151
|
Deegan TD, Diffley JFX. MCM: one ring to rule them all. Curr Opin Struct Biol 2016; 37:145-51. [PMID: 26866665 DOI: 10.1016/j.sbi.2016.01.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/25/2022]
Abstract
Precise replication of the eukaryotic genome is achieved primarily through strict regulation of the enzyme responsible for DNA unwinding, the replicative helicase. The motor of this helicase is a hexameric AAA+ ATPase called MCM. The loading of MCM onto DNA and its subsequent activation and disassembly are each restricted to separate cell cycle phases; this ensures that a functional replisome is only built once at any replication origin. In recent years, biochemical and structural studies have shown that distinct conformational changes in MCM, each requiring post-translational modifications and/or the activity of other replication proteins, define the various stages of the chromosome replication cycle. Here, we review recent progress in this area.
Collapse
Affiliation(s)
- Tom D Deegan
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6 3LD, United Kingdom
| | - John F X Diffley
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6 3LD, United Kingdom.
| |
Collapse
|
152
|
Douglas ME, Diffley JFX. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex. J Biol Chem 2016; 291:5879-5888. [PMID: 26719337 PMCID: PMC4786722 DOI: 10.1074/jbc.m115.707802] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/28/2015] [Indexed: 01/11/2023] Open
Abstract
Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly ("G1-like") and high affinity recruitment when CMG assembly takes place ("S-phase-like"). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus.
Collapse
Affiliation(s)
- Max E Douglas
- From The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - John F X Diffley
- From The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Hertfordshire EN6 3LD, United Kingdom.
| |
Collapse
|
153
|
Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, Agell N. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res 2016; 44:4745-62. [PMID: 26939887 PMCID: PMC4889930 DOI: 10.1093/nar/gkw132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/23/2016] [Indexed: 01/28/2023] Open
Abstract
Defects in DNA replication and repair are known to promote genomic instability, a hallmark of cancer cells. Thus, eukaryotic cells have developed complex mechanisms to ensure accurate duplication of their genomes. While DNA damage response has been extensively studied in tumour cells, the pathways implicated in the response to replication stress are less well understood especially in non-transformed cells. Here we show that in non-transformed cells, APC/C(Cdh1) is activated upon severe replication stress. Activation of APC/C(Cdh1) prevents new origin firing and induces permanent arrest in S-phase. Moreover, Rad51-mediated homologous recombination is also impaired under these conditions. APC/C(Cdh1) activation in S-phase occurs after replication forks have been processed into double strand breaks. Remarkably, this activation, which correlates with decreased Emi1 levels, is not prevented by ATR/ATM inhibition, but it is abrogated in cells depleted of p53 or p21. Importantly, we found that the lack of APC/C(Cdh1) activity correlated with an increase in genomic instability. Taken together, our results define a new APC/C(Cdh1) function that prevents cell cycle resumption after prolonged replication stress by inhibiting origin firing, which may act as an additional mechanism in safeguarding genome integrity.
Collapse
Affiliation(s)
- Amaia Ercilla
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Alba Llopis
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Sonia Feu
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Neus Agell
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| |
Collapse
|
154
|
Wei L, Zhao X. A new MCM modification cycle regulates DNA replication initiation. Nat Struct Mol Biol 2016; 23:209-16. [PMID: 26854664 PMCID: PMC4823995 DOI: 10.1038/nsmb.3173] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/06/2016] [Indexed: 01/16/2023]
Abstract
The MCM DNA helicase is a central regulatory target during genome replication. MCM is kept inactive during G1, and it initiates replication after being activated in S phase. During this transition, the only known chemical change to MCM is the gain of multisite phosphorylation that promotes cofactor recruitment. Because replication initiation is intimately linked to multiple biological cues, additional changes to MCM can provide further regulatory points. Here, we describe a yeast MCM SUMOylation cycle that regulates replication. MCM subunits undergo SUMOylation upon loading at origins in G1 before MCM phosphorylation. MCM SUMOylation levels then decline as MCM phosphorylation levels rise, thus suggesting an inhibitory role of MCM SUMOylation during replication. Indeed, increasing MCM SUMOylation impairs replication initiation, partly through promoting the recruitment of a phosphatase that decreases MCM phosphorylation and activation. We propose that MCM SUMOylation counterbalances kinase-based regulation, thus ensuring accurate control of replication initiation.
Collapse
Affiliation(s)
- Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
155
|
Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A, Zhou JC, Rueda D, Costa A. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat Commun 2016; 7:10708. [PMID: 26888060 PMCID: PMC4759635 DOI: 10.1038/ncomms10708] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.
