151
|
Wang M, Tang W, Gong N, Liu P. Sodium Danshensu inhibits the progression of lung cancer by regulating PI3K/Akt signaling pathway. Drug Dev Res 2021; 83:88-96. [PMID: 34196024 DOI: 10.1002/ddr.21846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Sodium Danshensu, extracted from the root of the Salvia miltiorrhiza, has pleiotropic effects including anti-oxidation, anti-inflammation and anti-tumor. However, whether Sodium Danshensu has an anti-cancer effect in lung cancer remains to be elucidated. The present study aimed to illustrate the effects of Sodium Danshensu on lung cancer cells and the potential molecular mechanisms. BEAS-2B, A549, and NCI-H1299 cells were stimulated with 25, 50, and 100 μM Sodium Danshensu for 24, 48, and 72 h, and then cell viability, apoptosis, migration and invasion were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry and Transwell assays, respectively. Moreover, the levels of Proliferating cell nuclear antigen (PCNA), matrix metalloproteinase 9 (MMP9), B-cell lymphoma-2 (Bcl-2) associated X (Bax), Bcl-2, phosphorylated (p)-phosphoinositide 3-kinase (PI3K), and p-Protein kinase B (AKT) in lung cancer cells were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and/or Western blot assays. We observed that Sodium Danshensu suppressed cells viability, migration, and invasion, as well as promoted cells apoptosis in A549 and NCI-H1299 cells in a dose-dependent manner, while Sodium Danshensu had no cytotoxic effect on the proliferation activity of BEAS-2B cells. Moreover, the expression of PCNA, MMP9, Bcl-2 were decreased, but Bax was up-regulated in Sodium Danshensu-treated A549 and NCI-H1299 cells. Our findings also revealed that Sodium Danshensu inhibited PI3K/AKT pathway in A549 and NCI-H1299 cells. In conclusion, our study provided the first evidence that Sodium Danshensu suppressed the malignant biological behaviors of lung cancer cells, indicating that Sodium Danshensu might be a latent candidate for lung cancer therapy.
Collapse
Affiliation(s)
- Miao Wang
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Nianjin Gong
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Peijun Liu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
152
|
Integrative cBioPortal Analysis Revealed Molecular Mechanisms That Regulate EGFR-PI3K-AKT-mTOR Pathway in Diffuse Gliomas of the Brain. Cancers (Basel) 2021; 13:cancers13133247. [PMID: 34209611 PMCID: PMC8312221 DOI: 10.3390/cancers13133247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The current classification of central nervous system tumors has incorporated molecular changes that have clarified biological behavior and categorized gliomas into different types and malignancy grades. The most malignant type—glioblastoma, represents one of the most therapeutically challenging tumors, with a median survival of only 12–14 months despite trimodal therapy. In our integrative large-scale study, we used genomics, transcriptomics, epigenomics, and proteomics to investigate and make sense of the molecular changes that activate or inhibit the EGFR-PI3K-AKT-mTOR signaling pathway. Different pathohistological types of diffuse brain gliomas harbored distinct changes. A better understanding of signaling pathway regulation helps to the discovery of new targets for glioma therapies. Our results have potential for diagnostics improvement and tailored therapies. Abstract Diffuse gliomas are a heterogeneous group of tumors with aggressive biological behavior and a lack of effective treatment methods. Despite new molecular findings, the differences between pathohistological types still require better understanding. In this in silico analysis, we investigated AKT1, AKT2, AKT3, CHUK, GSK3β, EGFR, PTEN, and PIK3AP1 as participants of EGFR-PI3K-AKT-mTOR signaling using data from the publicly available cBioPortal platform. Integrative large-scale analyses investigated changes in copy number aberrations (CNA), methylation, mRNA transcription and protein expression within 751 samples of diffuse astrocytomas, anaplastic astrocytomas and glioblastomas. The study showed a significant percentage of CNA in PTEN (76%), PIK3AP1 and CHUK (75% each), EGFR (74%), AKT2 (39%), AKT1 (32%), AKT3 (19%) and GSK3β (18%) in the total sample. Comprehensive statistical analyses show how genomics and epigenomics affect the expression of examined genes differently across various pathohistological types and grades, suggesting that genes AKT3, CHUK and PTEN behave like tumor suppressors, while AKT1, AKT2, EGFR, and PIK3AP1 show oncogenic behavior and are involved in enhanced activity of the EGFR-PI3K-AKT-mTOR signaling pathway. Our findings contribute to the knowledge of the molecular differences between pathohistological types and ultimately offer the possibility of new treatment targets and personalized therapies in patients with diffuse gliomas.
Collapse
|
153
|
Wang Z, Liu L, Dai H, Si X, Zhang L, Li E, Yang Z, Chao G, Zheng J, Ke Y, Lihong S, Zhang Q, Liu H. Design, synthesis and biological evaluation of novel 2,4-disubstituted quinazoline derivatives targeting H1975 cells via EGFR-PI3K signaling pathway. Bioorg Med Chem 2021; 43:116265. [PMID: 34192644 DOI: 10.1016/j.bmc.2021.116265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
In order to find new and highly effective anti-tumor drugs with targeted therapeutic effects, a series of novel 4-aminoquinazoline derivatives containing N-phenylacetamide structure were designed, synthesized and evaluated for antitumor activity against four human cancer cell lines (H1975, PC-3, MDA-MB-231 and MGC-803) using MTT assay. The results showed that the compound 19e had the most potent antiproliferative activity against H1975, PC-3, MDA-MB-231 and MGC-803 cell lines. At the same time, compound 19e could significantly inhibit the colony formation and migration of H1975 cells. Compound 19e also arrested the H1975 cell cycle in the G1 phase and mediated cell apoptosis, promoted the accumulation of ROS in H1975 cells. Furthermore, compound 19e exerted antitumor effect in vitro by reducing the expression of anti-apoptotic protein Bcl-2 and increasing the pro-apoptotic protein Bax and p53. Mechanistically, compound 19e could significantly decreased the phosphorylation of EGFR and its downstream protein PI3K in H1975 cells. Which indicated that compound 19e targeted H1975 cell via interfering with EGFR-PI3K signaling pathway. Molecular docking showed that compound 19e could bind into the active pocket of EGFR. Those work suggested that compound 19e would have remarkable implications for further design of anti-tumor agents.
Collapse
Affiliation(s)
- Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Honglin Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Luye Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Erdong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhang Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Gao Chao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Shan Lihong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
154
|
Dong H, Shu X, Xu Q, Zhu C, Kaufmann AM, Zheng ZM, Albers AE, Qian X. Current Status of Human Papillomavirus-Related Head and Neck Cancer: From Viral Genome to Patient Care. Virol Sin 2021; 36:1284-1302. [PMID: 34152564 PMCID: PMC8692589 DOI: 10.1007/s12250-021-00413-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) infection identified as a definitive human carcinogen is increasingly being recognized for its role in carcinogenesis of human cancers. Up to 38%–80% of head and neck squamous cell carcinoma (HNSCC) in oropharyngeal location (OPSCC) and nearly all cervical cancers contain the HPV genome which is implicated in causing cancer through its oncoproteins E6 and E7. Given by the biologically distinct HPV-related OPSCC and a more favorable prognosis compared to HPV-negative tumors, clinical trials on de-escalation treatment strategies for these patients have been studied. It is therefore raised the questions for the patient stratification if treatment de-escalation is feasible. Moreover, understanding the crosstalk of HPV-mediated malignancy and immunity with clinical insights from the proportional response rate to immune checkpoint blockade treatments in patients with HNSCC is of importance to substantially improve the treatment efficacy. This review discusses the biology of HPV-related HNSCC as well as successful clinically findings with promising candidates in the pipeline for future directions. With the advent of various sequencing technologies, further biomolecules associated with HPV-related HNSCC progression are currently being identified to be used as potential biomarkers or targets for clinical decisions throughout the continuum of cancer care.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinhua Shu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Chen Zhu
- Department of Cancer Prevention, Cancer Hospital University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 12203, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 13353, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
155
|
Qiu HY, Wang PF, Zhang M. A patent review of mTOR inhibitors for cancer therapy (2011-2020). Expert Opin Ther Pat 2021; 31:965-975. [PMID: 34098816 DOI: 10.1080/13543776.2021.1940137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The mammalian target of rapamycin (mTOR) kinase is a central component in the PI3K/Akt/mTOR pathway and plays a crucial role in tumor biology, making it one appealing therapeutic target. In the past decade, the mTORi (mTOR inhibitor) development field has made great progress, with more agents entering key trials and the proposal of third-generation mTORi concept. Yet to achieve significant clinical success, combined efforts from multiple disciplines are ever needed. AREAS COVERED This review focuses on the progress of mTORi development with anticancer potential from the perspective of the patent literature proposed between 2011 and 2020. EXPERT OPINION The highly complex regulatory mechanism network of mTOR proposes huge challenges to the development of clinically efficient mTORis. While in-depth biological research and fundamental medchemistry research are of importance to provide guidelines for improving mTORis, new technologies to pre-diagnose applicable populations is another key to provide precise personal cancer treatment. New mTOR agents are ever needed to tackle the common problems of side effects and drug resistance.
