151
|
Mitochondrial dynamics, quality control and miRNA regulation in skeletal muscle: implications for obesity and related metabolic disease. Clin Sci (Lond) 2016; 130:843-52. [DOI: 10.1042/cs20150780] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/12/2016] [Indexed: 01/14/2023]
Abstract
The western dietary habits and sedentary lifestyle largely contributes to the growing epidemic of obesity. Mitochondria are at the front line of cellular energy homoeostasis and are implicated in the pathophysiology of obesity and obesity-related metabolic disease. In recent years, novel aspects in the regulation of mitochondrial metabolism, such as mitochondrial dynamics, mitochondrial protein quality control and post-transcriptional regulation of genes coding for mitochondrial proteins, have emerged. In this review, we discuss the recent findings concerning the dysregulation of these processes in skeletal muscle in obesogenic conditions.
Collapse
|
152
|
Unique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma. Sci Rep 2016; 6:24578. [PMID: 27080907 PMCID: PMC4832330 DOI: 10.1038/srep24578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/30/2016] [Indexed: 12/15/2022] Open
Abstract
Malignant mesothelioma (MM), is an intractable disease with limited therapeutic options and grim survival rates. Altered metabolic and mitochondrial functions are hallmarks of MM and most other cancers. Mitochondria exist as a dynamic network, playing a central role in cellular metabolism. MM cell lines display a spectrum of altered mitochondrial morphologies and function compared to control mesothelial cells. Fractal dimension and lacunarity measurements are a sensitive and objective method to quantify mitochondrial morphology and most importantly are a promising predictor of response to mitochondrial inhibition. Control cells have high fractal dimension and low lacunarity and are relatively insensitive to mitochondrial inhibition. MM cells exhibit a spectrum of sensitivities to mitochondrial inhibitors. Low mitochondrial fractal dimension and high lacunarity correlates with increased sensitivity to the mitochondrial inhibitor metformin. Lacunarity also correlates with sensitivity to Mdivi-1, a mitochondrial fission inhibitor. MM and control cells have similar sensitivities to cisplatin, a chemotherapeutic agent used in the treatment of MM. Neither oxidative phosphorylation nor glycolytic activity, correlated with sensitivity to either metformin or mdivi-1. Our results suggest that mitochondrial inhibition may be an effective and selective therapeutic strategy in mesothelioma, and identifies mitochondrial morphology as a possible predictor of response to targeted mitochondrial inhibition.
Collapse
|
153
|
Osellame LD, Singh AP, Stroud DA, Palmer CS, Stojanovski D, Ramachandran R, Ryan MT. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J Cell Sci 2016; 129:2170-81. [PMID: 27076521 DOI: 10.1242/jcs.185165] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/07/2016] [Indexed: 12/30/2022] Open
Abstract
Cytosolic dynamin-related protein 1 (Drp1, also known as DNM1L) is required for both mitochondrial and peroxisomal fission. Drp1-dependent division of these organelles is facilitated by a number of adaptor proteins at mitochondrial and peroxisomal surfaces. To investigate the interplay of these adaptor proteins, we used gene-editing technology to create a suite of cell lines lacking the adaptors MiD49 (also known as MIEF2), MiD51 (also known as MIEF1), Mff and Fis1. Increased mitochondrial connectivity was observed following loss of individual adaptors, and this was further enhanced following the combined loss of MiD51 and Mff. Moreover, loss of adaptors also conferred increased resistance of cells to intrinsic apoptotic stimuli, with MiD49 and MiD51 showing the more prominent role. Using a proximity-based biotin labeling approach, we found close associations between MiD51, Mff and Drp1, but not Fis1. Furthermore, we found that MiD51 can suppress Mff-dependent enhancement of Drp1 GTPase activity. Our data indicates that Mff and MiD51 regulate Drp1 in specific ways to promote mitochondrial fission.
