151
|
Cingolani F, Simbari F, Abad JL, Casasampere M, Fabrias G, Futerman AH, Casas J. Jaspine B induces nonapoptotic cell death in gastric cancer cells independently of its inhibition of ceramide synthase. J Lipid Res 2017; 58:1500-1513. [PMID: 28572516 DOI: 10.1194/jlr.m072611] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids (SLs) have been extensively investigated in biomedical research due to their role as bioactive molecules in cells. Here, we describe the effect of a SL analog, jaspine B (JB), a cyclic anhydrophytosphingosine found in marine sponges, on the gastric cancer cell line, HGC-27. JB induced alterations in the sphingolipidome, mainly the accumulation of dihydrosphingosine, sphingosine, and their phosphorylated forms due to inhibition of ceramide synthases. Moreover, JB provoked atypical cell death in HGC-27 cells, characterized by the formation of cytoplasmic vacuoles in a time and dose-dependent manner. Vacuoles appeared to originate from macropinocytosis and triggered cytoplasmic disruption. The pan-caspase inhibitor, z-VAD, did not alter either cytotoxicity or vacuole formation, suggesting that JB activates a caspase-independent cell death mechanism. The autophagy inhibitor, wortmannin, did not decrease JB-stimulated LC3-II accumulation. In addition, cell vacuolation induced by JB was characterized by single-membrane vacuoles, which are different from double-membrane autophagosomes. These findings suggest that JB-induced cell vacuolation is not related to autophagy and it is also independent of its action on SL metabolism.
Collapse
Affiliation(s)
- Francesca Cingolani
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Fabio Simbari
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Jose Luis Abad
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Mireia Casasampere
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| |
Collapse
|
152
|
Ogunsina M, Samadder P, Idowu T, Arthur G, Schweizer F. Replacing d-Glucosamine with Its l-Enantiomer in Glycosylated Antitumor Ether Lipids (GAELs) Retains Cytotoxic Effects against Epithelial Cancer Cells and Cancer Stem Cells. J Med Chem 2017; 60:2142-2147. [DOI: 10.1021/acs.jmedchem.6b01773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Makanjuola Ogunsina
- Department
of Chemistry, Faculty of Science, University of Manitoba, 144 Dysart
Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Pranati Samadder
- Department of Biochemistry & Medical Genetics, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - Temilolu Idowu
- Department
of Chemistry, Faculty of Science, University of Manitoba, 144 Dysart
Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Gilbert Arthur
- Department of Biochemistry & Medical Genetics, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - Frank Schweizer
- Department
of Chemistry, Faculty of Science, University of Manitoba, 144 Dysart
Road, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
153
|
Varmus H, Unni AM, Lockwood WW. How Cancer Genomics Drives Cancer Biology: Does Synthetic Lethality Explain Mutually Exclusive Oncogenic Mutations? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:247-255. [PMID: 28123049 DOI: 10.1101/sqb.2016.81.030866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Large-scale analyses of cancer genomes are revealing patterns of mutations that suggest biologically significant ideas about many aspects of cancer, including carcinogenesis, classification, and preventive and therapeutic strategies. Among those patterns is "mutual exclusivity," a phenomenon observed when two or more mutations that are commonly observed in samples of a type of cancer are not found combined in individual tumors. We have been studying a striking example of mutual exclusivity: the absence of coexisting mutations in the KRAS and EGFR proto-oncogenes in human lung adenocarcinomas, despite the high individual frequencies of such mutations in this common type of cancer. Multiple lines of evidence suggest that toxic effects of the joint expression of KRAS and EGFR mutant oncogenes, rather than loss of any selective advantages conferred by a second oncogene that operates through the same signaling pathway, are responsible for the observed mutational pattern. We discuss the potential for understanding the physiological basis of such toxicity, for exploiting it therapeutically, and for extending the studies to other examples of mutual exclusivity.