Collapse
Affiliation(s)
- Ferdos Abid Ali
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Ludovic Renault
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
- National Institute for Biological Standards and Control, Microscopy and Imaging, Blanche Lane, South Mimms EN6 3QG, UK
| | - Julian Gannon
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Hailey L. Gahlon
- Section of Virology and Single Molecule Imaging Group, Department of Medicine, MRC Clinical Centre, Imperial College London, London W12 0NN, UK
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jin Chuan Zhou
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - David Rueda
- Section of Virology and Single Molecule Imaging Group, Department of Medicine, MRC Clinical Centre, Imperial College London, London W12 0NN, UK
| | - Alessandro Costa
- Macromolecular Machines, Clare Hall Laboratory, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK
| |
Collapse
|
156
|
Sheu YJ, Kinney JB, Stillman B. Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression. Genome Res 2016; 26:315-30. [PMID: 26733669 PMCID: PMC4772014 DOI: 10.1101/gr.195248.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022]
Abstract
Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins in a temporally specific manner during S phase. The replicative helicase Mcm2-7 functions in both initiation and fork progression and thus is an important target of regulation. Mcm4, a helicase subunit, possesses an unstructured regulatory domain that mediates control from multiple kinase signaling pathways, including the Dbf4-dependent Cdc7 kinase (DDK). Following replication stress in S phase, Dbf4 and Sld3, an initiation factor and essential target of Cyclin-Dependent Kinase (CDK), are targets of the checkpoint kinase Rad53 for inhibition of initiation from origins that have yet to be activated, so-called late origins. Here, whole-genome DNA replication profile analysis is used to access under various conditions the effect of mutations that alter the Mcm4 regulatory domain and the Rad53 targets, Sld3 and Dbf4. Late origin firing occurs under genotoxic stress when the controls on Mcm4, Sld3, and Dbf4 are simultaneously eliminated. The regulatory domain of Mcm4 plays an important role in the timing of late origin firing, both in an unperturbed S phase and in dNTP limitation. Furthermore, checkpoint control of Sld3 impacts fork progression under replication stress. This effect is parallel to the role of the Mcm4 regulatory domain in monitoring fork progression. Hypomorph mutations in sld3 are suppressed by a mcm4 regulatory domain mutation. Thus, in response to cellular conditions, the functions executed by Sld3, Dbf4, and the regulatory domain of Mcm4 intersect to control origin firing and replication fork progression, thereby ensuring genome stability.
Collapse
Affiliation(s)
- Yi-Jun Sheu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
157
|
Hutchins JRA, Aze A, Coulombe P, Méchali M. Characteristics of Metazoan DNA Replication Origins. DNA REPLICATION, RECOMBINATION, AND REPAIR 2016. [PMCID: PMC7120227 DOI: 10.1007/978-4-431-55873-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
158
|
Sanuki Y, Kubota Y, Kanemaki MT, Takahashi TS, Mimura S, Takisawa H. RecQ4 promotes the conversion of the pre-initiation complex at a site-specific origin for DNA unwinding in Xenopus egg extracts. Cell Cycle 2015; 14:1010-23. [PMID: 25602506 DOI: 10.1080/15384101.2015.1007003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Eukaryotic DNA replication is initiated through stepwise assembly of evolutionarily conserved replication proteins onto replication origins, but how the origin DNA is unwound during the assembly process remains elusive. Here, we established a site-specific origin on a plasmid DNA, using in vitro replication systems derived from Xenopus egg extracts. We found that the pre-replicative complex (pre-RC) was preferentially assembled in the vicinity of GAL4 DNA-binding sites of the plasmid, depending on the binding of Cdc6 fused with a GAL4 DNA-binding domain in Cdc6-depleted extracts. Subsequent addition of nucleoplasmic S-phase extracts to the GAL4-dependent pre-RC promoted initiation of DNA replication from the origin, and components of the pre-initiation complex (pre-IC) and the replisome were recruited to the origin concomitant with origin unwinding. In this replication system, RecQ4 is dispensable for both recruitment of Cdc45 onto the origin and stable binding of Cdc45 and GINS to the pre-RC assembled plasmid. However, both origin binding of DNA polymerase α and unwinding of DNA were diminished upon depletion of RecQ4 from the extracts. These results suggest that RecQ4 plays an important role in the conversion of pre-ICs into active replisomes requiring the unwinding of origin DNA in vertebrates.
Collapse
Affiliation(s)
- Yosuke Sanuki
- a Department of Biological Sciences; Graduate School of Science ; Osaka University ; Toyonaka , Osaka , Japan
| | | | | | | | | | | |
Collapse
|
159
|
Im JS, Park SY, Cho WH, Bae SH, Hurwitz J, Lee JK. RecQL4 is required for the association of Mcm10 and Ctf4 with replication origins in human cells. Cell Cycle 2015; 14:1001-9. [PMID: 25602958 DOI: 10.1080/15384101.2015.1007001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Though RecQL4 was shown to be essential for the initiation of DNA replication in mammalian cells, its role in initiation is poorly understood. Here, we show that RecQL4 is required for the origin binding of Mcm10 and Ctf4, and their physical interactions and association with replication origins are controlled by the concerted action of both CDK and DDK activities. Although RecQL4-dependent binding of Mcm10 and Ctf4 to chromatin can occur in the absence of pre-replicative complex, their association with replication origins requires the presence of the pre-replicative complex and CDK and DDK activities. Their association with replication origins and physical interactions are also targets of the DNA damage checkpoint pathways which prevent initiation of DNA replication at replication origins. Taken together, the RecQL4-dependent association of Mcm10 and Ctf4 with replication origins appears to be the first important step controlled by S phase promoting kinases and checkpoint pathways for the initiation of DNA replication in human cells.