Collapse
Affiliation(s)
- Laura D Osellame
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Abeer P Singh
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| |
Collapse
|
154
|
Making a Division Apparatus on Mitochondria. Trends Biochem Sci 2016; 41:209-210. [PMID: 26879678 DOI: 10.1016/j.tibs.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/22/2022]
Abstract
Mitochondrial division apparatuses are generally thought to form by oligomerization of Drp1 at pre-determined sites on mitochondria. A recent study by Ji et al. now shows that the Drp1 oligomers on mitochondria move, merge, and mature into a functional division apparatus.
Collapse
|
155
|
Cai Q, Tammineni P. Alterations in Mitochondrial Quality Control in Alzheimer's Disease. Front Cell Neurosci 2016; 10:24. [PMID: 26903809 PMCID: PMC4746252 DOI: 10.3389/fncel.2016.00024] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/25/2016] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial dysfunction is one of the earliest and most prominent features in the brains of Alzheimer’s disease (AD) patients. Recent studies suggest that mitochondrial dysfunction plays a pivotal role in the pathogenesis of AD. Neurons are metabolically active cells, causing them to be particularly dependent on mitochondrial function for survival and maintenance. As highly dynamic organelles, mitochondria are characterized by a balance of fusion and fission, transport, and mitophagy, all of which are essential for maintaining mitochondrial integrity and function. Mitochondrial dynamics and mitophagy can therefore be identified as key pathways in mitochondrial quality control. Tremendous progress has been made in studying changes in these key aspects of mitochondrial biology in the vulnerable neurons of AD brains and mouse models, and the potential underlying mechanisms of such changes. This review highlights recent findings on alterations in the mitochondrial dynamics and mitophagy in AD and discusses how these abnormalities impact mitochondrial quality control and thus contribute to mitochondrial dysfunction in AD.
Collapse
Affiliation(s)
- Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | - Prasad Tammineni
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| |
Collapse
|
156
|
Wai T, García-Prieto J, Baker MJ, Merkwirth C, Benit P, Rustin P, Rupérez FJ, Barbas C, Ibañez B, Langer T. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 2016; 350:aad0116. [PMID: 26785494 DOI: 10.1126/science.aad0116] [Citation(s) in RCA: 394] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial morphology is shaped by fusion and division of their membranes. Here, we found that adult myocardial function depends on balanced mitochondrial fusion and fission, maintained by processing of the dynamin-like guanosine triphosphatase OPA1 by the mitochondrial peptidases YME1L and OMA1. Cardiac-specific ablation of Yme1l in mice activated OMA1 and accelerated OPA1 proteolysis, which triggered mitochondrial fragmentation and altered cardiac metabolism. This caused dilated cardiomyopathy and heart failure. Cardiac function and mitochondrial morphology were rescued by Oma1 deletion, which prevented OPA1 cleavage. Feeding mice a high-fat diet or ablating Yme1l in skeletal muscle restored cardiac metabolism and preserved heart function without suppressing mitochondrial fragmentation. Thus, unprocessed OPA1 is sufficient to maintain heart function, OMA1 is a critical regulator of cardiomyocyte survival, and mitochondrial morphology and cardiac metabolism are intimately linked.
Collapse
Affiliation(s)
- Timothy Wai
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany. Max-Planck-Institute for Biology of Aging, Cologne, Germany
| | - Jaime García-Prieto
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Michael J Baker
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Carsten Merkwirth
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Paule Benit
- INSERM UMR 1141, Hôpital Robert Debré, Paris, France. Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Pierre Rustin
- INSERM UMR 1141, Hôpital Robert Debré, Paris, France. Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Francisco Javier Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Borja Ibañez
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain. Department of Cardiology, Instituto de Investigación Sanitaria (IIS), Fundación Jiménez Díaz Hospital, Madrid, Spain.