Collapse
Affiliation(s)
- Harold Varmus
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065
| | - Arun M Unni
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065
| | - William W Lockwood
- BC Cancer Agency and University of British Columbia, Vancouver, British Columbia V5Z 1L3, Canada
| |
Collapse
|
154
|
Hirasawa K, Moriya S, Miyahara K, Kazama H, Hirota A, Takemura J, Abe A, Inazu M, Hiramoto M, Tsukahara K, Miyazawa K. Macrolide Antibiotics Exhibit Cytotoxic Effect under Amino Acid-Depleted Culture Condition by Blocking Autophagy Flux in Head and Neck Squamous Cell Carcinoma Cell Lines. PLoS One 2016; 11:e0164529. [PMID: 27977675 PMCID: PMC5158196 DOI: 10.1371/journal.pone.0164529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy, a self-digestive system for cytoplasmic components, is required to maintain the amino acid pool for cellular homeostasis. We previously reported that the macrolide antibiotics azithromycin (AZM) and clarithromycin (CAM) have an inhibitory effect on autophagy flux, and they potently enhance the cytocidal effect of various anticancer reagents in vitro. This suggests that macrolide antibiotics can be used as an adjuvant for cancer chemotherapy. Since cancer cells require a larger metabolic demand than normal cells because of their exuberant growth, upregulated autophagy in tumor cells has now become the target for cancer therapy. In the present study, we examined whether macrolides exhibit cytotoxic effect under an amino acid-starving condition in head and neck squamous cancer cell lines such as CAL 27 and Detroit 562 as models of solid tumors with an upregulated autophagy in the central region owing to hypovascularity. AZM and CAM induced cell death under the amino acid-depleted (AAD) culture condition in these cell lines along with CHOP upregulation, although they showed no cytotoxicity under the complete culture medium. CHOP knockdown by siRNA in the CAL 27 cells significantly suppressed macrolide-induced cell death under the AAD culture condition. CHOP-/- murine embryonic fibroblast (MEF) cell lines also attenuated AZM-induced cell death compared with CHOP+/+ MEF cell lines. Using a tet-off atg5 MEF cell line, knockout of atg5, an essential gene for autophagy, also induced cell death and CHOP in the AAD culture medium but not in the complete culture medium. This suggest that macrolide-induced cell death via CHOP induction is dependent on autophagy inhibition. The cytotoxicity of macrolide with CHOP induction was completely cancelled by the addition of amino acids in the culture medium, indicating that the cytotoxicity is due to the insufficient amino acid pool. These data suggest the possibility of using macrolides for "tumor-starving therapy".
Collapse
Affiliation(s)
- Kazuhiro Hirasawa
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Kana Miyahara
- Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Ayako Hirota
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Jun Takemura
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Akihisa Abe
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masato Inazu
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
155
|
Mbah NE, Overmeyer JH, Maltese WA. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones. Cell Biol Toxicol 2016; 33:263-282. [PMID: 27822587 DOI: 10.1007/s10565-016-9369-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
Methuosis is a form of non-apoptotic cell death involving massive vacuolization of macropinosome-derived endocytic compartments, followed by a decline in metabolic activity and loss of membrane integrity. To explore the induction of methuosis as a potential therapeutic strategy for killing cancer cells, we have developed small molecules (indole-based chalcones) that trigger this form of cell death in glioblastoma and other cancer cell lines. Here, we report that in addition to causing fusion and expansion of macropinosome compartments, the lead compound, 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), disrupts vesicular trafficking at the lysosomal nexus, manifested by impaired degradation of EGF and LDL receptors, defective processing of procathepsins, and accumulation of autophagosomes. In contrast, secretion of the ectodomain derived from a prototypical type-I membrane glycoprotein, β-amyloid precursor protein, is increased rather than diminished. A closely related MOMIPP analog, which causes substantial vacuolization without reducing cell viability, also impedes cathepsin processing and autophagic flux, but has more modest effects on receptor degradation. A third analog, which causes neither vacuolization nor loss of viability, has no effect on endolysosomal trafficking. The results suggest that differential cytotoxicity of structurally similar indole-based chalcones is related, at least in part, to the severity of their effects on endolysosomal trafficking pathways.
