electrospun poly-3-hydroxybutyrate-co-3-hydroxyvalerate, poly-3-hydroxybutyrate-co-3-hydroxyvalerate/poly-(α, β)-DL-aspartic acid, and poly-3-hydroxybutyrate-co-3-hydroxyvalerate/poly-(α, β)-DL-aspartic acid/hydroxyapatite nanofibers were characterized by using field emission scanning electron microscope, Fourier transform infrared spectroscopy, and tensile tester, respectively. Human fetal osteoblasts were cultured on different nanofibrous scaffolds for evaluating the cell proliferation, alkaline phosphatase activity, and mineralization. Cells on poly-3-hydroxybutyrate-co-3-hydroxyvalerate/poly-(α, β)-DL-aspartic acid/hydroxyapatite scaffolds demonstrated higher proliferation (30.10%) and mineral deposition (37.60%) than the cells grown on pure poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds. Obtained results highlight the synergistic effect of poly-3-hydroxybutyrate-co-3-hydroxyvalerate, poly-(α, β)-DL-aspartic acid, and hydroxyapatite towards the enhancement of the osteoinductivity and osteoconductivity of human fetal osteoblasts, demonstrating the appropriate physicochemical and biological properties of poly-3-hydroxybutyrate-co-3-hydroxyvalerate/poly-(α, β)-DL-aspartic acid/hydroxyapatite nanofibers to function as a substrate for bone tissue regeneration.
Collapse
Affiliation(s)
- Sai Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Molamma P Prabhakaran
- Center for Nanofibers and Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Seeram Ramakrishna
- Faculty of Engineering, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
174
|
Zheng J, Kontoveros D, Lin F, Hua G, Reneker DH, Becker ML, Willits RK. Enhanced Schwann cell attachment and alignment using one-pot "dual click" GRGDS and YIGSR derivatized nanofibers. Biomacromolecules 2015; 16:357-63. [PMID: 25479181 PMCID: PMC5953569 DOI: 10.1021/bm501552t] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using metal-free click chemistry and oxime condensation methodologies, GRGDS and YIGSR peptides were coupled to random and aligned degradable nanofiber networks postelectrospinning in a one-pot reaction. The bound peptides are bioactive, as demonstrated by Schwann cell attachment and proliferation, and the inclusion of YIGSR with GRGDS alters the expression of the receptor for YIGSR. Additionally, aligned nanofibers act as a potential guidance cue by increasing the aspect ratio and aligning the actin filaments, which suggest that peptide-functionalized scaffolds would be useful to direct SCs for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jukuan Zheng
- Departments of ‡Polymer Science and §Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | | | | | |
Collapse
|
175
|
Yao Q, Wei B, Guo Y, Jin C, Du X, Yan C, Yan J, Hu W, Xu Y, Zhou Z, Wang Y, Wang L. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5360. [PMID: 25596860 DOI: 10.1007/s10856-014-5360-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/09/2014] [Indexed: 05/03/2023]
Abstract
The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load.
Collapse
Affiliation(s)
- Qingqiang Yao
- Department of Orthopaedics, Nanjing Medical University Nanjing Hospital, Nanjing, 210006, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 2015; 37:218-29. [DOI: 10.1016/j.biomaterials.2014.10.015] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/02/2014] [Indexed: 12/25/2022]
|
177
|
Gümüşderelioğlu M, Tunçay EÖ, Kaynak G, Demirtaş TT, Aydın ST, Hakkı SS. Encapsulated boron as an osteoinductive agent for bone scaffolds. J Trace Elem Med Biol 2015; 31:120-8. [PMID: 26004902 DOI: 10.1016/j.jtemb.2015.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/17/2015] [Accepted: 03/26/2015] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells.