| | - Thomas Langer
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany. Max-Planck-Institute for Biology of Aging, Cologne, Germany. Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
157
|
Vannuvel K, Van Steenbrugge M, Demazy C, Ninane N, Fattaccioli A, Fransolet M, Renard P, Raes M, Arnould T. Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population. J Cell Physiol 2016; 231:1913-31. [PMID: 26680008 DOI: 10.1002/jcp.25292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells. The results show that thapsigargin and brefeldin A, used to induce a transient and sublethal ER stress, rapidly lead to the fragmentation of the mitochondrial network associated with a decrease in mitochondrial membrane potential, O2 (•-) production and less efficient respiration. These changes in mitochondrial function are transient and preceded by the phosphorylation of JNK. Inhibition of JNK activation by SP600125 prevents the decrease in O2 (•-) production and the mitochondrial network fragmentation observed in cells exposed to the ER stress but has no impact on the reduction of the mitochondrial membrane potential. In conclusion, our data show that a non-lethal and transient ER stress triggers a rapid activation of JNK without inducing apoptosis, leading to the fragmentation of the mitochondrial network and a reduction of O2 (•-) production. J. Cell. Physiol. 231: 1913-1931, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kayleen Vannuvel
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Van Steenbrugge
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Catherine Demazy
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Noëlle Ninane
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
158
|
Abstract
Acute kidney injury (AKI) continues to be a significant contributor to morbidity, mortality, and health care expenditure. In the United States alone, it is estimated that more than $10 billion is spent on AKI every year. Currently, there are no available therapies to treat established AKI. The mitochondrion is positioned to be a critical player in AKI with its dual role as the primary source of energy for each cell and as a key regulator of cell death. This review aims to cover the current state of research on the role of mitochondria in AKI, while also proposing potential therapeutic targets and future therapies.
Collapse
Affiliation(s)
- Kenneth M Ralto
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Samir M Parikh
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA.
| |
Collapse
|
159
|
Kandimalla R, Reddy PH. Multiple faces of dynamin-related protein 1 and its role in Alzheimer's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2015; 1862:814-828. [PMID: 26708942 DOI: 10.1016/j.bbadis.2015.12.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023]
Abstract
Mitochondria play a large role in neuronal function by constantly providing energy, particularly at synapses. Recent studies suggest that amyloid beta (Aβ) and phosphorylated tau interact with the mitochondrial fission protein, dynamin-related protein 1 (Drp1), causing excessive fragmentation of mitochondria and leading to abnormal mitochondrial dynamics and synaptic degeneration in Alzheimer's disease (AD) neurons. Recent research also revealed Aβ-induced and phosphorylated tau-induced changes in mitochondria, particularly affecting mitochondrial shape, size, distribution and axonal transport in AD neurons. These changes affect mitochondrial health and, in turn, could affect synaptic function and neuronal damage and ultimately leading to memory loss and cognitive impairment in patients with AD. This article highlights recent findings in the role of Drp1 in AD pathogenesis. This article also highlights Drp1 and its relationships to glycogen synthase kinase 3, cyclin-dependent kinase 5, p53, and microRNAs in AD pathogenesis.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Department of Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Department of Neurology, Texas Tech University Health Sciences Center, 3601 4(th) Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, TX 79413, United States.
| |
Collapse
|
160
|
Franz A, Kevei É, Hoppe T. Double-edged alliance: mitochondrial surveillance by the UPS and autophagy. Curr Opin Cell Biol 2015; 37:18-27. [DOI: 10.1016/j.ceb.2015.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022]
|
161
|
Atger F, Gobet C, Marquis J, Martin E, Wang J, Weger B, Lefebvre G, Descombes P, Naef F, Gachon F. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc Natl Acad Sci U S A 2015; 112:E6579-88. [PMID: 26554015 PMCID: PMC4664316 DOI: 10.1073/pnas.1515308112] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light-dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5'-Terminal Oligo Pyrimidine tract (5'-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5'-UTR (TISU) motif. The increased translation efficiency of 5'-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation.