Collapse
Affiliation(s)
- Nneka E Mbah
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - William A Maltese
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
156
|
Hammarström LGJ, Harmel RK, Granath M, Ringom R, Gravenfors Y, Färnegårdh K, Svensson PH, Wennman D, Lundin G, Roddis Y, Kitambi SS, Bernlind A, Lehmann F, Ernfors P. The Oncolytic Efficacy and in Vivo Pharmacokinetics of [2-(4-Chlorophenyl)quinolin-4-yl](piperidine-2-yl)methanol (Vacquinol-1) Are Governed by Distinct Stereochemical Features. J Med Chem 2016; 59:8577-92. [PMID: 27607569 DOI: 10.1021/acs.jmedchem.6b01009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma remains an incurable brain cancer. Drugs developed in the past 20 years have not improved the prognosis for patients, necessitating the development of new treatments. We have previously reported the therapeutic potential of the quinoline methanol Vacquinol-1 (1) that targets glioblastoma cells and induces cell death by catastrophic vacuolization. Compound 1 is a mixture of four stereoisomers due to the two adjacent stereogenic centers in the molecule, complicating further development in the preclinical setting. This work describes the isolation and characterization of the individual isomers of 1 and shows that these display stereospecific pharmacokinetic and pharmacodynamic features. In addition, we present a stereoselective synthesis of the active isomers, providing a basis for further development of this compound series into a novel experimental therapeutic for glioblastoma.
Collapse
Affiliation(s)
| | | | - Mikael Granath
- OnTargetChemistry AB , Virdings Allé 18, SE-754 50 Uppsala, Sweden
| | - Rune Ringom
- OnTargetChemistry AB , Virdings Allé 18, SE-754 50 Uppsala, Sweden
| | - Ylva Gravenfors
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University , Box 1030, SE-171 21 Solna, Sweden
| | - Katarina Färnegårdh
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University , Box 1030, SE-171 21 Solna, Sweden
| | - Per H Svensson
- SP Process Development , Forskargatan 20J, SE-151 36 Södertälje, Sweden
| | - David Wennman
- SP Process Development , Forskargatan 20J, SE-151 36 Södertälje, Sweden
| | - Göran Lundin
- SP Process Development , Forskargatan 20J, SE-151 36 Södertälje, Sweden
| | - Ylva Roddis
- SP Process Development , Forskargatan 20J, SE-151 36 Södertälje, Sweden
| | | | | | - Fredrik Lehmann
- OnTargetChemistry AB , Virdings Allé 18, SE-754 50 Uppsala, Sweden
| | | |
Collapse
|
157
|
Saveanu L, Lotersztajn S. New pieces in the complex puzzle of aberrant vacuolation. Focus on “Active vacuolar H+ ATPase and functional cycle of Rab5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency”. Am J Physiol Cell Physiol 2016; 311:C363-5. [DOI: 10.1152/ajpcell.00215.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Loredana Saveanu
- Institut National de la Santé et de la Recherché Médicale, Unité UMR 1149, Centre de Recherche sur l'Inflammation, Paris, France; and
- Université Paris Diderot, Faculté de Médecine Xavier Bichat, Paris, France
| | - Sophie Lotersztajn
- Institut National de la Santé et de la Recherché Médicale, Unité UMR 1149, Centre de Recherche sur l'Inflammation, Paris, France; and
- Université Paris Diderot, Faculté de Médecine Xavier Bichat, Paris, France
| |
Collapse
|
158
|
Zaragoza-Ojeda M, Eguía-Aguilar P, Perezpeña-Díazconti M, Arenas-Huertero F. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line. Toxicol Lett 2016; 256:64-76. [DOI: 10.1016/j.toxlet.2016.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
|
159
|
Abstract
Cancer is driven by mutations in genes whose products participate in major signaling pathways that fuel cell proliferation and survival. It is easy to assume that the more of these so-called driver mutations a tumor accumulates, the faster it progresses. However, this does not appear to be the case: Data from large-scale genome sequencing studies indicate that mutations in driver oncogenes often are mutually exclusive. The mechanisms underlying the mutual exclusivity of oncogenes are not completely understood, but recent reports suggest that the mechanisms may depend on the tumor type, and the nature of interacting oncogenes. Here we discuss our recent findings that the oncogenes KRASG12D and BRAFV600E are mutually exclusive in lung cancer in mouse models because their coexpression leads to oncogene-induced senescence.