Collapse
Affiliation(s)
| | - Ekin Ö Tunçay
- Hacettepe University, Department of Bioengineering, Ankara, Turkey
| | - Gökçe Kaynak
- Hacettepe University, Department of Bioengineering, Ankara, Turkey
| | - Tolga T Demirtaş
- Hacettepe University, Department of Bioengineering, Ankara, Turkey
| | - Seda Tığlı Aydın
- Bülent Ecevit University, Department of Biomedical Engineering, Zonguldak, Turkey
| | - Sema S Hakkı
- Selcuk University, Faculty of Dentistry, Department of Periodontology, Konya, Turkey
| |
Collapse
|
178
|
Eco-friendly Electrospun Polymeric Nanofibers-Based Nanocomposites for Wound Healing and Tissue Engineering. ADVANCED STRUCTURED MATERIALS 2015. [DOI: 10.1007/978-81-322-2470-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
179
|
Heinemann S. Polymer-Based Matrix Composites. HANDBOOK OF NANOCERAMIC AND NANOCOMPOSITE COATINGS AND MATERIALS 2015:3-27. [DOI: 10.1016/b978-0-12-799947-0.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
180
|
Suslu A, Albayrak AZ, Urkmez AS, Bayir E, Cocen U. Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2677-2689. [PMID: 25091188 DOI: 10.1007/s10856-014-5286-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
Bone tissue engineering literature conveys investigations regarding biodegradable polymers where bioactive inorganic materials are added either before or after electrospinning process. The goal is to mimic the composition of bone and enhance the biocompatibility of the materials. Yet, most polymeric materials are hydrophobic in nature; therefore, their surfaces are not favorable for human cellular adhesion. In this sense, modifications of the hydrophobic surface of electrospun polymer fibers with hydrophilic and bioactive nanoparticles are beneficial. In this work, dispersion of hydroxyapatite (HAp), which is similar to the mineral component of natural bone, within biodegradable and biocompatible polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with the aid of a surfactant has been investigated. Non-ionic TWEEN20 and 12-hydroxysteric acid (HSA), cationic dodecyl trimethyl ammonium bromide (DTAB) and anionic sodium deoxycholate and sodium dodecyl sulfate (SDS) surfactants were used for comparison in order to prepare stable and homogenous nanocomposite suspensions of HAp/PHBV for the electrospinning process. Continuous and uniform composite nanofibers were generated successfully within a diameter range of 400-1,000 nm by the mediation of all surfactant types. Results showed that incorporation of HAp and any of the surfactant types strongly activates the precipitation rate of the apatite-like particles and decreases percent crystallinity of the HAp/PHBV mats. Mineralization was greatly enhanced on the fibers produced by using DTAB, HSA, and especially SDS on where also osteoblastic metabolic activity was similarly increased. The produced HAp/PHBV nanofibrous composite scaffolds would be a promising candidate as an osteoconductive bioceramic/polymer composite material for tissue engineering applications.
Collapse
Affiliation(s)
- A Suslu
- Metallurgical and Materials Engineering Department, Dokuz Eylul University, Izmir, Turkey
| | | | | | | | | |
Collapse
|
181
|
Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:578-88. [DOI: 10.1016/j.msec.2014.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/08/2014] [Accepted: 10/02/2014] [Indexed: 11/21/2022]
|
182
|
Turon P, Valle LJD, Alemán C, Puiggalí J. Preparation and Applications of Hydroxyapatite Nanocomposites Based on Biodegradable and Natural Polymers. SYNTHESIS TECHNIQUES FOR POLYMER NANOCOMPOSITES 2014:51-86. [DOI: 10.1002/9783527670307.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
183
|
Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:183-90. [DOI: 10.1016/j.msec.2014.08.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/17/2014] [Accepted: 08/03/2014] [Indexed: 01/08/2023]
|
184
|
Sachot N, Castano O, Planell JA, Engel E. Optimization of blend parameters for the fabrication of polycaprolactone-silicon based ormoglass nanofibers by electrospinning. J Biomed Mater Res B Appl Biomater 2014; 103:1287-93. [DOI: 10.1002/jbm.b.33306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/17/2014] [Accepted: 10/01/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Nadège Sachot