Collapse
Affiliation(s)
- Han-Yue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Peng-Fei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
156
|
Ginghină O, Hudiță A, Zaharia C, Tsatsakis A, Mezhuev Y, Costache M, Gălățeanu B. Current Landscape in Organic Nanosized Materials Advances for Improved Management of Colorectal Cancer Patients. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2440. [PMID: 34066710 PMCID: PMC8125868 DOI: 10.3390/ma14092440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Globally, colorectal cancer (CRC) ranks as one of the most prevalent types of cancers at the moment, being the second cause of cancer-related deaths. The CRC chemotherapy backbone is represented by 5-fluorouracil, oxaliplatin, irinotecan, and their combinations, but their administration presents several serious disadvantages, such as poor bioavailability, lack of tumor specificity, and susceptibility to multidrug resistance. To address these limitations, nanomedicine has arisen as a powerful tool to improve current chemotherapy since nanosized carriers hold great promise in improving the stability and solubility of the drug payload and enhancing the active concentration of the drug that reaches the tumor tissue, increasing, therefore, the safety and efficacy of the treatment. In this context, the present review offers an overview of the most recent advances in the development of nanosized drug-delivery systems as smart therapeutic tools in CRC management and highlights the emerging need for improving the existing in vitro cancer models to reduce animal testing and increase the success of nanomedicine in clinical trials.
Collapse
Affiliation(s)
- Octav Ginghină
- Department of Surgery, “Sf. Ioan” Emergency Clinical Hospital, 13 Vitan Barzesti Street, 042122 Bucharest, Romania;
- Department II, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 17-21 Calea Plevnei Street, 010232 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Yaroslav Mezhuev
- Center of Biomaterials, D Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| |
Collapse
|
157
|
Takahashi H, Rokudai S, Kawabata-Iwakawa R, Sakakura K, Oyama T, Nishiyama M, Chikamatsu K. AKT3 is a key regulator of head and neck squamous cell carcinoma. Cancer Sci 2021; 112:2325-2334. [PMID: 33811778 PMCID: PMC8177780 DOI: 10.1111/cas.14911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
The phosphatidylinositol 3‐kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway plays a vital role in cell proliferation, apoptosis, metabolism, and angiogenesis in various human cancers, including head and neck squamous cell carcinoma (HNSCC). In the present study, we aimed to clarify the role of AKT, which is a major downstream effector of the PI3K‐AKT‐mTOR pathway, in HNSCC. We first investigated the mRNA expression of AKT isoforms using RNA‐sequencing data from The Cancer Genome Atlas database. We observed a specific elevation of AKT3 expression in HNSCC tissues when compared with that in normal tissues. Furthermore, AKT3 expression correlated with genes related to the immunosuppressive microenvironment more than the other AKT isoforms and PIK3CA. Accordingly, we focused on AKT3 and performed a knockdown approach using an HNSCC cell line. AKT3 knockdown cells exhibited impaired proliferation, a shift in the cell cycle from G2/M to G1/G0 phase, an increase in apoptotic cells, and downregulation of gene expression related to immunosuppression, as well as the knockdown of its upstream regulator PIK3CA. We also performed immunohistochemistry for both AKT3 and PIK3CA using surgical specimens from 72 patients with HNSCC. AKT3 expression in tumor cells correlated with immune cell infiltration and unfavorable prognosis when compared with PIK3CA. These findings suggested that AKT3 expression is a potential biomarker for predicting the immunoreactivity and prognosis of HNSCC. Furthermore, the isoform‐specific inhibition of AKT3 could be developed as a novel cancer therapy that efficiently suppresses the PI3K‐AKT‐mTOR pathway.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrate Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Koichi Sakakura
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahiko Nishiyama
- Division of Integrate Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
158
|
Doukas PG, Vageli DP, Sasaki CT, Judson BL. Pepsin Promotes Activation of Epidermal Growth Factor Receptor and Downstream Oncogenic Pathways, at Slightly Acidic and Neutral pH, in Exposed Hypopharyngeal Cells. Int J Mol Sci 2021; 22:ijms22084275. [PMID: 33924087 PMCID: PMC8074291 DOI: 10.3390/ijms22084275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pepsin refluxate is considered a risk factor for laryngopharyngeal carcinogenesis. Non-acidic pepsin was previously linked to an inflammatory and tumorigenic effect on laryngopharyngeal cells in vitro. Yet there is no clear evidence of the pepsin-effect on a specific oncogenic pathway and the importance of pH in this process. We hypothesized that less acidic pepsin triggers the activation of a specific oncogenic factor and related-signalling pathway. To explore the pepsin-effect in vitro, we performed intermittent exposure of 15 min, once per day, for a 5-day period, of human hypopharyngeal primary cells (HCs) to pepsin (1 mg/mL), at a weakly acidic pH of 5.0, a slightly acidic pH of 6.0, and a neutral pH of 7.0. We have documented that the extracellular environment at pH 6.0, and particularly pH 7.0, vs. pH 5.0, promotes the pepsin-effect on HCs, causing increased internalized pepsin and cell viability, a pronounced activation of EGFR accompanied by NF-κB and STAT3 activation, and a significant upregulation of EGFR, AKT1, mTOR, IL1β, TNF-α, RELA(p65), BCL-2, IL6 and STAT3. We herein provide new evidence of the pepsin-effect on oncogenic EGFR activation and its related-signaling pathway at neutral and slightly acidic pH in HCs, opening a window to further explore the prevention and therapeutic approach of laryngopharyngeal reflux disease.