Collapse
Affiliation(s)
- Jaroslaw Cisowski
- a Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine , University of Gothenburg , Gothenburg , Sweden
| | - Martin O Bergo
- a Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine , University of Gothenburg , Gothenburg , Sweden.,b Department of Biosciences and Nutrition , Karolinska Institutet , Huddinge , Sweden
| |
Collapse
|
160
|
Abstract
Macropinocytosis is a means by which eukaryotic cells ingest extracellular liquid and dissolved molecules. It is widely conserved amongst cells that can take on amoeboid form and, therefore, appears to be an ancient feature that can be traced back to an early stage of evolution. Recent advances have highlighted how this endocytic process can be subverted during pathology - certain cancer cells use macropinocytosis to feed on extracellular protein, and many viruses and bacteria use it to enter host cells. Prion and prion-like proteins can also spread and propagate from cell to cell through macropinocytosis. Progress is being made towards using macropinocytosis therapeutically, either to deliver drugs to or cause cell death by inducing catastrophically rapid fluid uptake. Mechanistically, the Ras signalling pathway plays a prominent and conserved activating role in amoebae and in mammals; mutant amoebae with abnormally high Ras activity resemble tumour cells in their increased capacity for growth using nutrients ingested through macropinocytosis. This Commentary takes a functional and evolutionary perspective to highlight progress in understanding and use of macropinocytosis, which is an ancient feeding process used by single-celled phagotrophs that has now been put to varied uses by metazoan cells and is abused in disease states, including infection and cancer.
Collapse
Affiliation(s)
- Gareth Bloomfield
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
161
|
Compton LM, Ikonomov OC, Sbrissa D, Garg P, Shisheva A. Active vacuolar H+ ATPase and functional cycle of Rab5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency. Am J Physiol Cell Physiol 2016; 311:C366-77. [PMID: 27335171 DOI: 10.1152/ajpcell.00104.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/17/2016] [Indexed: 01/12/2023]
Abstract
The two evolutionarily conserved mammalian lipid kinases Vps34 and PIKfyve are involved in an important physiological relationship, whereby the former produces phosphatidylinositol (PtdIns) 3P that is used as a substrate for PtdIns(3,5)P2 synthesis by the latter. Reduced production of PtdIns(3,5)P2 in proliferating mammalian cells is phenotypically manifested by the formation of multiple translucent cytoplasmic vacuoles, readily rescued upon exogenous delivery of PtdIns(3,5)P2 or overproduction of PIKfyve. Although the aberrant vacuolation phenomenon has been frequently used as a sensitive functional measure of localized PtdIns(3,5)P2 reduction, cellular factors governing the appearance of cytoplasmic vacuoles under PtdIns3P-PtdIns(3,5)P2 loss remain elusive. To gain further mechanistic insight about the vacuolation process following PtdIns(3,5)P2 reduction, in this study we sought for cellular mechanisms required for manifestation of the aberrant endomembrane vacuoles triggered by PIKfyve or Vps34 dysfunction. The latter was achieved by various means such as pharmacological inhibition, gene disruption, or dominant-interference in several proliferating mammalian cell types. We report here that inhibition of V-ATPase with bafilomycin A1 as well as inactivation of the GTP-GDP cycle of Rab5a GTPase phenotypically rescued or completely precluded the cytoplasmic vacuolization despite the continued presence of inactivated PIKfyve or Vps34. Bafilomycin A1 also restored the aberrant EEA1-positive endosomes, enlarged upon short PIKfyve inhibition with YM201636. Together, our work identifies for the first time that factors such as active V-ATPase or functional Rab5a cycle are acting coincidentally with the PtdIns(3,5)P2 reduction in triggering formation of aberrant cytoplasmic vacuoles under PIKfyve or Vps34 dysfunction.
Collapse
Affiliation(s)
- Lauren M Compton
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - Puneet Garg
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| |
Collapse
|
162
|
Trabbic CJ, George SM, Alexander EM, Du S, Offenbacher JM, Crissman EJ, Overmeyer JH, Maltese WA, Erhardt PW. Synthesis and biological evaluation of isomeric methoxy substitutions on anti-cancer indolyl-pyridinyl-propenones: Effects on potency and mode of activity. Eur J Med Chem 2016; 122:79-91. [PMID: 27343855 DOI: 10.1016/j.ejmech.2016.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022]
Abstract
Certain indolyl-pyridinyl-propenone analogues kill glioblastoma cells that have become resistant to conventional therapeutic drugs. Some of these analogues induce a novel form of non-apoptotic cell death called methuosis, while others primarily cause microtubule disruption. Ready access to 5-indole substitution has allowed characterization of this position to be important for both types of mechanisms when a simple methoxy group is present. We now report the syntheses and biological effects of isomeric methoxy substitutions on the indole ring. Additionally, analogues containing a trimethoxyphenyl group in place of the pyridinyl moiety were evaluated for anticancer activity. The results demonstrate that the location of the methoxy group can alter both the potency and the mechanism of cell death. Remarkably, changing the methoxy from the 5-position to the 6-position switched the biological activity from induction of methuosis to disruption of microtubules. The latter may represent a prototype for a new class of mitotic inhibitors with potential therapeutic utility.