- Biomaterials for Regenerative Therapies Group; Institute for Bioengineering of Catalonia (IBEC); Baldiri Reixac 15-21 08028 Barcelona Spain
- CIBER de Bioingenieria; Biomateriales y Nanomedicina (CIBER-BBN); Baldiri Reixac 15-21 08028 Barcelona Spain
| | - Oscar Castano
- Biomaterials for Regenerative Therapies Group; Institute for Bioengineering of Catalonia (IBEC); Baldiri Reixac 15-21 08028 Barcelona Spain
- CIBER de Bioingenieria; Biomateriales y Nanomedicina (CIBER-BBN); Baldiri Reixac 15-21 08028 Barcelona Spain
- Materials Science and Metallurgical Engineering Dept.; Universitat Politècnica de Catalunya; 08028 Barcelona Spain
- Materials Science and Metallurgical Engineering Dept.; Universitat de Barcelona; 08028 Barcelona Spain
| | - Josep A. Planell
- Biomaterials for Regenerative Therapies Group; Institute for Bioengineering of Catalonia (IBEC); Baldiri Reixac 15-21 08028 Barcelona Spain
- CIBER de Bioingenieria; Biomateriales y Nanomedicina (CIBER-BBN); Baldiri Reixac 15-21 08028 Barcelona Spain
- Materials Science and Metallurgical Engineering Dept.; Universitat Politècnica de Catalunya; 08028 Barcelona Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group; Institute for Bioengineering of Catalonia (IBEC); Baldiri Reixac 15-21 08028 Barcelona Spain
- CIBER de Bioingenieria; Biomateriales y Nanomedicina (CIBER-BBN); Baldiri Reixac 15-21 08028 Barcelona Spain
- Materials Science and Metallurgical Engineering Dept.; Universitat Politècnica de Catalunya; 08028 Barcelona Spain
| |
Collapse
|
185
|
He C, Nie W, Feng W. Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. J Mater Chem B 2014; 2:7828-7848. [PMID: 32262073 DOI: 10.1039/c4tb01464b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomimetic nanofibers have emerged as promising candidates for drug delivery and tissue engineering applications. In this paper, recent advances on the fabrication and application of biomimetic nanofibers as drug carriers and scaffolding materials are reviewed. First, we delineate the three popular nanofiber fabrication techniques including electrospinning, phase separation and molecular self-assembly, covering the principal materials used for different techniques and surface functionalization strategies for nanofibers. Furthermore, we focus our interest on the nanofiber-based delivery strategies and underlying kinetics for growth factors and other bioactive molecules, following which we summarize the recent advances in the development of these nanofibrous matrices for bone, vascular and neural tissue engineering applications. Finally, research challenges and future trends in the related areas are discussed.
Collapse
Affiliation(s)
- Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | | | | |
Collapse
|
186
|
Formation and bioactivity of HA nanorods on micro-arc oxidized zirconium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:86-91. [DOI: 10.1016/j.msec.2014.06.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 05/23/2014] [Accepted: 06/30/2014] [Indexed: 11/23/2022]
|
187
|
Samavedi S, Vaidya P, Gaddam P, Whittington AR, Goldstein AS. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Biotechnol Bioeng 2014; 111:2549-59. [DOI: 10.1002/bit.25299] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 11/10/2022]
Affiliation(s)
| | - Prasad Vaidya
- Department of Chemical Engineering; Virginia Tech; Blacksburg VA 24061
| | | | - Abby R. Whittington
- Department of Chemical Engineering; Virginia Tech; Blacksburg VA 24061
- Department of Materials Science and Engineering; Virginia Tech; Blacksburg VA 24061
- School of Biomedical Engineering and Sciences; Virginia Tech; Blacksburg VA 24061
| | - Aaron S. Goldstein
- Department of Chemical Engineering; Virginia Tech; Blacksburg VA 24061
- School of Biomedical Engineering and Sciences; Virginia Tech; Blacksburg VA 24061
| |
Collapse
|
188
|
Preparation and in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun polycaprolactone nanofiber membrane. Int J Pharm 2014; 475:566-77. [PMID: 25240438 DOI: 10.1016/j.ijpharm.2014.09.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 11/22/2022]
Abstract