Collapse
Affiliation(s)
- Jun-Sub Im
- a Department of Biology Education; Seoul National University ; Seoul , Korea
| | | | | | | | | | | |
Collapse
|
160
|
Quan Y, Xia Y, Liu L, Cui J, Li Z, Cao Q, Chen XS, Campbell JL, Lou H. Cell-Cycle-Regulated Interaction between Mcm10 and Double Hexameric Mcm2-7 Is Required for Helicase Splitting and Activation during S Phase. Cell Rep 2015; 13:2576-2586. [PMID: 26686640 DOI: 10.1016/j.celrep.2015.11.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/22/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022] Open
Abstract
Mcm2-7 helicase is loaded onto double-stranded origin DNA as an inactive double hexamer (DH) in G1 phase. The mechanisms of Mcm2-7 remodeling that trigger helicase activation in S phase remain unknown. Here, we develop an approach to detect and purify the endogenous DHs directly. Through cellular fractionation, we provide in vivo evidence that DHs are assembled on chromatin in G1 phase and separated during S phase. Interestingly, Mcm10, a robust MCM interactor, co-purifies exclusively with the DHs in the context of chromatin. Deletion of the main interaction domain, Mcm10 C terminus, causes growth and S phase defects, which can be suppressed through Mcm10-MCM fusions. By monitoring the dynamics of MCM DHs, we show a significant delay in DH dissolution during S phase in the Mcm10-MCM interaction-deficient mutants. Therefore, we propose an essential role for Mcm10 in Mcm2-7 remodeling through formation of a cell-cycle-regulated supercomplex with DHs.
Collapse
Affiliation(s)
- Yun Quan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Yisui Xia
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Lu Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Jiamin Cui
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Xiaojiang S Chen
- Molecular and Computational Biology, USC Norris Cancer Center, and Chemistry Department, University of Southern California, Los Angeles, CA 90089, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China.
| |
Collapse
|
161
|
Perez-Arnaiz P, Bruck I, Kaplan DL. Mcm10 coordinates the timely assembly and activation of the replication fork helicase. Nucleic Acids Res 2015; 44:315-29. [PMID: 26582917 PMCID: PMC4705653 DOI: 10.1093/nar/gkv1260] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/02/2015] [Indexed: 11/12/2022] Open
Abstract
Mcm10 is an essential replication factor that is required for DNA replication in eukaryotes. Two key steps in the initiation of DNA replication are the assembly and activation of Cdc45–Mcm2–7-GINS (CMG) replicative helicase. However, it is not known what coordinates helicase assembly with helicase activation. We show in this manuscript, using purified proteins from budding yeast, that Mcm10 directly interacts with the Mcm2–7 complex and Cdc45. In fact, Mcm10 recruits Cdc45 to Mcm2–7 complex in vitro. To study the role of Mcm10 in more detail in vivo we used an auxin inducible degron in which Mcm10 is degraded upon addition of auxin. We show in this manuscript that Mcm10 is required for the timely recruitment of Cdc45 and GINS recruitment to the Mcm2–7 complex in vivo during early S phase. We also found that Mcm10 stimulates Mcm2 phosphorylation by DDK in vivo and in vitro. These findings indicate that Mcm10 plays a critical role in coupling replicative helicase assembly with helicase activation. Mcm10 is first involved in the recruitment of Cdc45 to the Mcm2–7 complex. After Cdc45–Mcm2–7 complex assembly, Mcm10 promotes origin melting by stimulating DDK phosphorylation of Mcm2, which thereby leads to GINS attachment to Mcm2–7.
Collapse
Affiliation(s)
- Patricia Perez-Arnaiz
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Daniel L Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| |
Collapse
|
162
|
Herrera MC, Tognetti S, Riera A, Zech J, Clarke P, Fernández-Cid A, Speck C. A reconstituted system reveals how activating and inhibitory interactions control DDK dependent assembly of the eukaryotic replicative helicase. Nucleic Acids Res 2015; 43:10238-50. [PMID: 26338774 PMCID: PMC4666391 DOI: 10.1093/nar/gkv881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/22/2015] [Indexed: 11/17/2022] Open
Abstract
During G1-phase of the cell-cycle the replicative MCM2–7 helicase becomes loaded onto DNA into pre-replicative complexes (pre-RCs), resulting in MCM2–7 double-hexamers on DNA. In S-phase, Dbf4-dependent kinase (DDK) and cyclin-dependent-kinase (CDK) direct with the help of a large number of helicase-activation factors the assembly of a Cdc45–MCM2–7–GINS (CMG) complex. However, in the absence of S-phase kinases complex assembly is inhibited, which is unexpected, as the MCM2–7 double-hexamer represents a very large interaction surface. Currently it is unclear what mechanisms restricts complex assembly and how DDK can overcome this inhibition to promote CMG-assembly. We developed an advanced reconstituted-system to study helicase activation in-solution and discovered that individual factors like Sld3 and Sld2 can bind directly to the pre-RC, while Cdc45 cannot. When Sld3 and Sld2 were incubated together with the pre-RC, we observed that competitive interactions restrict complex assembly. DDK stabilizes the Sld3/Sld2–pre-RC complex, but the complex is only short-lived, indicating an anti-cooperative mechanism. Yet, a Sld3/Cdc45–pre-RC can form in the presence of DDK and the addition of Sld2 enhances complex stability. Our results indicate that helicase activation is regulated by competitive and cooperative interactions, which restrict illegitimate complex formation and direct limiting helicase-activation factors into pre-initiation complexes.