Collapse
Affiliation(s)
- Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Julien Marquis
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Jingkui Wang
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Grégory Lefebvre
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Patrick Descombes
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland;
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
162
|
Ji J, Qin Y, Ren J, Lu C, Wang R, Dai X, Zhou R, Huang Z, Xu M, Chen M, Wu W, Song L, Shen H, Hu Z, Miao D, Xia Y, Wang X. Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN. Sci Rep 2015; 5:16262. [PMID: 26548909 PMCID: PMC4637860 DOI: 10.1038/srep16262] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
Abstract
Mitochondria-related microRNAs (miRNAs) have recently emerged as key regulators of cell metabolism and can modulate mitochondrial fusion and division. In order to investigate the roles of mitochondria-related miRNAs played in obesity, we conducted comprehensive molecular analysis in vitro and in vivo. Based on high-fat-diet (HFD) induced obese mice, we found that hepatic mitochondrial function was markedly altered. Subsequently, we evaluated the expression levels of selected mitochondria-related miRNAs and found that miR-141-3p was up-regulated strikingly in HFD mice. To further verify the role of miR-141-3p in obesity, we carried out gain-and-loss-of-function study in human HepG2 cells. We found that miR-141-3p could modulate ATP production and induce oxidative stress. Through luciferase report gene assay, we identified that phosphatase and tensin homolog (PTEN) was a target of miR-141-3p. Inhibiting PTEN could alter the mitochondrial function, too. Our study suggested that mitochondria-related miR-141-3p induced mitochondrial dysfunction by inhibiting PTEN.
Collapse
Affiliation(s)
- Juan Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jing Ren
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiuliang Dai
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Ran Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Miaofei Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
163
|
Natale G, Lenzi P, Lazzeri G, Falleni A, Biagioni F, Ryskalin L, Fornai F. Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis. Front Cell Neurosci 2015; 9:434. [PMID: 26594150 PMCID: PMC4635226 DOI: 10.3389/fncel.2015.00434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a novel approach using [2-3H]-adenosine.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of Pisa Italy
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Italy ; I.R.C.C.S., Neuromed Pozzilli, Italy
| |
Collapse
|
164
|
Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Arnauné-Pelloquin L, Davezac N, Mils V, Miquel MC, Rojo M, Belenguer P. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 2015; 90:3-19. [PMID: 26494254 DOI: 10.1016/j.nbd.2015.10.011] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/16/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are dynamic organelles that continually move, fuse and divide. The dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs, keeps mitochondria in good health by restoring or removing damaged organelles or precipitates cells in apoptosis in cases of severe defects. Mitochondrial fusion and fission are essential in mammals and their disturbances are associated with several diseases. However, while mitochondrial fusion/fission dynamics, and the proteins that control these processes, are ubiquitous, associated diseases are primarily neurological disorders. Accordingly, inactivation of the main actors of mitochondrial fusion/fission dynamics is associated with defects in neuronal development, plasticity and functioning, both ex vivo and in vivo. Here, we present the central actors of mitochondrial fusion and fission and review the role of mitochondrial dynamics in neuronal physiology and pathophysiology. Particular emphasis is placed on the three main actors of these processes i.e. DRP1,MFN1-2, and OPA1 as well as on GDAP1, a protein of the mitochondrial outer membrane preferentially expressed in neurons. This article is part of a Special Issue entitled: Mitochondria & Brain.
Collapse
Affiliation(s)
- A M Bertholet
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - T Delerue
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - A M Millet
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M F Moulis
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - C David
- CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France
| | - M Daloyau
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - L Arnauné-Pelloquin
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - N Davezac
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - V Mils
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M C Miquel
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M Rojo
- CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France.
| | - P Belenguer
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
165
|
Neubauer M, Zhu Z, Penka M, Helmschrott C, Wagener N, Wagener J. Mitochondrial dynamics in the pathogenic mold Aspergillus fumigatus: therapeutic and evolutionary implications. Mol Microbiol 2015; 98:930-45. [PMID: 26272083 DOI: 10.1111/mmi.13167] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 12/26/2022]
Abstract
Mitochondria within eukaryotic cells continuously fuse and divide. This phenomenon is called mitochondrial dynamics and crucial for mitochondrial function and integrity. We performed a comprehensive analysis of mitochondrial dynamics in the pathogenic mold Aspergillus fumigatus. Phenotypic characterization of respective mutants revealed the general essentiality of mitochondrial fusion for mitochondrial genome maintenance and the mold's viability. Surprisingly, it turned out that the mitochondrial rhomboid protease Pcp1 and its processing product, s-Mgm,1 which are crucial for fusion in yeast, are dispensable for fusion, mtDNA maintenance and viability in A. fumigatus. In contrast, mitochondrial fission mutants show drastically reduced growth and sporulation rates and increased heat susceptibility. However, reliable inheritance of mitochondria to newly formed conidia is ensured. Strikingly, mitochondrial fission mutants show a significant and growth condition-dependent increase in azole resistance. Parallel disruption of fusion in a fission mutant partially rescues growth and sporulation defects and further increases the azole resistance phenotype. Taken together, our results indicate an emerging dispensability of the mitochondrial rhomboid protease function in mitochondrial fusion, the suitability of mitochondrial fusion machinery as antifungal target and the involvement of mitochondrial dynamics in azole susceptibility.