Collapse
Affiliation(s)
- Christopher J Trabbic
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Sage M George
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Evan M Alexander
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Shengnan Du
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Jennifer M Offenbacher
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Emily J Crissman
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA
| | - Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - William A Maltese
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, USA.
| | - Paul W Erhardt
- Center for Drug Design and Development, Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2801 W. Bancroft Ave., Toledo, OH 4360, USA.
| |
Collapse
|
163
|
Interaction between Simian Virus 40 Major Capsid Protein VP1 and Cell Surface Ganglioside GM1 Triggers Vacuole Formation. mBio 2016; 7:e00297. [PMID: 27006465 PMCID: PMC4807364 DOI: 10.1128/mbio.00297-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Simian virus 40 (SV40), a polyomavirus that has served as an important model to understand many aspects of biology, induces dramatic cytoplasmic vacuolization late during productive infection of monkey host cells. Although this activity led to the discovery of the virus in 1960, the mechanism of vacuolization is still not known. Pentamers of the major SV40 capsid protein VP1 bind to the ganglioside GM1, which serves as the cellular receptor for the virus. In this report, we show that binding of VP1 to cell surface GM1 plays a key role in SV40 infection-induced vacuolization. We previously showed that SV40 VP1 mutants defective for GM1 binding fail to induce vacuolization, even though they replicate efficiently. Here, we show that interfering with GM1-VP1 binding by knockdown of GM1 after infection is established abrogates vacuolization by wild-type SV40. Vacuole formation during permissive infection requires efficient virus release, and conditioned medium harvested late during SV40 infection rapidly induces vacuoles in a VP1- and GM1-dependent fashion. Furthermore, vacuolization can also be induced by a nonreplicating SV40 pseudovirus in a GM1-dependent manner, and a mutation in BK pseudovirus VP1 that generates GM1 binding confers vacuole-inducing activity. Vacuolization can also be triggered by purified pentamers of wild-type SV40 VP1, but not by GM1 binding-defective pentamers or by intracellular expression of VP1. These results demonstrate that SV40 infection-induced vacuolization is caused by the binding of released progeny viruses to GM1, thereby identifying the molecular trigger for the activity that led to the discovery of SV40. IMPORTANCE The DNA tumor virus SV40 was discovered more than a half century ago as a contaminant of poliovirus vaccine stocks, because it caused dramatic cytoplasmic vacuolization of permissive host cells. Although SV40 played a historically important role in the development of molecular and cellular biology, restriction mapping, molecular cloning, and whole-genome sequencing, the basis of this vacuolization phenotype was unknown. Here, we show that SV40-induced vacuolization is triggered by the binding of the major viral capsid protein, VP1, to a cell surface ganglioside receptor, GM1. No other viral proteins or virus replication is required for vacuole formation. Other polyomaviruses utilize different ganglioside receptors, but they do not induce vacuolization. This work identifies the molecular trigger for the phenotype that led to the discovery of this important virus and provides the first molecular insight into an unusual and enigmatic cytopathic effect due to virus infection.