Collapse
Affiliation(s)
- M Carmen Herrera
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Silvia Tognetti
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Juergen Zech
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Pippa Clarke
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Alejandra Fernández-Cid
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| |
Collapse
|
163
|
Affiliation(s)
- Hisao Masai
- a Department of Genome Medicine; The Tokyo Metropolitan Institute of Medical Science ; Setagaya-ku , Tokyo , Japan
| |
Collapse
|
164
|
Conserved mechanism for coordinating replication fork helicase assembly with phosphorylation of the helicase. Proc Natl Acad Sci U S A 2015; 112:11223-8. [PMID: 26305950 DOI: 10.1073/pnas.1509608112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase.
Collapse
|
165
|
Håland TW, Boye E, Stokke T, Grallert B, Syljuåsen RG. Simultaneous measurement of passage through the restriction point and MCM loading in single cells. Nucleic Acids Res 2015; 43:e150. [PMID: 26250117 PMCID: PMC4678840 DOI: 10.1093/nar/gkv744] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022] Open
Abstract
Passage through the Retinoblastoma protein (RB1)-dependent restriction point and the loading of minichromosome maintenance proteins (MCMs) are two crucial events in G1-phase that help maintain genome integrity. Deregulation of these processes can cause uncontrolled proliferation and cancer development. Both events have been extensively characterized individually, but their relative timing and inter-dependence remain less clear. Here, we describe a novel method to simultaneously measure MCM loading and passage through the restriction point. We exploit that the RB1 protein is anchored in G1-phase but is released when hyper-phosphorylated at the restriction point. After extracting cells with salt and detergent before fixation we can simultaneously measure, by flow cytometry, the loading of MCMs onto chromatin and RB1 binding to determine the order of the two events in individual cells. We have used this method to examine the relative timing of the two events in human cells. Whereas in BJ fibroblasts released from G0-phase MCM loading started mainly after the restriction point, in a significant fraction of exponentially growing BJ and U2OS osteosarcoma cells MCMs were loaded in G1-phase with RB1 anchored, demonstrating that MCM loading can also start before the restriction point. These results were supported by measurements in synchronized U2OS cells.
Collapse
Affiliation(s)
- T W Håland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - E Boye
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - T Stokke
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - B Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - R G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|
166
|
Abstract
DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.
Collapse
|
167
|
Abstract
DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior β-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.
Collapse
|
168
|
Itou H, Shirakihara Y, Araki H. The quaternary structure of the eukaryotic DNA replication proteins Sld7 and Sld3. ACTA ACUST UNITED AC 2015; 71:1649-56. [PMID: 26249346 DOI: 10.1107/s1399004715010457] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/31/2015] [Indexed: 11/10/2022]
Abstract
The initiation of eukaryotic chromosomal DNA replication requires the formation of an active replicative helicase at the replication origins of chromosomes. Yeast Sld3 and its metazoan counterpart treslin are the hub proteins mediating protein associations critical for formation of the helicase. The Sld7 protein interacts with Sld3, and the complex formed is thought to regulate the function of Sld3. Although Sld7 is a non-essential DNA replication protein that is found in only a limited range of yeasts, its depletion slowed the growth of cells and caused a delay in the S phase. Recently, the Mdm2-binding protein was found to bind to treslin in humans, and its depletion causes defects in cells similar to the depletion of Sld7 in yeast, suggesting their functional relatedness and importance during the initiation step of DNA replication. Here, the crystal structure of Sld7 in complex with Sld3 is presented. Sld7 comprises two structural domains. The N-terminal domain of Sld7 binds to Sld3, and the C-terminal domains connect two Sld7 molecules in an antiparallel manner. The quaternary structure of the Sld3-Sld7 complex shown from the crystal structures appears to be suitable to activate two helicase molecules loaded onto replication origins in a head-to-head manner.