Collapse
|
159
|
Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Makvandi P, Samec M, Liskova A, Kubatka P, Nabavi N, Aref AR, Ashrafizadeh M, Khan H, Najafi M. Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacol Res 2021; 167:105575. [PMID: 33771701 DOI: 10.1016/j.phrs.2021.105575] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor and its induction is of significant importance for protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) stimulate Nrf2 signaling, enhancing the activity of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. These enzymes are associated with retarding oxidative stress. On the other hand, Nrf2 activation in cancer cells is responsible for the development of chemoresistance due to disrupting oxidative mediated-cell death by reducing ROS levels. Cisplatin (CP), cis-diamminedichloroplatinum(II), is a potent anti-tumor agent extensively used in cancer therapy, but its frequent application leads to the development of chemoresistance as well. In the present study, association of Nrf2 signaling with chemoresistance to CP and protection against its deleterious effects is discussed. Anti-tumor compounds, mainly phytochemicals, retard chemoresistance by suppressing Nrf2 signaling. Upstream mediators such as microRNAs can regulate Nrf2 expression during CP chemotherapy regimens. Protection against side effects of CP is mediated via activating Nrf2 signaling and its downstream targets activating antioxidant defense system. Protective agents that activate Nrf2 signaling, can ameliorate CP-mediated ototoxicity, nephrotoxicity and neurotoxicity. Reducing ROS levels and preventing cell death are the most important factors involved in alleviating CP toxicity upon Nrf2 activation. As pre-clinical experiments advocate the role of Nrf2 in chemoprotection and CP resistance, translating these findings to the clinic can provide a significant progress in treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aliasghar Tabatabaei Mohammadi
- Asu Vanda Gene Research Company, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025 Pisa, Pontedera, Italy
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
160
|
Wu YP, Ke ZB, Zheng WC, Chen YH, Zhu JM, Lin F, Li XD, Chen SH, Cai H, Zheng QS, Wei Y, Xue XY, Xu N. Kinesin family member 18B regulates the proliferation and invasion of human prostate cancer cells. Cell Death Dis 2021; 12:302. [PMID: 33753726 PMCID: PMC7985494 DOI: 10.1038/s41419-021-03582-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Expression of kinesin family member 18B (KIF18B), an ATPase with key roles in cell division, is deregulated in many cancers, but its involvement in prostate cancer (PCa) is unclear. Here, we investigated the expression and function of KIF18B in human PCa specimens and cell lines using bioinformatics analyses, immunohistochemical and immunofluorescence microscopy, and RT-qPCR and western blot analyses. KIF18B was overexpressed in PCa specimens compared with paracancerous tissues and was associated with poorer disease-free survival. In vitro, KIF18B knockdown in PCa cell lines promoted cell proliferation, migration, and invasion, and inhibited cell apoptosis, while KIF18B overexpression had the opposite effects. In a mouse xenograft model, KIF18B overexpression accelerated and promoted the growth of PCa tumors. Bioinformatics analysis of control and KIF18B-overexpressing PCa cells showed that genes involved in the PI3K-AKT-mTOR signaling pathway were significantly enriched among the differentially expressed genes. Consistent with this observation, we found that KIF18B overexpression activates the PI3K-AKT-mTOR signaling pathway in PCa cells both in vitro and in vivo. Collectively, our results suggest that KIF18B plays a crucial role in PCa via activation of the PI3K-AKT-mTOR signaling pathway, and raise the possibility that KIF18B could have utility as a novel biomarker for PCa.
Collapse
Affiliation(s)
- Yu-Peng Wu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ye-Hui Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Dong Li
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hai Cai
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
161
|
Parate S, Kumar V, Lee G, Rampogu S, Hong JC, Lee KW. Marine-Derived Natural Products as ATP-Competitive mTOR Kinase Inhibitors for Cancer Therapeutics. Pharmaceuticals (Basel) 2021; 14:ph14030282. [PMID: 33801030 PMCID: PMC8003863 DOI: 10.3390/ph14030282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase portraying a quintessential role in cellular proliferation and survival. Aberrations in the mTOR signaling pathway have been reported in numerous cancers including thyroid, lung, gastric and ovarian cancer, thus making it a therapeutic target. To attain this objective, an in silico investigation was designed, employing a pharmacophore modeling approach. A structure-based pharmacophore (SBP) model exploiting the key features of a selective mTOR inhibitor, Torkinib directed at the ATP-binding pocket was generated. A Marine Natural Products (MNP) library was screened using SBP model as a query. The retrieved compounds after consequent drug-likeness filtration were subjected to molecular docking with mTOR, thus revealing four MNPs with better scores than Torkinib. Successive refinement via molecular dynamics simulations demonstrated that the hits formed crucial interactions with key residues of the pocket. Furthermore, the four identified hits exhibited good binding free energy scores through MM-PBSA calculations and the subsequent in silico toxicity assessments displayed three hits deemed essentially non-carcinogenic and non-mutagenic. The hits presented in this investigation could act as potent ATP-competitive mTOR inhibitors, representing a platform for the future discovery of drugs from marine natural origin.
Collapse
Affiliation(s)
- Shraddha Parate
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.P.); (G.L.)
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (V.K.); (S.R.)
| | - Gihwan Lee
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.P.); (G.L.)
| | - Shailima Rampogu
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (V.K.); (S.R.)
| | - Jong Chan Hong
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.P.); (G.L.)
- Correspondence: (J.C.H.); (K.W.L.); Tel.: +82-55-772-1360 (K.W.L.)
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (V.K.); (S.R.)
- Correspondence: (J.C.H.); (K.W.L.); Tel.: +82-55-772-1360 (K.W.L.)
| |
Collapse
|
162
|
Takahashi H, Rokudai S, Kawabata-Iwakawa R, Sakakura K, Oyama T, Nishiyama M, Chikamatsu K. AKT3 Is a Novel Regulator of Cancer-Associated Fibroblasts in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13061233. [PMID: 33799788 PMCID: PMC7998536 DOI: 10.3390/cancers13061233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) promote epithelial-to-mesenchymal transition, angiogenesis, and immunosuppression, resulting in tumor progression. The PI3K-AKT pathway is known to play vital roles in various cellular activities, including proliferation, growth, metabolism, and survival. In the present study, we sought to identify the key regulator of CAFs in head and neck squamous cell carcinoma (HNSCC) and elucidated the vital roles of AKT3, one of the AKT isoforms, in CAFs. A loss-of-function approach revealed that AKT3 in CAFs promoted their myofibroblastic phenotype and immunosuppressive characteristics. Moreover, the infiltration of AKT3-positive CAFs into tumors was positively correlated with that of various immune cells and an unfavorable prognosis in HNSCC patients. Our findings suggest that AKT3 is a potential biomarker to evaluate the CAF activity and immunosuppressive microenvironment in HNSCC. Furthermore, AKT3 is a potential target for cancer therapy that inhibits the pro-tumoral function of CAFs. Abstract Cancer-associated fibroblasts (CAFs) play vital roles in tumor progression by promoting epithelial-to-mesenchymal transition, angiogenesis, and immunosuppression. In the present study, we sought to identify the key regulators of the pro-tumoral functions of CAFs in head and neck squamous cell carcinoma (HNSCC). mRNA expression data obtained from The Cancer Genome Atlas revealed that CAF-specific mRNA expression correlated with genes that relate to an immunosuppressive microenvironment in a HNSCC cohort. RNA sequencing of CAFs and normal fibroblasts isolated from HNSCC specimens identified 1127 differentially expressed genes (DEGs) and several upregulated pathways in CAFs. Among the 1127 DEGs, we identified 13 immune function-related genes and focused on AKT3 as a potential regulator of CAFs. The targeted depletion of AKT3 in CAFs revealed that AKT3 promotes their myofibroblastic phenotype. AKT3-transduced CAFs exhibited downregulated the expression of immunosuppressive cytokine genes, impairing T-cell suppression and pro-tumoral macrophage induction. The immunohistochemistry of 72 HNSCC patients showed that AKT3 expression in CAFs positively correlated with tumor infiltration by CAFs, tumor-associated macrophages, dendritic cells, and T cells. Moreover, AKT3 expression in CAFs was an independent prognostic factor for overall survival. In conclusion, AKT3 is a potential target for cancer therapy that inhibits the pro-tumoral function of CAFs and reverses CAF-mediated immunosuppression.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Otolaryngology—Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan; (H.T.); (K.S.)
| | - Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan;
| | - Reika Kawabata-Iwakawa
- Division of Integrate Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan; (R.K.-I.); (M.N.)
| | - Koichi Sakakura
- Department of Otolaryngology—Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan; (H.T.); (K.S.)