Collapse
|
164
|
Unconventional Knoevenagel-type indoles: Synthesis and cell-based studies for the identification of pro-apoptotic agents. Eur J Med Chem 2015; 102:648-60. [DOI: 10.1016/j.ejmech.2015.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 02/02/2023]
|
165
|
Reyes-Reyes EM, Šalipur FR, Shams M, Forsthoefel MK, Bates PJ. Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol Oncol 2015; 9:1392-405. [PMID: 25911416 PMCID: PMC4523413 DOI: 10.1016/j.molonc.2015.03.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 03/09/2015] [Accepted: 03/26/2015] [Indexed: 01/27/2023] Open
Abstract
AS1411 is a G-rich quadruplex-forming oligodeoxynucleotide that binds specifically to nucleolin, a protein found on the surface and in the cytoplasm of most malignant cells but absent from the surface/cytoplasm of most normal cells. AS1411 has shown promising clinical activity and is being widely used as a tumor-targeting agent, but its mechanism of action is not fully understood. Previously, we showed that AS1411 is taken up in cancer cells by macropinocytosis (fluid phase endocytosis) and subsequently stimulates further macropinocytosis by a nucleolin-dependent mechanism. In the current study, we have investigated the significance and molecular mechanisms of AS1411-induced macropinocytosis. Our results indicate that the antiproliferative activity of AS1411 in various cell lines correlated with its capacity to stimulate macropinocytosis. In DU145 prostate cancer cells, AS1411 induced activation of EGFR, Akt, p38, and Rac1. Activation of Akt and p38 were not critical for AS1411 activity because Akt activation was not observed in all AS1411-responsive cell lines and knockdown of p38 had no effect on AS1411's ability to inhibit proliferation. On the other hand, activation of EGFR and Rac1 appeared to play a role in AS1411 activity in all cancer cell lines examined (DU145, MDA-MB-468, A549, LNCaP) and their inhibition significantly reduced AS1411-mediated macropinocytosis and AS1411 antiproliferative activity. Interestingly, downregulation of nucleolin expression by siRNA also produced a substantial increase in activated Rac1, revealing a previously unknown role for nucleolin as a negative regulator of Rac1 activation. Our results are consistent with a model whereby AS1411 binding to nucleolin leads to sustained activation of Rac1 and causes methuosis, a novel type of nonapoptotic cell death characterized by hyperstimulation of macropinocytosis. We speculate that methuosis is a tumor/metastasis suppressor mechanism that opposes the malignant functions of Rac1 and that cancer cells may overexpress nucleolin to surmount this barrier.
Collapse
Affiliation(s)
- E Merit Reyes-Reyes
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA; Molecular Targets Program of the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Francesca R Šalipur
- Department of Biochemistry, University of Louisville, Louisville, KY, 40202, USA; Molecular Targets Program of the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Mitra Shams
- Molecular Targets Program of the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Matthew K Forsthoefel
- Molecular Targets Program of the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Paula J Bates
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA; Department of Biochemistry, University of Louisville, Louisville, KY, 40202, USA; Molecular Targets Program of the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
166
|
Aki T, Funakoshi T, Uemura K. Regulated necrosis and its implications in toxicology. Toxicology 2015; 333:118-126. [DOI: 10.1016/j.tox.2015.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
|
167
|
Unni AM, Lockwood WW, Zejnullahu K, Lee-Lin SQ, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. eLife 2015; 4:e06907. [PMID: 26047463 PMCID: PMC4478584 DOI: 10.7554/elife.06907] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023] Open
Abstract
Human lung adenocarcinomas (LUAD) contain mutations in EGFR in ∼15% of cases and in KRAS in ∼30%, yet no individual adenocarcinoma appears to carry activating mutations in both genes, a finding we have confirmed by re-analysis of data from over 600 LUAD. Here we provide evidence that co-occurrence of mutations in these two genes is deleterious. In transgenic mice programmed to express both mutant oncogenes in the lung epithelium, the resulting tumors express only one oncogene. We also show that forced expression of a second oncogene in human cancer cell lines with an endogenous mutated oncogene is deleterious. The most prominent features accompanying loss of cell viability were vacuolization, other changes in cell morphology, and increased macropinocytosis. Activation of ERK, p38 and JNK in the dying cells suggests that an overly active MAPK signaling pathway may mediate the phenotype. Together, our findings indicate that mutual exclusivity of oncogenic mutations may reveal unexpected vulnerabilities and therapeutic possibilities. DOI:http://dx.doi.org/10.7554/eLife.06907.001 A person develops cancer when changes in a cell's DNA (called mutations) allow the cell to grow rapidly and spread around the body. The mutated genes are often involved in controlling