Collapse
Affiliation(s)
- Hiroshi Itou
- Structural Biology Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yasuo Shirakihara
- Structural Biology Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
169
|
|
170
|
Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol Cell 2015; 58:483-94. [PMID: 25921072 DOI: 10.1016/j.molcel.2015.03.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/20/2015] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Abstract
Eukaryotic replication initiation is highly regulated and dynamic. It begins with the origin recognition complex (ORC) binding DNA sites called origins of replication. ORC, together with Cdc6 and Cdt1, mediate pre-replicative complex (pre-RC) assembly by loading a double hexamer of Mcm2-7: the core of the replicative helicase. Here, we use single-molecule imaging to directly visualize Saccharomyces cerevisiae pre-RC assembly and replisome firing in real time. We show that ORC can locate and stably bind origins within large tracts of non-origin DNA and that Cdc6 drives ordered pre-RC assembly. We further show that the dynamics of the ORC-Cdc6 interaction dictate Mcm2-7 loading specificity and that Mcm2-7 double hexamers form preferentially at a native origin sequence. Finally, we demonstrate that single Mcm2-7 hexamers propagate bidirectionally, monotonically, and processively as constituents of active replisomes.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Megan D Warner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Simina Ticau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nikola A Ivica
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen P Bell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, and the Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
171
|
Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 2015; 161:513-525. [PMID: 25892223 DOI: 10.1016/j.cell.2015.03.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/26/2015] [Accepted: 03/02/2015] [Indexed: 01/31/2023]
Abstract
Loading of the ring-shaped Mcm2-7 replicative helicase around DNA licenses eukaryotic origins of replication. During loading, Cdc6, Cdt1, and the origin-recognition complex (ORC) assemble two heterohexameric Mcm2-7 complexes into a head-to-head double hexamer that facilitates bidirectional replication initiation. Using multi-wavelength single-molecule fluorescence to monitor the events of helicase loading, we demonstrate that double-hexamer formation is the result of sequential loading of individual Mcm2-7 complexes. Loading of each Mcm2-7 molecule involves the ordered association and dissociation of distinct Cdc6 and Cdt1 proteins. In contrast, one ORC molecule directs loading of both helicases in each double hexamer. Based on single-molecule FRET, arrival of the second Mcm2-7 results in rapid double-hexamer formation that anticipates Cdc6 and Cdt1 release, suggesting that Mcm-Mcm interactions recruit the second helicase. Our findings reveal the complex protein dynamics that coordinate helicase loading and indicate that distinct mechanisms load the oppositely oriented helicases that are central to bidirectional replication initiation.
Collapse
Affiliation(s)
- Simina Ticau
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Nikola A Ivica
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
172
|
Yeeles JTP, Deegan TD, Janska A, Early A, Diffley JFX. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 2015; 519:431-5. [PMID: 25739503 PMCID: PMC4874468 DOI: 10.1038/nature14285] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022]
Abstract
Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.
Collapse
Affiliation(s)
- Joseph T P Yeeles
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Tom D Deegan
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Agnieszka Janska
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Anne Early
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| |
Collapse
|
173
|
Belsky JA, MacAlpine HK, Lubelsky Y, Hartemink AJ, MacAlpine DM. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly. Genes Dev 2015; 29:212-24. [PMID: 25593310 PMCID: PMC4298139 DOI: 10.1101/gad.247924.114] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Start sites of DNA replication are marked by the origin recognition complex (ORC), which coordinates Mcm2–7 helicase loading to form the prereplicative complex (pre-RC). Belsky et al. “footprinted” nucleosomes, transcription factors, and replication proteins at multiple points during the Saccharomyces cerevisiae cell cycle. This revealed a precise ORC-dependent footprint at 269 origins in G2. A separate class of inefficient origins exhibited protein occupancy only in G1. The local chromatin environment restricts the loading of the Mcm2–7 double hexamer either upstream of or downstream from the ACS. Start sites of DNA replication are marked by the origin recognition complex (ORC), which coordinates Mcm2–7 helicase loading to form the prereplicative complex (pre-RC). Although pre-RC assembly is well characterized in vitro, the process is poorly understood within the local chromatin environment surrounding replication origins. To reveal how the chromatin architecture modulates origin selection and activation, we “footprinted” nucleosomes, transcription factors, and replication proteins at multiple points during the Saccharomyces cerevisiae cell cycle. Our nucleotide-resolution protein occupancy profiles resolved a precise ORC-dependent footprint at 269 origins in G2. A separate class of inefficient origins exhibited protein occupancy only in G1, suggesting that stable ORC chromatin association in G2 is a determinant of origin efficiency. G1 nucleosome remodeling concomitant with pre-RC assembly expanded the origin nucleosome-free region and enhanced activation efficiency. Finally, the local chromatin environment restricts the loading of the Mcm2–7 double hexamer either upstream of or downstream from the ARS consensus sequence (ACS).
Collapse
Affiliation(s)
- Jason A Belsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Yoav Lubelsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alexander J Hartemink
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA; Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
174
|
Sansam CG, Goins D, Siefert JC, Clowdus EA, Sansam CL. Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation. Genes Dev 2015; 29:555-66. [PMID: 25737283 PMCID: PMC4358407 DOI: 10.1101/gad.246827.114] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/23/2015] [Indexed: 12/22/2022]
Abstract
S-phase cyclin-dependent kinases (CDKs) stimulate replication initiation and accelerate progression through the replication timing program, but it is unknown which CDK substrates are responsible for these effects. CDK phosphorylation of the replication factor TICRR (TopBP1-interacting checkpoint and replication regulator)/TRESLIN is required for DNA replication. We show here that phosphorylated TICRR is limiting for S-phase progression. Overexpression of a TICRR mutant with phosphomimetic mutations at two key CDK-phosphorylated residues (TICRR(TESE)) stimulates DNA synthesis and shortens S phase by increasing replication initiation. This effect requires the TICRR region that is necessary for its interaction with MDM two-binding protein. Expression of TICRR(TESE) does not grossly alter the spatial organization of replication forks in the nucleus but does increase replication clusters and the number of replication forks within each cluster. In contrast to CDK hyperactivation, the acceleration of S-phase progression by TICRR(TESE) does not induce DNA damage. These results show that CDK can stimulate initiation and compress the replication timing program by phosphorylating a single protein, suggesting a simple mechanism by which S-phase length is controlled.