Infection is the major reason of GTR/GBR membrane failure in clinical application. In this work, we developed GTR/GBR nanofiber membranes with localized drug delivery function to prevent infection. Metronidazole (MNA), an antibiotic, was successfully incorporated into electrospun polycaprolactone (PCL) nanofibers at different concentrations (0, 1, 5, 10, 20, 30, and 40 wt% polymer). To obtain the optimum anti-infection membrane, we systematically investigated the physical-chemical and mechanical properties of the nanofiber membranes with different drug contents. The interaction between PCL and MNA was identified by molecular dynamics simulation. MNA released in a controlled, sustained manner over 2 weeks and the antibacterial activity of the released MNA remained. The incorporation of MNA improved the hydrophilicity and in vitro biodegradation rate of PCL nanofibers. The nanofiber membranes allowed cells to adhere to and proliferate on them and showed excellent barrier function. The membrane loaded with 30% MNA had the best comprehensive properties. Analysis of subcutaneous implants demonstrated that MNA-loaded nanofibers evoked a less severe inflammatory response than pure PCL nanofibers. These results demonstrate the potential of MNA-loaded nanofiber membranes as GTR/GBR membrane with antibacterial and anti-inflammatory function for extensive biomedical applications.
Collapse
|
189
|
Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering. Biomaterials 2014; 35:9811-9823. [PMID: 25241158 DOI: 10.1016/j.biomaterials.2014.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022]
Abstract
Bioactive, functional scaffolds are required to improve the regenerative potential of stem cells for tissue reconstruction and functional recovery of damaged tissues. Here, we report a paper-based bioactive scaffold platform for stem cell culture and transplantation for bone reconstruction. The paper scaffolds are surface-engineered by an initiated chemical vapor deposition process for serial coating of a water-repellent and cell-adhesive polymer film, which ensures the long-term stability in cell culture medium and induces efficient cell attachment. The prepared paper scaffolds are compatible with general stem cell culture and manipulation techniques. An optimal paper type is found to provide structural, physical, and mechanical cues to enhance the osteogenic differentiation of human adipose-derived stem cells (hADSCs). A bioactive paper scaffold significantly enhances in vivo bone regeneration of hADSCs in a critical-sized calvarial bone defect. Stacking the paper scaffolds with osteogenically differentiated hADSCs and human endothelial cells resulted in vascularized bone formation in vivo. Our study suggests that paper possesses great potential as a bioactive, functional, and cost-effective scaffold platform for stem cell-mediated bone tissue engineering. To the best of our knowledge, this is the first study reporting the feasibility of a paper material for stem cell application to repair tissue defects.
Collapse
|
190
|
|
191
|
Chaudhury K, Kumar V, Kandasamy J, RoyChoudhury S. Regenerative nanomedicine: current perspectives and future directions. Int J Nanomedicine 2014; 9:4153-67. [PMID: 25214780 PMCID: PMC4159316 DOI: 10.2147/ijn.s45332] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell–cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. In this review, we focus on the nanotechnology-based recent advances and trends in regenerative medicine and discussed under individual organ systems including bone, cartilage, nerve, skin, teeth, myocardium, liver and eye. Recent studies that are related to the design of various types of nanostructured scaffolds and incorporation of nanomaterials into the matrices are reported. We have also documented reports where these materials and matrices have been compared for their better biocompatibility and efficacy in supporting the damaged tissue. In addition to the recent developments, future directions and possible challenges in translating the findings from bench to bedside are outlined.
Collapse
Affiliation(s)
- Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Vishu Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Jayaprakash Kandasamy
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sourav RoyChoudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
192
|
Ding F, Deng H, Du Y, Shi X, Wang Q. Emerging chitin and chitosan nanofibrous materials for biomedical applications. NANOSCALE 2014; 6:9477-93. [PMID: 25000536 DOI: 10.1039/c4nr02814g] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.