the growth of cells, such as two genes called EGFR and KRAS, which are associated with forms of lung cancer. In a type of lung cancer called adenocarcinoma, the KRAS gene is mutated in about one-third of tumors and the EGFR gene is mutated in about 15%. However, the two mutations rarely or never occur in the same tumor. This could be because the effects of the mutations overlap, so that cells with both mutations have no advantages over cells with just one. Alternatively, it is possible that having both mutations may be harmful to tumor cells. Here, Unni, Lockwood et al. analyzed genetic data from over 600 lung tumors and confirmed that none of them have cancer-causing mutations in both KRAS and EGFR. Then, Unni, Lockwood et al. carried out experiments using genetically engineered mice with mutated forms of both KRAS and EGFR that are activated by a drug called doxycycline. As expected, the mice developed lung tumors when exposed to the drug, but these tumors didn't grow any faster than mouse tumors that had mutations in only one of the genes. In the mice with both mutant genes, only one of the two genes was actually active in most of the tumor cells. Unni, Lockwood et al. manipulated human lung tumor cells in the laboratory so that the cells had mutated versions of both genes. These cells developed serious abnormalities and died, which may be due to the over-activation of a communication pathway within the cells called MAPK signaling. The next challenges are to understand why the combination of these two mutant genes kills these cancer cells and to look for other combinations of mutations that can be toxic to cancer cells. In the future, it might be possible to develop drugs that can mimic the effects of these gene mutations to treat cancers. DOI:http://dx.doi.org/10.7554/eLife.06907.002
Collapse
Affiliation(s)
- Arun M Unni
- Cancer Biology Section, Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, United States
| | - William W Lockwood
- Cancer Biology Section, Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, United States
| | - Kreshnik Zejnullahu
- Cancer Biology Section, Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, United States
| | - Shih-Queen Lee-Lin
- Cancer Biology Section, Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, United States
| | - Harold Varmus
- Cancer Biology Section, Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, United States
| |
Collapse
|
168
|
Trabbic CJ, Overmeyer JH, Alexander EM, Crissman EJ, Kvale HM, Smith MA, Erhardt PW, Maltese WA. Synthesis and biological evaluation of indolyl-pyridinyl-propenones having either methuosis or microtubule disruption activity. J Med Chem 2015; 58:2489-512. [PMID: 25654321 PMCID: PMC4360382 DOI: 10.1021/jm501997q] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Methuosis is a form of nonapoptotic cell death characterized by an accumulation of macropinosome-derived vacuoles with eventual loss of membrane integrity. Small molecules inducing methuosis could offer significant advantages compared to more traditional anticancer drug therapies that typically rely on apoptosis. Herein we further define the effects of chemical substitutions at the 2- and 5-indolyl positions on our lead compound 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propene-1-one (MOMIPP). We have identified a number of compounds that induce methuosis at similar potencies, including an interesting analogue having a hydroxypropyl substituent at the 2-position. In addition, we have discovered that certain substitutions on the 2-indolyl position redirect the mode of cytotoxicity from methuosis to microtubule disruption. This switch in activity is associated with an increase in potency as large as 2 orders of magnitude. These compounds appear to represent a new class of potent microtubule-active anticancer agents.
Collapse
Affiliation(s)
- Christopher J Trabbic
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences , 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat Cell Biol 2014; 16:1057-1068. [PMID: 25283994 PMCID: PMC4216597 DOI: 10.1038/ncb3043] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that Stat3 regulates lysosomal-mediated programmed cell death (LM-PCD) during mouse mammary gland involution in vivo. However, the mechanism that controls the release of lysosomal cathepsins to initiate cell death in this context has not been elucidated. We show here that Stat3 regulates the formation of large lysosomal vacuoles that contain triglyceride. Furthermore, we demonstrate that milk fat globules (MFGs) are toxic to epithelial cells and that, when applied to purified lysosomes, the MFG hydrolysate oleic acid potently induces lysosomal leakiness. Additionally, uptake of secreted MFGs coated in butyrophilin 1A1 is diminished in Stat3-ablated mammary glands and loss of the phagocytosis bridging molecule MFG-E8 results in reduced leakage of cathepsins in vivo. We propose that Stat3 regulates LM-PCD in mouse mammary gland by switching cellular function from secretion to uptake of MFGs. Thereafter, perturbation of lysosomal vesicle membranes by high levels of free fatty acids results in controlled leakage of cathepsins culminating in cell death.
Collapse
|