Collapse
Affiliation(s)
- Courtney G Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA;
| | - Duane Goins
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Joseph C Siefert
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Emily A Clowdus
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Christopher L Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
175
|
Lubelsky Y, Prinz JA, DeNapoli L, Li Y, Belsky JA, MacAlpine DM. DNA replication and transcription programs respond to the same chromatin cues. Genome Res 2015; 24:1102-14. [PMID: 24985913 PMCID: PMC4079966 DOI: 10.1101/gr.160010.113] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA replication is a dynamic process that occurs in a temporal order along each of the chromosomes. A consequence of the temporally coordinated activation of replication origins is the establishment of broad domains (>100 kb) that replicate either early or late in S phase. This partitioning of the genome into early and late replication domains is important for maintaining genome stability, gene dosage, and epigenetic inheritance; however, the molecular mechanisms that define and establish these domains are poorly understood. The modENCODE Project provided an opportunity to investigate the chromatin features that define the Drosophila replication timing program in multiple cell lines. The majority of early and late replicating domains in the Drosophila genome were static across all cell lines; however, a small subset of domains was dynamic and exhibited differences in replication timing between the cell lines. Both origin selection and activation contribute to defining the DNA replication program. Our results suggest that static early and late replicating domains were defined at the level of origin selection (ORC binding) and likely mediated by chromatin accessibility. In contrast, dynamic domains exhibited low ORC densities in both cell types, suggesting that origin activation and not origin selection governs the plasticity of the DNA replication program. Finally, we show that the male-specific early replication of the X chromosome is dependent on the dosage compensation complex (DCC), suggesting that the transcription and replication programs respond to the same chromatin cues. Specifically, MOF-mediated hyperacetylation of H4K16 on the X chromosome promotes both the up-regulation of male-specific transcription and origin activation.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Joseph A Prinz
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Leyna DeNapoli
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yulong Li
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jason A Belsky
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David M MacAlpine
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
176
|
Dhingra N, Bruck I, Smith S, Ning B, Kaplan DL. Dpb11 protein helps control assembly of the Cdc45·Mcm2-7·GINS replication fork helicase. J Biol Chem 2015; 290:7586-601. [PMID: 25659432 DOI: 10.1074/jbc.m115.640383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dpb11 is required for the initiation of DNA replication in budding yeast. Dpb11 binds to S-phase cyclin-dependent kinase-phosphorylated Sld2 and Sld3 to form a ternary complex during S phase. The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS. We show here, using purified proteins from budding yeast, that Dpb11 alone binds to Mcm2-7 and that Dpb11 also competes with GINS for binding to Mcm2-7. Furthermore, Dpb11 binds directly to single-stranded DNA (ssDNA), and ssDNA inhibits the Dpb11 interaction with Mcm2-7. We also found that Dpb11 can recruit Cdc45 to Mcm2-7. We identified a mutant of the BRCT4 motif of Dpb11 that remains bound to Mcm2-7 in the presence of ssDNA (dpb11-m1,m2,m3,m5), and this mutant exhibits a DNA replication defect when expressed in budding yeast cells. Expression of this mutant results in increased interaction between Dpb11 and Mcm2-7 during S phase, impaired GINS interaction with Mcm2-7 during S phase, and decreased replication protein A (RPA) interaction with origin DNA during S phase. We propose a model in which Dpb11 first recruits Cdc45 to Mcm2-7. Dpb11, although bound to Cdc45·Mcm2-7, can block the interaction between GINS and Mcm2-7. Upon extrusion of ssDNA from the central channel of Mcm2-7, Dpb11 dissociates from Mcm2-7, and Dpb11 binds to ssDNA, thereby allowing GINS to bind to Cdc45·Mcm2-7. Finally, we propose that Dpb11 functions with Sld2 and Sld3 to help control the assembly of the replication fork helicase.
Collapse
Affiliation(s)
- Nalini Dhingra
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Irina Bruck
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Skye Smith
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Boting Ning
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Daniel L Kaplan
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| |
Collapse
|
177
|
Petojevic T, Pesavento JJ, Costa A, Liang J, Wang Z, Berger JM, Botchan MR. Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement. Proc Natl Acad Sci U S A 2015; 112:E249-58. [PMID: 25561522 PMCID: PMC4311868 DOI: 10.1073/pnas.1422003112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA replication licensing is now understood to be the pathway that leads to the assembly of double hexamers of minichromosome maintenance (Mcm2-7) at origin sites. Cell division control protein 45 (Cdc45) and GINS proteins activate the latent Mcm2-7 helicase by inducing allosteric changes through binding, forming a Cdc45/Mcm2-7/GINS (CMG) complex that is competent to unwind duplex DNA. The CMG has an active gate between subunits Mcm2 and Mcm5 that opens and closes in response to nucleotide binding. The consequences of inappropriate Mcm2/5 gate actuation and the role of a side channel formed between GINS/Cdc45 and the outer edge of the Mcm2-7 ring for unwinding have remained unexplored. Here we uncover a novel function for Cdc45. Cross-linking studies trace the path of the DNA with the CMG complex at a fork junction between duplex and single strands with the bound CMG in an open or closed gate conformation. In the closed state, the lagging strand does not pass through the side channel, but in the open state, the leading strand surprisingly interacts with Cdc45. Mutations in the recombination protein J fold of Cdc45 that ablate this interaction diminish helicase activity. These data indicate that Cdc45 serves as a shield to guard against occasional slippage of the leading strand from the core channel.