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan;
| | - Masahiko Nishiyama
- Division of Integrate Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan; (R.K.-I.); (M.N.)
| | - Kazuaki Chikamatsu
- Department of Otolaryngology—Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan; (H.T.); (K.S.)
- Correspondence: ; Tel.: +81-27-220-8350; Fax: +81-27-220-8369
| |
Collapse
|
163
|
Sun Y, Wang Z, Qiu S, Wang R. Therapeutic strategies of different HPV status in Head and Neck Squamous Cell Carcinoma. Int J Biol Sci 2021; 17:1104-1118. [PMID: 33867833 PMCID: PMC8040311 DOI: 10.7150/ijbs.58077] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 9th most common malignant tumor in the world. Based on the etiology, HNSCC has two main subtypes: human papillomavirus (HPV) -related and HPV-unrelated. HPV-positive HNSCC is more sensitive to treatment with favorable survival. Due to the different biological behaviors, individual therapy is necessary and urgently required to deduce the therapeutic intensity of HPV-positive disease and look for a more effective and toxicity-acceptable regimen for HPV-negative disease. EGFR amplification and PI3K/AKT/mTOR pathway aberrant activation are quite common in HPV-positive HNSCC. Besides, HPV infection alters immune cell infiltrating in HNSCC and encompasses a diverse and heterogeneous landscape with more immune infiltration. On the other hand, the chance of HPV-negative cancers harboring mutation on the P53 gene is significantly higher than that of HPV-positive disease. This review focuses on the updated preclinical and clinical data of HPV-positive and HPV-negative HNSCC and discusses the therapeutic strategies of different HPV status in HNSCC.
Collapse
Affiliation(s)
- Yingming Sun
- Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365001, P. R. China
| | - Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P. R. China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, P.R. China
| | - Ruoyu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P. R. China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| |
Collapse
|
164
|
Ji P, Chang J, Wei X, Song X, Yuan H, Gong L, Li Y, Ding D, Zhang E, Yan C, Zhu M, Miao X, Wu C, Jin G, Hu Z, Shen H, Ma H. Genetic variants associated with expression of TCF19 contribute to the risk of head and neck cancer in Chinese population. J Med Genet 2021; 59:335-345. [PMID: 34085947 DOI: 10.1136/jmedgenet-2020-107410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/08/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck (SCCHN) is one of the most common cancers worldwide and includes cancers arising from the oral cavity, pharynx and larynx. Genome-wide association studies have found several genetic variants related to the risk of SCCHN; however, they could only explain a small fraction of the heritability. Thus, more susceptibility loci associated with SCCHN need to be identified. METHODS An association study was conducted by genotyping 555 patients with SCCHN and 1367 controls in a Chinese population. Single-variant association analysis was conducted on 63 373 SNPs, and the promising variants were then confirmed by a two-stage validation with 1875 SCCHN cases and 4637 controls. Bioinformatics analysis and functional assays were applied to uncover the potential pathogenic mechanism of the promising variants and genes associated with SCCHN. RESULTS We first identified three novel genetic variants significantly associated with the risk of SCCHN (p=7.45×10-7 for rs2517611 at 6p22.1, p=1.76×10-9 for rs2524182 at 6p21.33 and p=2.17×10-10 for rs3131018 at 6p21.33). Further analysis and biochemical assays showed that rs3094187, which was in a region in high linkage disequilibrium with rs3131018, could modify TCF19 expression by regulating the binding affinity of the transcription factor SREBF1 to the promoter of TCF19. In addition, experiments revealed that the inhibition of TCF19 may affect several important pathways involved in tumourigenesis and attenuate the cell proliferation and migration of SCCHN. CONCLUSION These findings offer important evidence that functional genetic variants could contribute to development of SCCHN and that TCF19 may function as a putative susceptibility gene for SCCHN.
Collapse
Affiliation(s)
- Pei Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiaoyu Wei
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xueyao Song
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yuancheng Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Dongsheng Ding
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
165
|
Ortiz-Cuaran S, Bouaoud J, Karabajakian A, Fayette J, Saintigny P. Precision Medicine Approaches to Overcome Resistance to Therapy in Head and Neck Cancers. Front Oncol 2021; 11:614332. [PMID: 33718169 PMCID: PMC7947611 DOI: 10.3389/fonc.2021.614332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most incident cancer worldwide. More than half of HNSCC patients experience locoregional or distant relapse to treatment despite aggressive multimodal therapeutic approaches that include surgical resection, radiation therapy, and adjuvant chemotherapy. Before the arrival of immunotherapy, systemic chemotherapy was previously employed as the standard first-line protocol with an association of cisplatin or carboplatin plus 5-fluorouracil plus cetuximab (anti-EFGR antibody). Unfortunately, acquisition of therapy resistance is common in patients with HNSCC and often results in local and distant failure. Despite our better understanding of HNSCC biology, no other molecular-targeted agent has been approved for HNSCC. In this review, we outline the mechanisms of resistance to the therapeutic strategies currently used in HNSCC, discuss combination treatment strategies to overcome them, and summarize the therapeutic regimens that are presently being evaluated in early- and late-phase clinical trials.
Collapse
Affiliation(s)
- Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Jebrane Bouaoud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- Department of Maxillofacial Surgery and Stomatology, Pitié-Salpêtrière University Hospital, Pierre et Marie Curie University, Sorbonne University, Paris, France
| | - Andy Karabajakian
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Fayette
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
166
|
Chen SH, Hsiao SY, Chang KY, Chang JY. New Insights Into Oral Squamous Cell Carcinoma: From Clinical Aspects to Molecular Tumorigenesis. Int J Mol Sci 2021; 22:ijms22052252. [PMID: 33668218 PMCID: PMC7956378 DOI: 10.3390/ijms22052252] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (SCC) is a prevalent malignant disease worldwide, especially so in Taiwan. Early- or even preclinical-stage detection is critical for reducing morbidity and mortality from oral SCC. Epidemiological and genome association studies are useful for identifying clinicopathological risk factors for preventive, diagnostic, and therapeutic approaches of oral SCC. For advanced oral SCC, effective treatments are critical to prolonging survival and enhancing quality of life. As oral SCC is characteristic of regional invasion with lymph node metastases, understanding the aggressive features of oral SCC, particularly in lymphangiogenesis, is essential for determining effective treatments. Emerging evidence has demonstrated that the tumor microenvironment (TME) plays a pivotal role in tumor growth, invasion, and metastases. Recent clinical successes in immune checkpoint inhibitors either alone or combined with chemotherapy have also supported the therapeutic value of immunotherapy in oral SCC. This review summarizes critical advances in basic knowledge of oral SCC from the perspective of clinicopathological risk factors, molecular tumorigenesis, and the TME. We also highlight our recent investigations on the microbiome, genome association studies, lymphangiogenesis, and immunomodulation in oral SCC. This review may provide new insights for oral SCC treatment by systematically interpreting emerging evidence from various preclinical and clinical studies.
Collapse
Affiliation(s)
- Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan; (S.-H.C.); (K.-Y.C.)
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
| | - Sheng-Yen Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan 736402, Taiwan;
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan; (S.-H.C.); (K.-Y.C.)
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
| | - Jang-Yang Chang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
- Correspondence:
| |
Collapse
|
167
|
mTOR Signaling in Pulmonary Vascular Disease: Pathogenic Role and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22042144. [PMID: 33670032 PMCID: PMC7926633 DOI: 10.3390/ijms22042144] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease without a cure. The exact pathogenic mechanisms of PAH are complex and poorly understood, yet a number of abnormally expressed genes and regulatory pathways contribute to sustained vasoconstriction and vascular remodeling of the distal pulmonary arteries. Mammalian target of rapamycin (mTOR) is one of the major signaling pathways implicated in regulating cell proliferation, migration, differentiation, and protein synthesis. Here we will describe the canonical mTOR pathway, structural and functional differences between mTOR complexes 1 and 2, as well as the crosstalk with other important signaling cascades in the development of PAH. The pathogenic role of mTOR in pulmonary vascular remodeling and sustained vasoconstriction due to its contribution to proliferation, migration, phenotypic transition, and gene regulation in pulmonary artery smooth muscle and endothelial cells will be discussed. Despite the progress in our elucidation of the etiology and pathogenesis of PAH over the two last decades, there is a lack of effective therapeutic agents to treat PAH patients representing a significant unmet clinical need. In this review, we will explore the possibility and therapeutic potential to use inhibitors of mTOR signaling cascade to treat PAH.