Collapse
Affiliation(s)
- Fuyuan Ding
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | | | | | | | | |
Collapse
|
193
|
Poologasundarampillai G, Wang D, Li S, Nakamura J, Bradley R, Lee PD, Stevens MM, McPhail DS, Kasuga T, Jones JR. Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomater 2014; 10:3733-46. [PMID: 24874652 DOI: 10.1016/j.actbio.2014.05.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Inorganic sol-gel solutions were electrospun to produce the first bioactive three-dimensional (3-D) scaffolds for bone tissue regeneration with a structure like cotton-wool (or cotton candy). This flexible 3-D fibrous structure is ideal for packing into complex defects. It also has large inter-fiber spaces to promote vascularization, penetration of cells and transport of nutrients throughout the scaffold. The 3-D fibrous structure was obtained by electrospinning, where the applied electric field and the instabilities exert tremendous force on the spinning jet, which is required to be viscoelastic to prevent jet break up. Previously, polymer binding agents were used with inorganic solutions to produce electrospun composite two-dimensional fibermats, requiring calcination to remove the polymer. This study presents novel reaction and processing conditions for producing a viscoelastic inorganic sol-gel solution that results in fibers by the entanglement of the intermolecularly overlapped nanosilica species in the solution, eliminating the need for a binder. Three-dimensional cotton-wool-like structures were only produced when solutions containing calcium nitrate were used, suggesting that the charge of the Ca(2+) ions had a significant effect. The resulting bioactive silica fibers had a narrow diameter range of 0.5-2μm and were nanoporous. A hydroxycarbonate apatite layer was formed on the fibers within the first 12h of soaking in simulated body fluid. MC3T3-E1 preosteoblast cells cultured on the fibers showed no adverse cytotoxic effect and they were observed to attach to and spread in the material.
Collapse
Affiliation(s)
| | - D Wang
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - S Li
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - J Nakamura
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - R Bradley
- School of Materials, The University of Manchester, Oxford Rd., Manchester M13 9PL, UK
| | - P D Lee
- School of Materials, The University of Manchester, Oxford Rd., Manchester M13 9PL, UK
| | - M M Stevens
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - D S McPhail
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - T Kasuga
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - J R Jones
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
194
|
Xia Y, Yao J, Li N, Shao CH, Shen XY, Xie LZ, Chen G, Zhang FM, Gu N. Electrospun poly(butylene carbonate) membranes for guided bone regeneration: In vitro and in vivo studies. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514543055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A nonwoven membrane for guided bone regeneration, constituting of poly(butylene carbonate), with a backbone that is similar to poly(ϵ-caprolactone), was prepared by electrospinning. The as-fabricated poly(butylene carbonate) membranes were to be used as guided bone regeneration membranes with efficacies equal to or better than poly(ϵ-caprolactone) membranes. The contact angles of electrospun poly(butylene carbonate) membranes (fPBC) (101.90 ± 4.19°) were lower than those for electrospun poly(ϵ-caprolactone) membranes (fPCL) (117.79 ± 3.38°) ( p < 0.01). To examine the biocompatibility, we investigated cell morphology, proliferation, and differentiation in vitro. The bone regenerative efficacy was evaluated in rat calvarial defect. The cell numbers were increased in accordance with culture period. Cells had a stellate shape and broad cytoplasmic extensions on the membrane. Alkaline phosphatase activity was significantly higher on fPBC than on fPCL ( p < 0.05). Defects covered by fPBC and fPCL achieved a similar degree of regeneration at 4 weeks in vivo and were significantly better than uncovered samples ( p < 0.01).Based on the results of this study, the potential for using electrospun poly(butylene carbonate) membranes in guided bone regeneration is highly significant . In addition, poly(butylene carbonate) could be a promising alternative to poly(ϵ-caprolactone) for biomedical applications.