Collapse
Affiliation(s)
- Tatjana Petojevic
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720; Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - James J Pesavento
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - Alessandro Costa
- Clare Hall Laboratories, London Research Institute, South Mimms, Herts EN6 3LD, United Kingdom; and
| | - Jingdan Liang
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - Zhijun Wang
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Michael R Botchan
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720;
| |
Collapse
|
178
|
Zegerman P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation. Chromosoma 2015; 124:309-21. [PMID: 25575982 DOI: 10.1007/s00412-014-0500-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
A fundamental requirement for all organisms is the faithful duplication and transmission of the genetic material. Failure to accurately copy and segregate the genome during cell division leads to loss of genetic information and chromosomal abnormalities. Such genome instability is the hallmark of the earliest stages of tumour formation. Cyclin-dependent kinase (CDK) plays a vital role in regulating the duplication of the genome within the eukaryotic cell cycle. Importantly, this kinase is deregulated in many cancer types and is an emerging target of chemotherapeutics. In this review, I will consider recent advances concerning the role of CDK in replication initiation across eukaryotes. The implications for strict CDK-dependent regulation of genome duplication in the context of the cell cycle will be discussed.
Collapse
Affiliation(s)
- Philip Zegerman
- Department of Biochemistry, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK,
| |
Collapse
|
179
|
Copeland NA, Sercombe HE, Wilson RHC, Coverley D. Cyclin A/CDK2 phosphorylation of CIZ1 blocks replisome formation and initiation of mammalian DNA replication. J Cell Sci 2015; 128:1518-27. [DOI: 10.1242/jcs.161919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/23/2015] [Indexed: 12/25/2022] Open
Abstract
CIZ1 is a nuclear matrix protein that cooperates with cyclin A/CDK2 to promote mammalian DNA replication. We show here that cyclin A/CDK2 also negatively regulates CIZ1 activity via phosphorylation at threonines 144, 192, and 293. Phosphomimetic mutants do not promote DNA replication in cell-free and cell-based assays, and also have a dominant negative effect on replisome formation at the level of PCNA recruitment. Phosphorylation blocks direct interaction with cyclin A/CDK2, and recruitment of endogenous cyclin A to the nuclear matrix. In contrast, phosphomimetic CIZ1 retains nuclear matrix binding capability, and interaction with CDC6 is not affected. Phospho-threonine 192-specific antibodies confirm that CIZ1 is phosphorylated during S-phase and G2, and show that phosphorylation at this site occurs at post-initiation concentrations of cyclin A/CDK2. Together the data suggest that CIZ1 is a kinase sensor that promotes initiation of DNA replication at low kinase levels, when in a hypophosphorylated state that is permissive for cyclin A-CDK2 interaction and delivery to licensed origins, but blocks delivery at higher kinase levels when it is itself phosphorylated.
Collapse
|
180
|
Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 2014; 28:2291-303. [PMID: 25319829 PMCID: PMC4201289 DOI: 10.1101/gad.242313.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex (pre-RC) that contains a Mcm2–7 double hexamer. In this study, Sun et al. examined the helicase loading reaction in the presence of ATP, revealing the basic architecture of a number of pre-RC assembly reaction intermediates, including a newly identified ORC–Cdc6–Mcm2–7–Mcm2–7 complex. The detailed architecture of the Mcm2–7 double hexamer was also established. Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex and an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.
Collapse
Affiliation(s)
- Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alejandra Fernandez-Cid
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Alberto Riera
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Silvia Tognetti
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Zuanning Yuan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christian Speck
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom;
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
181
|
CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci U S A 2014; 111:15390-5. [PMID: 25313033 DOI: 10.1073/pnas.1418334111] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG-Pol ε complex and showed that it is a functional polymerase-helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.
Collapse
|
182
|
Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2014; 124:13-26. [PMID: 25308420 DOI: 10.1007/s00412-014-0489-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022]
Abstract
A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.
Collapse
Affiliation(s)
- Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London, W12 0NN, UK
| | | | | |
Collapse
|
183
|
Wardlaw CP, Carr AM, Oliver AW. TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair (Amst) 2014; 22:165-74. [PMID: 25087188 DOI: 10.1016/j.dnarep.2014.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/25/2022]
Abstract
Human TopBP1 contains nine BRCT domains and functions in DNA replication initiation, checkpoint signalling, DNA repair and influences transcriptional control. TopBP1 and its homologues have been the subject of numerous scientific publications since the last comprehensive review in 2005, emerging as a key scaffold protein that links crucial components within these distinct cellular processes. This review focuses on recently published work, with particular emphasis on structural insights into TopBP1 function and the binding partners identified for DNA replication initiation, DNA-dependent checkpoints, DNA repair and transcription. We further summarise what is known about TopBP1 and links to human disease.