Collapse
|
168
|
Akbari Dilmaghani N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: Possibilities for therapeutic interventions either as single agents or in combination with conventional therapies. IUBMB Life 2021; 73:618-642. [PMID: 33476088 DOI: 10.1002/iub.2446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
The latest advances in the sequencing methods in head and neck squamous cell carcinoma (HNSCC) tissues have revolutionized our understanding of the disease by taking off the veil from the most frequent genetic alterations in the components of the oncogenic pathways. Among all the identified alterations, aberrancies in the genes attributed to the phosphoinositide 3-kinases (PI3K) axis have attracted special attention as they were altered in more than 90% of the tissues isolated from HNSCC patients. In fact, the association between these aberrancies and the increased risk of cancer metastasis suggested this axis as an "Achilles Heel" of HNSCC, which may be therapeutically targeted. The results of the clinical trials investigating the therapeutic potential of the inhibitors targeting the components of the PI3K axis in the treatment of HNSCC patients, either alone or in a combined-modal strategy, opened a new chapter in the treatment strategy of this malignancy. The present study aimed to review the importance of the PI3K axis in the pathogenesis of HNSCC and also provide a piece of information about the breakthroughs and challenges of PI3K inhibitors in the therapeutic strategies of the disease.
Collapse
Affiliation(s)
- Nader Akbari Dilmaghani
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Otolaryngology, Head and Neck Surgery, Loghman Hakim Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
169
|
Chen YQ, Zhu WT, Lin CY, Yuan ZW, Li ZH, Yan PK. Delivery of Rapamycin by Liposomes Synergistically Enhances the Chemotherapy Effect of 5-Fluorouracil on Colorectal Cancer. Int J Nanomedicine 2021; 16:269-281. [PMID: 33469286 PMCID: PMC7811466 DOI: 10.2147/ijn.s270939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background Rapamycin is a promising agent for treating tumors, but clinical applications of rapamycin are limited due to its poor water solubility and low bioavailability. This paper constructs a liposome delivery system for rapamycin to improve the effect in treating colorectal cancer. Methods We prepared the rapamycin liposomes using the ethanol injection method. The cellular uptake and biodistribution were detected by LC-MS and in vivo imaging system. MTT assay, transwell migration experiment, flow cytometry, and Western blot analysis evaluated the antitumor effect of rapamycin liposomes in vitro. Furthermore, HCT-116 tumor-bearing mice were used to assess the therapeutic efficacy of rapamycin liposomes in vivo. Results The prepared rapamycin liposomes had a particle size of 100±5.5 nm and with a narrow size distribution. In vitro cellular uptake experiments showed that the uptake of rapamycin liposomes by colorectal cells was higher than that of free rapamycin. Subsequently, in vivo imaging experiments also demonstrated that rapamycin liposomes exhibited higher tumor accumulation. Therefore, the ability of rapamycin liposomes to inhibit tumor proliferation, migration and to induce tumor apoptosis is superior to that of free rapamycin. We also demonstrated in vivo good antitumor efficacy of the rapamycin liposomes in HCT-116 xenograft mice. In addition, rapamycin liposomes and 5-FU can synergistically improve the efficacy of colorectal cancer via the Akt/mTOR and P53 pathways. Conclusion Collectively, rapamycin liposomes are a potential treatment for colorectal cancer, as it not only improves rapamycin’s antitumor effect but also synergistically enhances 5-FU’s chemotherapy effect.
Collapse
Affiliation(s)
- Yi-Qing Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Wen-Ting Zhu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Cai-Yan Lin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Zhong-Wen Yuan
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Zhen-Hua Li
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Peng-Ke Yan
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| |
Collapse
|
170
|
Chen G, Li Z, Chen C, Liu J, Zhu W, She L, Huang H, Qin Y, Liu G, Wang J, Liu Y, Huang D, Tang Q, Zhang X, Zhu G. The Molecular Landscape and Biological Alterations Induced by PRAS40-Knockout in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 10:565669. [PMID: 33489877 PMCID: PMC7821427 DOI: 10.3389/fonc.2020.565669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
PRAS40 (Prolin-rich Akt substrate of 40 kDa) is a critical protein, which directly connects PI3K/Akt and mTORC1 pathway. It plays an indispensable role in the development of various diseases. However, the relationship between PRAS40 and head and neck squamous cell carcinoma (HNSCC) remains unclear. Here, our study indicated that high expression of PRAS40 mRNA is a favorable prognostic factor in HNSCC patients by analyzing 498 clinical and mRNA data. Moreover, we confirmed that CRISPR/Cas9 induced PRAS40-knockout would promote colony formation, cell migration, and invasion in several HNSCC cell lines. RNA-seq was employed to investigate the further possible mechanisms involving the above regulations by PRAS40 in HNSCC cells. The molecular landscape contributed by 253 differentially expressed mRNA after PRAS40-knockout was enriched in TGF-beta, PI3K-Akt, P53, mTOR, NF-κB signaling pathway. Partial molecular alternations within these pathways were validated by qPCR or Western blotting. Besides, we found that high expression of PRAS40 in HNSC patients would present more CD8+ T and T follicular helper cells, but less Th17 cells than the patients with low expression of PRAS40. The altered molecular pathways and tumor-infiltrating immune cells might associate with the mechanism of PRAS40 being a suppressor in HNSCC cells, which would provide a potential prognostic predictor and therapeutic target in HNSCC patients.
Collapse
Affiliation(s)
- Gang Chen
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Zhexuan Li
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Changhan Chen
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Jiajia Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiming Zhu
- Fuzhou Medical College of Nanchang University, Fuzhou, China
| | - Li She
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuexiang Qin
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Guancheng Liu
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Juncheng Wang
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liu
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Donghai Huang
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
171
|
A highly annotated database of genes associated with platinum resistance in cancer. Oncogene 2021; 40:6395-6405. [PMID: 34645978 PMCID: PMC8602037 DOI: 10.1038/s41388-021-02055-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Platinum-based chemotherapy, including cisplatin, carboplatin, and oxaliplatin, is prescribed to 10-20% of all cancer patients. Unfortunately, platinum resistance develops in a significant number of patients and is a determinant of clinical outcome. Extensive research has been conducted to understand and overcome platinum resistance, and mechanisms of resistance can be categorized into several broad biological processes, including (1) regulation of drug entry, exit, accumulation, sequestration, and detoxification, (2) enhanced repair and tolerance of platinum-induced DNA damage, (3) alterations in cell survival pathways, (4) alterations in pleiotropic processes and pathways, and (5) changes in the tumor microenvironment. As a resource to the cancer research community, we provide a comprehensive overview accompanied by a manually curated database of the >900 genes/proteins that have been associated with platinum resistance over the last 30 years of literature. The database is annotated with possible pathways through which the curated genes are related to platinum resistance, types of evidence, and hyperlinks to literature sources. The searchable, downloadable database is available online at http://ptrc-ddr.cptac-data-view.org .
