151
|
Goyama S, Kitamura T. Epigenetics in normal and malignant hematopoiesis: An overview and update 2017. Cancer Sci 2017; 108:553-562. [PMID: 28100030 PMCID: PMC5406607 DOI: 10.1111/cas.13168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Epigenetic regulation in hematopoiesis has been a field of rapid expansion. Genome‐wide analyses have revealed, and will continue to identify genetic alterations in epigenetic genes that are present in various types of hematopoietic neoplasms. Development of new mouse models for individual epigenetic modifiers has revealed their novel, sometimes unexpected, functions. In this review, we provide an overview of genetic alterations within epigenetic genes in various types of hematopoietic neoplasms. We then summarize the physiologic roles of these epigenetic modifiers during hematopoiesis, and describe therapeutic approaches targeting the epigenetic modifications. Interestingly, the mutational spectrum of epigenetic genes indicates that myeloid neoplasms are similar to T‐cell neoplasms, whereas B‐cell lymphomas have distinct features. Furthermore, it appears that the epigenetic mutations related to active transcription are more associated with myeloid/T‐cell neoplasms, whereas those that repress transcription are associated with B‐cell lymphomas. These observations may imply that the global low‐level or high‐level transcriptional activity underlies the development of myeloid/T‐cell tumors or B‐cell tumors, respectively.
Collapse
Affiliation(s)
- Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
152
|
Kelly AD, Issa JPJ. The promise of epigenetic therapy: reprogramming the cancer epigenome. Curr Opin Genet Dev 2017; 42:68-77. [PMID: 28412585 DOI: 10.1016/j.gde.2017.03.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023]
Abstract
Epigenetics refers to heritable molecular determinants of phenotype independent of DNA sequence. Epigenetic features include DNA methylation, histone modifications, non-coding RNAs, and chromatin structure. The epigenetic status of cells plays a crucial role in determining their differentiation state and proper function within multicellular organisms. Disruption of these processes is now understood to be a major contributor to cancer development and progression, and recent efforts have attempted to pharmacologically reverse such altered epigenetics. In this mini-review we introduce the concept of epigenetic drivers of cancer and discuss how aberrant DNA methylation, histone modifications, and chromatin states are being targeted using drugs either in preclinical, or clinical development, and how they fit in the context of existing therapies.
Collapse
Affiliation(s)
- Andrew D Kelly
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
153
|
Tran TQ, Lowman XH, Kong M. Molecular Pathways: Metabolic Control of Histone Methylation and Gene Expression in Cancer. Clin Cancer Res 2017; 23:4004-4009. [PMID: 28404599 DOI: 10.1158/1078-0432.ccr-16-2506] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations contribute to tumor development, progression, and therapeutic response. Many epigenetic enzymes use metabolic intermediates as cofactors to modify chromatin structure. Emerging evidence suggests that fluctuation in metabolite levels may regulate activities of these chromatin-modifying enzymes. Here, we summarize recent progress in understanding the cross-talk between metabolism and epigenetic control of gene expression in cancer. We focus on how metabolic changes, due to diet, genetic mutations, or tumor microenvironment, regulate histone methylation status and, consequently, affect gene expression profiles to promote tumorigenesis. Importantly, we also suggest some potential therapeutic approaches to target the oncogenic role of metabolic alterations and epigenetic modifications in cancer. Clin Cancer Res; 23(15); 4004-9. ©2017 AACR.
Collapse
Affiliation(s)
- Thai Q Tran
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California
| | - Xazmin H Lowman
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California
| | - Mei Kong
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California.
| |
Collapse
|
155
|
Lu Y, Kwintkiewicz J, Liu Y, Tech K, Frady LN, Su YT, Bautista W, Moon SI, MacDonald J, Ewend MG, Gilbert MR, Yang C, Wu J. Chemosensitivity of IDH1-Mutated Gliomas Due to an Impairment in PARP1-Mediated DNA Repair. Cancer Res 2017; 77:1709-1718. [PMID: 28202508 DOI: 10.1158/0008-5472.can-16-2773] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Mutations in isocitrate dehydrogenase (IDH) are the most prevalent genetic abnormalities in lower grade gliomas. The presence of these mutations in glioma is prognostic for better clinical outcomes with longer patient survival. In the present study, we found that defects in oxidative metabolism and 2-HG production confer chemosensitization in IDH1-mutated glioma cells. In addition, temozolomide (TMZ) treatment induced greater DNA damage and apoptotic changes in mutant glioma cells. The PARP1-associated DNA repair pathway was extensively compromised in mutant cells due to decreased NAD+ availability. Targeting the PARP DNA repair pathway extensively sensitized IDH1-mutated glioma cells to TMZ. Our findings demonstrate a novel molecular mechanism that defines chemosensitivity in IDH-mutated gliomas. Targeting PARP-associated DNA repair may represent a novel therapeutic strategy for gliomas. Cancer Res; 77(7); 1709-18. ©2017 AACR.