Collapse
Affiliation(s)
- Yang Xia
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jing Yao
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Stomatology Department, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Na Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Cheng-Hua Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Xin-Yuan Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Li-Zhe Xie
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Gang Chen
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei-Min Zhang
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ning Gu
- Suzhou Institute of Southeast University, Suzhou, China
| |
Collapse
|
195
|
Mateos-Timoneda MA, Castano O, Planell JA, Engel E. Effect of structure, topography and chemistry on fibroblast adhesion and morphology. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1781-1787. [PMID: 24668270 DOI: 10.1007/s10856-014-5199-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
Surface biofunctionalisation of many biodegradable polymers is one of the used strategies to improve the biological activity of such materials. In this work, the introduction of collagen type I over the surface of a biodegradable polymer (poly lactic acid) processed in the forms of films and fibers leads to an enhancing of the cellular adhesion of human dermal fibroblast when compared to unmodified polymer and biomolecule-physisorbed polymer surface. The change of topography of the material does not affect the cellular adhesion but results in a higher proliferation of the fibroblast cultured over the fibers. Moreover, the difference of topography governs the cellular morphology, i.e. cells adopt a more stretched conformation where cultured over the films while a more elongated with lower area morphology are obtained for the cells grown over the fibers. This study is relevant for designing and modifying different biodegradable polymers for their use as scaffolds for different applications in the field of Tissue Engineering and Regenerative Medicine.
Collapse
|
196
|
Lin CC, Fu SJ, Lin YC, Yang IK, Gu Y. Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate. Int J Biol Macromol 2014; 68:39-47. [DOI: 10.1016/j.ijbiomac.2014.04.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/07/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
197
|
Li D, Sun H, Jiang L, Zhang K, Liu W, Zhu Y, Fangteng J, Shi C, Zhao L, Sun H, Yang B. Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9402-9410. [PMID: 24877641 DOI: 10.1021/am5017792] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The biocompatibility of biomaterials is essentially for its application. The aim of current study was to evaluate the biocompatibility of poly(lactic-co-glycolic acid) (PLGA)/gelatin/nanohydroxyapatite (n-HA) (PGH) nanofibers systemically to provide further rationales for the application of the composite electrospun fibers as a favorable platform for bone tissue engineering. The PGH composite scaffold with diameter ranging from nano- to micrometers was fabricated by using electrospinning technique. Subsequently, we utilized confocal laser scanning microscopy (CLSM) and MTT assay to evaluate its cyto-compatibility in vitro. Besides, real-time quantitative polymerase chain reaction (qPCR) analysis and alizarin red staining (ARS) were performed to assess the osteoinductive activity. To further test in vivo, we implanted either PLGA or PGH composite scaffold in a rat subcutaneous model. The results demonstrated that PGH scaffold could better support osteoblasts adhesion, spreading, and proliferation and show better cyto-compatibility than pure PLGA scaffold. Besides, qPCR analysis and ARS showed that PGH composite scaffold exhibited higher osteoinductive activity owing to higher phenotypic expression of typical osteogenic genes and calcium deposition. The histology evaluation indicated that the incorporation of Gelatin/nanohydroxyapatite (GH) biomimetics could significantly reduce local inflammation. Our data indicated that PGH composite electrospun nanofibers possessed excellent cyto-compatibility, good osteogenic activity, as well as good performance of host tissue response, which could be versatile biocompatible scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Daowei Li
- Department of Pathology, School of Stomatology, Jilin University , Changchun 130021, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. NATURE MATERIALS 2014; 13:547-57. [PMID: 24845994 PMCID: PMC4163547 DOI: 10.1038/nmat3937] [Citation(s) in RCA: 675] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/03/2014] [Indexed: 05/17/2023]
Abstract
The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- William L. Murphy
- Departments of Biomedical Engineering and Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin 53705, USA
- Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037, USA
| |
Collapse
|
199
|