Collapse
Affiliation(s)
- Michael Neubauer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Zhaojun Zhu
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Mirjam Penka
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Christoph Helmschrott
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Nikola Wagener
- Biozentrum, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Johannes Wagener
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| |
Collapse
|
166
|
Palikaras K, Lionaki E, Tavernarakis N. Interfacing mitochondrial biogenesis and elimination to enhance host pathogen defense and longevity. WORM 2015; 4:e1071763. [PMID: 26430570 DOI: 10.1080/21624054.2015.1071763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria are highly dynamic and semi-autonomous organelles, essential for many fundamental cellular processes, including energy production, metabolite synthesis and calcium homeostasis, among others. Alterations in mitochondrial activity not only influence individual cell function but also, through non-cell autonomous mechanisms, whole body metabolism, healthspan and lifespan. Energy homeostasis is orchestrated by the complex interplay between mitochondrial biogenesis and mitochondria-selective autophagy (mitophagy). However, the cellular and molecular pathways that coordinate these 2 opposing processes remained obscure. In our recent study, we demonstrate that DCT-1, the Caenorhabditis elegans homolog of the mammalian BNIP3 and BNIP3L/NIX, is a key mediator of mitophagy, and functions in the same genetic pathway with PINK-1 and PDR-1 (the nematode homologs of PINK1 and Parkin respectively) to promote longevity and prevent cell damage under stress conditions. Interestingly, accumulation of damaged mitochondria activates SKN-1 (SKiNhead-1), the nematode homolog of NRF2, which in turn initiates a compensatory retrograde signaling response that impinges on both mitochondrial biogenesis and removal. In this commentary, we discuss the implications of these new findings in the context of innate immunity and aging. Unraveling the regulatory network that governs the crosstalk between mitochondrial biogenesis and mitophagy will enhance our understanding of the molecular mechanisms that link aberrant energy metabolism to aging and disease.
Collapse
Affiliation(s)
- Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnolog; Foundation for Research and Technology-Hellas Heraklion, Greece; University of Crete ; Heraklion, Greece ; Department of Biology; University of Crete ; Heraklion, Greece
| | - Eirini Lionaki
- Institute of Molecular Biology and Biotechnolog; Foundation for Research and Technology-Hellas Heraklion, Greece; University of Crete ; Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnolog; Foundation for Research and Technology-Hellas Heraklion, Greece; University of Crete ; Heraklion, Greece ; Department of Basic Sciences; University of Crete ; Heraklion, Greece
| |
Collapse
|
167
|
Rimmelé P, Liang R, Bigarella CL, Kocabas F, Xie J, Serasinghe MN, Chipuk J, Sadek H, Zhang CC, Ghaffari S. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep 2015. [PMID: 26209246 DOI: 10.15252/embr.201439704] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3(-/-) HSC that are defective in their activity. We show that Foxo3(-/-) HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3(-/-) hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3(-/-) HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells.
Collapse
Affiliation(s)
- Pauline Rimmelé
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raymond Liang
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Developmental and Stem Cell Biology Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolina L Bigarella
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatih Kocabas
- Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jingjing Xie
- Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Madhavika N Serasinghe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerry Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hesham Sadek
- Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Saghi Ghaffari
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Developmental and Stem Cell Biology Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, NY, USA Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA Division of Hematology, Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|