Collapse
Affiliation(s)
- Yanxin Lu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jakub Kwintkiewicz
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Katherine Tech
- Department of Biomedical Engineering, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lauren N Frady
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yu-Ting Su
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Wendy Bautista
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Seog In Moon
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jeffrey MacDonald
- Department of Biomedical Engineering, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew G Ewend
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
156
|
Berger T, Saunders ME, Mak TW. Beyond the Oncogene Revolution: Four New Ways to Combat Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:85-92. [PMID: 28057846 DOI: 10.1101/sqb.2016.81.031161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has become clear that tumorigenesis results from much more than just the activation of an oncogene and/or the inactivation of a tumor-suppressor gene, and that the cancer cell genome contains many more alterations than can be specifically targeted at once. This observation has led our group to a search for alternative ways to kill cancer cells (while sparing normal cells) by focusing on properties unique to the former. We have identified four approaches with the potential to generate new anticancer therapies: combatting the tactics by which cancers evade antitumor immune responses, targeting metabolic adaptations that tumor cells use to survive conditions that would kill normal cells, manipulating a cancer cell's response to excessive oxidative stress, and exploiting aneuploidy. This review describes our progress to date on these fronts.
Collapse
Affiliation(s)
- Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Mary E Saunders
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
157
|
The IDH2 R172K mutation associated with angioimmunoblastic T-cell lymphoma produces 2HG in T cells and impacts lymphoid development. Proc Natl Acad Sci U S A 2016; 113:15084-15089. [PMID: 27956631 DOI: 10.1073/pnas.1617929114] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oncogenic isocitrate dehydrogenase (IDH)1 and IDH2 mutations at three hotspot arginine residues cause an enzymatic gain of function that leads to the production and accumulation of the metabolite 2-hydroxyglutarate (2HG), which contributes to the development of a number of malignancies. In the hematopoietic system, mutations in IDH1 at arginine (R) 132 and in IDH2 at R140 and R172 are commonly observed in acute myeloid leukemia, and elevated 2HG is observed in cells and serum. However, in angioimmunoblastic T-cell lymphoma (AITL), mutations are almost exclusively restricted to IDH2 R172, and levels of 2HG have not been comprehensively measured. In this study, we investigate the expression pattern of mutant IDH2 in the AITL tumor microenvironment and measure levels of 2HG in tissue and serum of AITL patients. We find that mutant IDH2 expression is restricted to the malignant T-cell component of AITL, and that 2HG is elevated in tumor tissue and serum of patients. We also investigate the differences between the three hotspot mutation sites in IDH1 and IDH2 using conditional knock-in mouse models. These studies show that in the lymphoid system, mutations in IDH2 at R172 produce high levels of 2HG compared with mutations at the other two sites and that lymphoid development is impaired in these animals. These data provide evidence that IDH2 R172 mutations may be the only variants present in AITL because of their capacity to produce significant amounts of the oncometabolite 2HG in the cell of origin of this disease.
Collapse
|
159
|
Abstract
IDH mutants cause aberrant DNA and histone methylation and contribute to hematological and neuronal malignancies. In this issue of Cancer Cell, Inoue et al. describe a potential specific effect of IDH1 mutations that reduces Atm expression via inhibition of H3K9 demethylases, which may represent a first step toward cellular transformation.
Collapse
Affiliation(s)
- Virginie Penard-Lacronique
- INSERM U1170, 94805 Villejuif, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France; Université Paris Sud, Université Paris-Saclay, 94720 Le Kremlin-Bicêtre, France; Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| | - Olivier A Bernard
- INSERM U1170, 94805 Villejuif, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France; Université Paris Sud, Université Paris-Saclay, 94720 Le Kremlin-Bicêtre, France; Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|