Collapse
|
172
|
Romanowska K, Sobecka A, Rawłuszko-Wieczorek AA, Suchorska WM, Golusiński W. Head and Neck Squamous Cell Carcinoma: Epigenetic Landscape. Diagnostics (Basel) 2020; 11:diagnostics11010034. [PMID: 33375464 PMCID: PMC7823717 DOI: 10.3390/diagnostics11010034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) constitutes the sixth most prevalent cancer worldwide. The molecular pathogenesis of HNSCC includes disorders in cell cycle, intercellular signaling, proliferation, squamous cell differentiation and apoptosis. In addition to the genetic mutations, changes in HNSCC are also characterized by the accumulation of epigenetic alterations such as DNA methylation, histone modifications, non-coding RNA activity and RNA methylation. In fact, some of them may promote cancer formation and progression by controlling the gene expression machinery, hence, they could be used as biomarkers in the clinical surveillance of HNSCC or as targets for therapeutic strategies. In this review, we focus on the current knowledge regarding epigenetic modifications observed in HNSCC and its predictive value for cancer development.
Collapse
Affiliation(s)
- Kamila Romanowska
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
- Correspondence:
| | - Agnieszka Sobecka
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | | | - Wiktoria M. Suchorska
- Department of Medical Physics, Radiobiology Laboratory, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland; (A.S.); (W.G.)
| |
Collapse
|
173
|
Madhukar G, Subbarao N. In-silico prediction of potential inhibitors against phosphatidylinositol 3-kinase catalytic subunit alpha involved in head and neck squamous cell carcinomas. J Biomol Struct Dyn 2020; 40:4697-4712. [PMID: 33356909 DOI: 10.1080/07391102.2020.1861980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers, globally. Its high mortality rates remained unaltered in the last three decades, therefore, there is an enormous need for novel therapeutics. The most frequent somatically mutated oncogenic pathway in HNSCC tumors is the Phosphatidylinositol-3-kinases (PI3K) pathway. PI3Ks are lipid kinases involved in the regulation of cell survival, growth and metabolism. PI3Ks phosphorylates PI (4,5) P2 (PIP2) converting it to PI (3, 4, 5) P3 (PIP3). Alterations such as mutation, gene amplification and overexpression in PIK3CA, encoding the catalytic subunit p110α of PI3K pathway were found to be prevalent. The aberrant activation leads to irregulated cell growth due to improper p110α enzymatic activity. p110α is therefore, considered a potential oncogenic target for cancer therapy. The only FDA approved specific inhibitor of p110α is Alpelisib (BYL719). Therefore, designing more effective and specific p110α inhibitors could be a promising strategy in the treatment of HNSCC. The present study aims to find out the potent and novel inhibitors of p110α using High Throughput Screening (HTS) of huge databases (National Cancer Institute (NCI), Life Chemicals, ChemDiv and ChEMBL) and Molecular Dynamic Simulations. As a result, from more than 400,000 compounds, a total of 3 best candidate compounds (Echinacoside, Isoacteoside, K284-4402) were selected and validated for their binding to catalytic site of p110α and stability during Molecular Dynamics (MD) simulations. The binding free energy (calculated from MM-PBSA) of the selected compounds, Echinacoside, Isoacteoside, K284-4402 were -23.43 kcal/mol, -33.02 kcal/mol and -30.57 kcal/mol, respectively, which suggested these compounds bind to p110α with higher affinity than Alpelisib which has binding free energy -20.9 kcal/mol. This study provides a significant in-depth understanding of p110α inhibitors that can be used in the development of potential therapeutics against HNSCC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Geet Madhukar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
174
|
Shah PA, Huang C, Li Q, Kazi SA, Byers LA, Wang J, Johnson FM, Frederick MJ. NOTCH1 Signaling in Head and Neck Squamous Cell Carcinoma. Cells 2020; 9:cells9122677. [PMID: 33322834 PMCID: PMC7764697 DOI: 10.3390/cells9122677] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Biomarker-driven targeted therapies are lacking for head and neck squamous cell carcinoma (HNSCC), which is common and lethal. Efforts to develop such therapies are hindered by a genomic landscape dominated by the loss of tumor suppressor function, including NOTCH1 that is frequently mutated in HNSCC. Clearer understanding of NOTCH1 signaling in HNSCCs is crucial to clinically targeting this pathway. Structural characterization of NOTCH1 mutations in HNSCC demonstrates that most are predicted to cause loss of function, in agreement with NOTCH1's role as a tumor suppressor in this cancer. Experimental manipulation of NOTCH1 signaling in HNSCC cell lines harboring either mutant or wild-type NOTCH1 further supports a tumor suppressor function. Additionally, the loss of NOTCH1 signaling can drive HNSCC tumorigenesis and clinical aggressiveness. Our recent data suggest that NOTCH1 controls genes involved in early differentiation that could have different phenotypic consequences depending on the cancer's genetic background, including acquisition of pseudo-stem cell-like properties. The presence of NOTCH1 mutations may predict response to treatment with an immune checkpoint or phosphatidylinositol 3-kinase inhibitors. The latter is being tested in a clinical trial, and if validated, it may lead to the development of the first biomarker-driven targeted therapy for HNSCC.
Collapse
Affiliation(s)
- Pooja A. Shah
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.A.S.); (L.A.B.)
| | - Chenfei Huang
- Bobby R. Alford Department of Otolaryngology, Baylor College of Medicine, Houston, TX 77030, USA; (C.H.); (M.J.F.)
| | - Qiuli Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Sawad A. Kazi
- School of Natural Sciences, University of Texas, Austin, TX 78712, USA;
| | - Lauren A. Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.A.S.); (L.A.B.)
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
| | - Jing Wang
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Faye M. Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.A.S.); (L.A.B.)
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-713–792-6363; Fax: +1-713-792-1220
| | - Mitchell J. Frederick
- Bobby R. Alford Department of Otolaryngology, Baylor College of Medicine, Houston, TX 77030, USA; (C.H.); (M.J.F.)
| |
Collapse
|
175
|
Qi YF, Yang Y, Zhang Y, Liu S, Luo B, Liu W. Down regulation of lactotransferrin enhanced radio-sensitivity of nasopharyngeal carcinoma. Comput Biol Chem 2020; 90:107426. [PMID: 33352501 DOI: 10.1016/j.compbiolchem.2020.107426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION It is reported that LTF had a radiation resistance effect, and its expression in nasopharyngeal carcinoma (NPC) was significantly down-regulated. However, the mechanism of down-regulated LTF affecting the sensitivity of radiotherapy has remained elusive. METHODS We re-analyzed the microarray data GSE36972 and GSE48503 to find differentially expressed genes (DEGs) in NPC cell line 5-8 F transfected with LTF or vector control, and the DEGs between radio-resistant and radio-sensitive NPC cell lines. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and protein-protein interaction network (PPI) analysis of DEGs were performed to obtain the node genes. The target genes of miR-214 were also predicted to complement the mechanism associated with radiotherapy resistance because it could directly target LTF. RESULTS This study identified 1190 and 1279 DEGs, respectively. GO and KEGG analysis showed that apoptotic process and proliferation, PI3K-Akt signaling pathway were significantly enriched pathways. Four nodes (DUSP1, PPARGC1A, FOS and SMARCA1) associated with LTF were screened. And 42 target genes of miR-214 were cross-linked to radiotherapy sensitivity. CONCLUSIONS The present study demonstrates the possible molecular mechanism that the down-regulated LTF enhances the radiosensitivity of NPC cells through interaction with DUSP1, PPARGC1A, FOS and SMARCA1, and miR-214 as its superior negative regulator may play a role in regulating the radiotherapy effect.
Collapse
Affiliation(s)
- Yi-Fan Qi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China; Qingdao Shinan District Center for Disease Control and Prevention, 90 Xuzhou Road, Qingdao, 266021, China.
| | - Yang Yang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China.
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China.
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 19 Jiangsu Road, Qingdao, 266021, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China.