Lee JH, Park JH, El-Fiqi A, Kim JH, Yun YR, Jang JH, Han CM, Lee EJ, Kim HW. Biointerface control of electrospun fiber scaffolds for bone regeneration: engineered protein link to mineralized surface. Acta Biomater 2014; 10:2750-61. [PMID: 24468581 DOI: 10.1016/j.actbio.2014.01.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/11/2014] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
Control over the interface of biomaterials that favors the initial adhesion and subsequent differentiation of stem cells is one of the key strategies in bone tissue engineering. Here we engineer the interface of biopolymer electrospun fiber matrices with a fusion protein of fibronectin 9-10 domain (FNIII9-10) and osteocalcin (OCN), aiming to stimulate mesenchymal stem cell (MSC) functions, including initial adhesion, growth and osteogenic differentiation. In particular, a specific tethering of FNIII9-10-OCN protein was facilitated by the hydroxyapatite (HA) mineralization of the biopolymer surface through a molecular recognition of OCN to the HA crystal lattice. The FNIII9-10-OCN anchorage to the HA-mineralized fiber was observed to be highly specific and tightly bound to preserve stability over a long period. Initial cell adhesion levels, as well as the spreading shape and process, of MSCs within 24h were strikingly different between the fibers linked with and without fusion protein. Significant up-regulations in the mRNA expression of adhesion signaling molecules occurred with the fusion protein link, as analyzed by the reverse transcriptase polymerase chain reaction. The expression of a series of osteogenic-related genes at later stages, over 2-3weeks, was significantly improved in the fusion protein-tailored fiber, and the osteogenic protein levels were highly stimulated, as confirmed by immunofluorescence imaging and fluorescence-activated cell sorting analyses. In vivo study in a rat calvarium model confirmed a higher quantity of new bone formation in the fiber linked with fusion protein, and a further increase was noticed when the MSCs were tissue-engineered with the fusion protein-linked fiber. Collectively, these results indicate that FN-OCN fusion protein links via HA mineralization is a facile tool to generate a biointerface with cell-attractive and osteogenic potential, and that the engineered fibrous matrix is a potential bone regenerative scaffold.
Collapse
Affiliation(s)
- Jae Ho Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Ye-Rang Yun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Medical College, Inha University, Republic of Korea
| | - Cheol-Min Han
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Republic of Korea
| | - Eun-Jung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea; Department of Biochemistry, Medical College, Inha University, Republic of Korea.
| |
Collapse
|
200
|
Therapeutic foam scaffolds incorporating biopolymer-shelled mesoporous nanospheres with growth factors. Acta Biomater 2014; 10:2612-21. [PMID: 24530558 DOI: 10.1016/j.actbio.2014.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
Abstract
A novel therapeutic scaffolding system of engineered nanocarriers within a foam matrix for the long-term and sequential delivery of growth factors is reported. Mesoporous silica nanospheres were first functionalized to have an enlarged mesopore size (12.2nm) and aminated surface, which was then shelled by a biopolymer, poly(lactic acid) (PLA) or poly(ethylene glycol) (PEG), via electrospraying. The hybrid nanocarrier was subsequently combined with collagen to produce foam scaffolds. Bovine serum albumin (BSA), used as a model protein, was effectively loaded within the enlarged nanospheres. The biopolymer shell substantially prolonged the release period of BSA (2-3weeks from shelled nanospheres vs. within 1week from bare nanospheres), and the release rate was highly dependent on the shell composition (PEG>PLA). Collagen foam scaffolding of the shelled nanocarrier further slowed down the protein release, while enabling the incorporation of a rapidly releasing protein, which is effective for sequential protein delivery. Acidic fibroblast growth factor (aFGF), loaded onto the shelled-nanocarrier scaffolds, was released over a month at a highly sustainable rate, profiling a release pattern similar to that of BSA. The biological activity of the aFGF was evidenced by the significant proliferation of osteoblastic precursor cells in the aFGF-releasing scaffolds. Furthermore, the aFGF-delivering scaffolds implanted in rat subcutaneous tissue for 2weeks showed a substantially enhanced invasion of fibroblasts with a homogeneous population. Taken together, it is concluded that the biopolymer encapsulation of mesoporous nanospheres effectively prolongs the release of growth factors over weeks to a month, providing a nanocarrier platform for a long-term growth factor delivery. Moreover, the foam scaffolding of the nanocarrier system is a potential therapeutic three-dimensional matrix for cell culture and tissue engineering.
Collapse
|