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China.
| |
Collapse
|
176
|
Wan Y, Long J, Gao H, Tang Z. 2-Aminothiazole: A privileged scaffold for the discovery of anti-cancer agents. Eur J Med Chem 2020; 210:112953. [PMID: 33148490 DOI: 10.1016/j.ejmech.2020.112953] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
Abstract
Cancer has been the second heath killer being next only to cardiovascular diseases in human society. Although many efforts have been taken for cancer therapy and many achievements have been yielded in the diagnosis and treatment of cancer, the current first-line anti-cancer agents are insufficient owing to the emergence of multi-drug resistance and side effects. Therefore, it is urgent to develop new anti-cancer agents with high activity and low toxicity. 2-Aminothiazole is a class of important scaffold which widely distributes in many natural and synthetic compounds with many pharmacological effects including the potential anti-cancer activity. In this review, we summarized the recent progress of 2-aminothiazole as a privileged scaffold for the discovery of anti-cancer agents based on biological targets, such as tubulin protein, histone acetylase/histone deacetylase (HAT/HDAC), phosphatidylinositol 3-kinases (PI3Ks), Src/Abl kinase, BRAF kinase, epidermal growth factor receptor (EGFR) kinase and sphingosine kinase (SphK), and also investigated the structure-activity relationships (SARs) of most compounds. It is believed that this review could be helpful for medicinal chemists in the discovery of more anti-cancer agents bearing 2-aminothiazole scaffold with excellent activity and high therapeutic index.
Collapse
Affiliation(s)
- Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| | - Jiabing Long
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Han Gao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| |
Collapse
|
177
|
Klinghammer K, Politz O, Eder T, Otto R, Raguse JD, Albers A, Kaufmann A, Tinhofer I, Hoffmann J, Keller U, Keilholz U. Combination of copanlisib with cetuximab improves tumor response in cetuximab-resistant patient-derived xenografts of head and neck cancer. Oncotarget 2020; 11:3688-3697. [PMID: 33110476 PMCID: PMC7566806 DOI: 10.18632/oncotarget.27763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances, the treatment of head and neck squamous cell carcinoma (HNSCC) remains an area of high unmet medical need. HNSCC is frequently associated with either amplification or mutational changes in the PI3K pathway, making PI3K an attractive target particularly in cetuximab-resistant tumors. Here, we explored the antitumor activity of the selective, pan-class I PI3K inhibitor copanlisib with predominant activity towards PI3Kα and δ in monotherapy and in combination with cetuximab using a mouse clinical trial set-up with 33 patient-derived xenograft (PDX) models with known HPV and PI3K mutational status and available data on cetuximab sensitivity. Treatment with copanlisib alone resulted in moderate antitumor activity with 12/33 PDX models showing either tumor stabilization or regression. Combination treatment with copanlisib and cetuximab was superior to either of the monotherapies alone in the majority of the models (21/33), and the effect was particularly pronounced in cetuximab-resistant tumors (14/16). While no correlation was observed between PI3K mutation status and response to either cetuximab or copanlisib, increased PI3K signaling activity evaluated through gene expression profiling showed a positive correlation with response to copanlisib. Together, these data support further investigation of PI3K inhibition in HNSCC and suggests gene expression patterns associated with PI3K signaling as a potential biomarker for predicting treatment responses.
Collapse
Affiliation(s)
| | - Oliver Politz
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | - Theresa Eder
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Sites, Berlin, Germany
| | - Raik Otto
- WBI, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan-Dirk Raguse
- Department of Maxillio-Facial Surgery, Fachklinik Hornheide, Münster, Germany
| | | | | | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Jens Hoffmann
- Experimental Pharmacology & Oncology GmbH, Berlin, Germany
| | - Ulrich Keller
- Department of Hematology and Medical Oncology, Charité, Berlin, Germany
| | | |
Collapse
|
178
|
Hintelmann K, Kriegs M, Rothkamm K, Rieckmann T. Improving the Efficacy of Tumor Radiosensitization Through Combined Molecular Targeting. Front Oncol 2020; 10:1260. [PMID: 32903756 PMCID: PMC7438822 DOI: 10.3389/fonc.2020.01260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoradiation, either alone or in combination with surgery or induction chemotherapy, is the current standard of care for most locally advanced solid tumors. Though chemoradiation is usually performed at the maximum tolerated doses of both chemotherapy and radiation, current cure rates are not satisfactory for many tumor entities, since tumor heterogeneity and plasticity result in chemo- and radioresistance. Advances in the understanding of tumor biology, a rapidly growing number of molecular targeting agents and novel technologies enabling the in-depth characterization of individual tumors, have fuelled the hope of entering an era of precision oncology, where each tumor will be treated according to its individual characteristics and weaknesses. At present though, molecular targeting approaches in combination with radiotherapy or chemoradiation have not yet proven to be beneficial over standard chemoradiation treatment in the clinical setting. A promising approach to improve efficacy is the combined usage of two targeting agents in order to inhibit backup pathways or achieve a more complete pathway inhibition. Here we review preclinical attempts to utilize such dual targeting strategies for future tumor radiosensitization.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
179
|
Guo H, Diao QP. 1,3,5-Triazine-azole Hybrids and their Anticancer Activity. Curr Top Med Chem 2020; 20:1481-1492. [DOI: 10.2174/1568026620666200310122741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
1,3,5-Triazine and azole can interact with various therapeutic targets, and their derivatives
possess promising in vitro and in vivo anticancer activity. Hybrid molecules have the potential to enhance
efficiency, overcome drug resistance and reduce side effects, and many hybrid molecules are under
different phases of clinical trials, so hybridization of 1,3,5-triazine with azole may provide valuable
therapeutic intervention for the treatment of cancer. Substantial efforts have been made to develop
azole-containing 1,3,5-triazine hybrids as novel anticancer agents, and some of them exhibited excellent
activity. This review emphasizes azole-containing 1,3,5-triazine hybrids with potential anticancer activity,
and the structure-activity relationships as well as the mechanisms of action are also discussed to
provide comprehensive and target-oriented information for the development of this kind of anticancer
drugs.
Collapse
Affiliation(s)
- Hua Guo
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| | - Quan-Ping Diao
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| |
Collapse
|
180
|
Wei T, Lambert PF. A highway to carcinogenesis: the role of IQGAP1, a signaling scaffolding protein, in head and neck cancer development. Oncoscience 2020; 7:49-51. [PMID: 32923516 PMCID: PMC7458336 DOI: 10.18632/oncoscience.511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer worldwide. One of the most critical signaling pathways in HNSCC is the Epidermal Growth Factor Receptor/ Phosphatidylinositol 3-Kinase (EGFR/PI3K) pathway. IQ motif-containing GTPase- activating protein 1 (IQGAP1), a protein upregulated in multiple types of cancer, acts as a scaffold for this pathway and others implicated in cancer. IQGAP1 is overexpressed in HNSCCs, and its overexpression correlates with poorer prognosis in HNSCC patients, indicating that IQGAP1 might be important in HNSCC development. Here, we summarized our recent demonstrating a role of IQGAP1 in promoting HNSCC, at least in part, by scaffolding the EGFR/PI3K signaling pathway.
Collapse
Affiliation(s)
- Tao Wei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
181
|
The (+)-Brevipolide H Displays Anticancer Activity against Human Castration-Resistant Prostate Cancer: The Role of Oxidative Stress and Akt/mTOR/p70S6K-Dependent Pathways in G1 Checkpoint Arrest and Apoptosis. Molecules 2020; 25:molecules25122929. [PMID: 32630532 PMCID: PMC7355498 DOI: 10.3390/molecules25122929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Because conventional chemotherapy is not sufficiently effective against prostate cancer, various examinations have been performed to identify anticancer activity of naturally occurring components and their mechanisms of action. The (+)-brevipolide H, an α-pyrone-based natural compound, induced potent and long-term anticancer effects in human castration-resistant prostate cancer (CRPC) PC-3 cells. Flow cytofluorometric analysis with propidium iodide staining showed (+)-brevipolide H-induced G1 arrest of cell cycle and subsequent apoptosis through induction of caspase cascades. Since Akt/mTOR pathway has been well substantiated in participating in cell cycle progression in G1 phase, its signaling and downstream regulators were examined. Consequently, (+)-brevipolide H inhibited the signaling pathway of Akt/mTOR/p70S6K. The c-Myc inhibition and downregulation of G1 phase cyclins were also attributed to (+)-brevipolide H action. Overexpression of myristoylated Akt significantly rescued mTOR/p70S6K and downstream signaling under (+)-brevipolide H treatment. ROS and Ca2+, two key mediators in regulating intracellular signaling, were determined, showing that (+)-brevipolide H interactively induced ROS production and an increase of intracellular Ca2+ levels. The (+)-Brevipolide H also induced the downregulation of anti-apoptotic Bcl-2 family proteins (Bcl-2 and Bcl-xL) and loss of mitochondrial membrane potential, indicating the contribution of mitochondrial dysfunction to apoptosis. In conclusion, the data suggest that (+)-brevipolide H displays anticancer activity through crosstalk between ROS production and intracellular Ca2+ mobilization. In addition, suppression of Akt/mTOR/p70S6K pathway associated with downregulation of G1 phase cyclins contributes to (+)-brevipolide H-mediated anticancer activity, which ultimately causes mitochondrial dysfunction and cell apoptosis. The data also support the biological significance and, possibly, clinically important development of natural product-based anticancer approaches.
Collapse
|
182
|
Harsha C, Banik K, Ang HL, Girisa S, Vikkurthi R, Parama D, Rana V, Shabnam B, Khatoon E, Kumar AP, Kunnumakkara AB. Targeting AKT/mTOR in Oral Cancer: Mechanisms and Advances in Clinical Trials. Int J Mol Sci 2020; 21:ijms21093285. [PMID: 32384682 PMCID: PMC7246494 DOI: 10.3390/ijms21093285] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Oral cancer (OC) is a devastating disease that takes the lives of lots of people globally every year. The current spectrum of treatment modalities does not meet the needs of the patients. The disease heterogeneity demands personalized medicine or targeted therapies. Therefore, there is an urgent need to identify potential targets for the treatment of OC. Abundant evidence has suggested that the components of the protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway are intrinsic factors for carcinogenesis. The AKT protein is central to the proliferation and survival of normal and cancer cells, and its downstream protein, mTOR, also plays an indispensable role in the cellular processes. The wide involvement of the AKT/mTOR pathway has been noted in oral squamous cell carcinoma (OSCC). This axis significantly regulates the various hallmarks of cancer, like proliferation, survival, angiogenesis, invasion, metastasis, autophagy, and epithelial-to-mesenchymal transition (EMT). Activated AKT/mTOR signaling is also associated with circadian signaling, chemoresistance and radio-resistance in OC cells. Several miRNAs, circRNAs and lncRNAs also modulate this pathway. The association of this axis with the process of tumorigenesis has culminated in the identification of its specific inhibitors for the prevention and treatment of OC. In this review, we discussed the significance of AKT/mTOR signaling in OC and its potential as a therapeutic target for the management of OC. This article also provided an update on several AKT/mTOR inhibitors that emerged as promising candidates for therapeutic interventions against OC/head and neck cancer (HNC) in clinical studies.
Collapse
Affiliation(s)
- Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Elina Khatoon
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Correspondence: (A.P.K.); (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (C.H.); (K.B.); (S.G.); (R.V.); (D.P.); (V.R.); (B.S.); (E.K.)
- Correspondence: (A.P.K.); (A.B.K.); Tel.: +65-6516-5456 (A.P.K.); +91-361-258-2231 (A.B.K.); Fax: +65-6873-9664 (A.P.K.); +91-361-258-2249 (A.B.K.)
| |
Collapse
|
183
|
Design, synthesis, antitumor activity and theoretical calculation of novel PI3Ka inhibitors. Bioorg Chem 2020; 98:103737. [DOI: 10.1016/j.bioorg.2020.103737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 01/03/2023]
|
184
|
Cheng Y, Zhu H, Gao W. MicroRNA-330-3p represses the proliferation and invasion of laryngeal squamous cell carcinoma through downregulation of Tra2β-mediated Akt signaling. Mol Cell Probes 2020; 52:101574. [PMID: 32289378 DOI: 10.1016/j.mcp.2020.101574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs), a type of post-transcriptional regulators, exert a crucial role in the malignant progression of laryngeal squamous cell carcinoma (LSCC). MicroRNA-330-3p (miR-330-3p), a recently identified tumor-associated miRNA, is implicated in multiple cancers. Yet, the relevance of miR-330-3p in LSCC remains unexplored. The findings of our study demonstrated a lower expression of miR-330-3p in LSCC. Functional assays revealed that upregulation of miR-330-3p marked restricted the proliferation, colony formation and invasion of LSCC cells. Transformer-2 protein homolog beta (Tra2β) was identified as a target gene of miR-330-3p. An inverse correlation between miR-330-3p and Tra2β mRNA expression was evidenced in LSCC specimens. The upregulation of miR-330-3p significantly repressed Tra2β expression and the phosphorylation of the Akt protein. In addition, Tra2β overexpression markedly abrogated the tumor suppressive role of miR-330-3p in LSCC cells. Overall, our results uncovered that miR-330-3p exerted a tumor-inhibition function in LSCC through targeting Tra2β to inhibit Akt activation.
Collapse
Affiliation(s)
- Ying Cheng
- The Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui Zhu
- The Department of Computer, Xi'an University of Post and Telecommunications, Xi'an, 710121, China
| | - Wei Gao
- The Department of Chest Surgery, Shaanxi Provincial Tumor Hospital, Xi'an, 710061, China.
| |
Collapse
|
185
|
VEGFR2 Blockade Improves Renal Damage in an Experimental Model of Type 2 Diabetic Nephropathy. J Clin Med 2020; 9:jcm9020302. [PMID: 31973092 PMCID: PMC7074274 DOI: 10.3390/jcm9020302] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
The absence of optimal treatments for Diabetic Nephropathy (DN) highlights the importance of the search for novel therapeutic targets. The vascular endothelial growth factor receptor 2 (VEGFR2) pathway is activated in experimental and human DN, but the effects of its blockade in experimental models of DN is still controversial. Here, we test the effects of a therapeutic anti-VEGFR2 treatment, using a VEGFR2 kinase inhibitor, on the progression of renal damage in the BTBR ob/ob (leptin deficiency mutation) mice. This experimental diabetic model develops histological characteristics mimicking the key features of advanced human DN. A VEGFR2 pathway-activation blockade using the VEGFR2 kinase inhibitor SU5416, starting after kidney disease development, improves renal function, glomerular damage (mesangial matrix expansion and basement membrane thickening), tubulointerstitial inflammation and tubular atrophy, compared to untreated diabetic mice. The downstream mechanisms involved in these beneficial effects of VEGFR2 blockade include gene expression restoration of podocyte markers and downregulation of renal injury biomarkers and pro-inflammatory mediators. Several ligands can activate VEGFR2, including the canonical ligands VEGFs and GREMLIN. Activation of a GREMLIN/VEGFR2 pathway, but not other ligands, is correlated with renal damage progression in BTBR ob/ob diabetic mice. RNA sequencing analysis of GREMLIN-regulated genes confirm the modulation of proinflammatory genes and related-molecular pathways. Overall, these data show that a GREMLIN/VEGFR2 pathway activation is involved in diabetic kidney disease and could potentially be a novel therapeutic target in this clinical condition.
Collapse
|