Collapse
Affiliation(s)
- Christopher P Wardlaw
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK.
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| |
Collapse
|
184
|
Gao Y, Yao J, Poudel S, Romer E, Abu-Niaaj L, Leffak M. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation. J Biol Chem 2014; 289:35987-6000. [PMID: 25258324 DOI: 10.1074/jbc.m114.589119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2-7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2-7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.
Collapse
Affiliation(s)
- Yanzhe Gao
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Jianhong Yao
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Sumeet Poudel
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Eric Romer
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Lubna Abu-Niaaj
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Michael Leffak
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
185
|
Chao TC, Chen KJ, Tang MC, Chan LC, Chen PM, Tzeng CH, Su Y. Thymosin beta-4 knockdown in IEC-6 normal intestinal epithelial cells induces DNA re-replication via downregulating Emi1. J Cell Physiol 2014; 229:1639-46. [PMID: 24615569 DOI: 10.1002/jcp.24609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/04/2014] [Indexed: 12/19/2022]
Abstract
Thymosin β4 (Tβ4 ) is a multifunctional protein already used clinically to treat various diseases; however, the promoting effect of this protein on tumor malignancy should not be neglected. Here, we assessed whether Tβ4 alteration influences normal intestinal epithelial cells because Tβ4 is deemed a novel target for treating colorectal cancer (CRC). For this purpose, we examined the consequences of shRNA-mediated knockdown of Tβ4 in IEC-6 normal rat small intestinal cells and found that inhibiting Tβ4 expression significantly suppressed their growth and induced apoptosis in some cells. Flow cytometric analysis further revealed a marked decrease of G0/G1 population but a drastic increase of polyploid ones in these cells. The increase of polyploidy likely resulted from DNA re-replication because not only the de novo DNA synthesis was greatly increased but also the expression levels of Cdc6 (a replication-licensing factor), cyclin A, and phosphorylated-checkpoint kinase 1 were all dramatically elevated. Moreover, marked reductions in both RNA and protein levels of Emi1 (early mitotic inhibitor 1) were also detected in Tβ4 -downregulated IEC-6 cells which might be accounted by the downregulation of E2F1, a transcription factor capable of inducing Emi1 expression, mediated by glycogen synthase-3β (GSK-3β). To our best knowledge, this is the first report showing that inhibiting Tβ4 expression triggers DNA re-replication in normal intestinal epithelial cells, suggesting that this G-actin sequester may play a crucial role in maintaining genome stability in these cells. More importantly, clinical oncologists should take this novel activity into consideration when design CRC therapy based on targeting Tβ4 .
Collapse
Affiliation(s)
- Ta-Chung Chao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
186
|
Itou H, Muramatsu S, Shirakihara Y, Araki H. Crystal structure of the homology domain of the eukaryotic DNA replication proteins Sld3/Treslin. Structure 2014; 22:1341-1347. [PMID: 25126958 DOI: 10.1016/j.str.2014.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 06/05/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
The initiation of eukaryotic chromosomal DNA replication requires the formation of an active replicative helicase at the replication origins of chromosomal DNA. Yeast Sld3 and its metazoan counterpart Treslin are the hub proteins mediating protein associations critical for the helicase formation. Here, we show the crystal structure of the central domain of Sld3 that is conserved in Sld3/Treslin family of proteins. The domain consists of two segments with 12 helices and is sufficient to bind to Cdc45, the essential helicase component. The structure model of the Sld3-Cdc45 complex, which is crucial for the formation of the active helicase, is proposed.
Collapse
Affiliation(s)
- Hiroshi Itou
- Structural Biology Center, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI, Yata1111, Mishima, Shizuoka 411-8540, Japan.
| | - Sachiko Muramatsu
- Division of Microbial Genetics, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan
| | - Yasuo Shirakihara
- Structural Biology Center, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI, Yata1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI, Yata1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
187
|
Samel SA, Fernández-Cid A, Sun J, Riera A, Tognetti S, Herrera MC, Li H, Speck C. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev 2014; 28:1653-66. [PMID: 25085418 PMCID: PMC4117941 DOI: 10.1101/gad.242404.114] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/25/2014] [Indexed: 01/24/2023]
Abstract
The regulated loading of the replicative helicase minichromosome maintenance proteins 2-7 (MCM2-7) onto replication origins is a prerequisite for replication fork establishment and genomic stability. Origin recognition complex (ORC), Cdc6, and Cdt1 assemble two MCM2-7 hexamers into one double hexamer around dsDNA. Although the MCM2-7 hexamer can adopt a ring shape with a gap between Mcm2 and Mcm5, it is unknown which Mcm interface functions as the DNA entry gate during regulated helicase loading. Here, we establish that the Saccharomyces cerevisiae MCM2-7 hexamer assumes a closed ring structure, suggesting that helicase loading requires active ring opening. Using a chemical biology approach, we show that ORC-Cdc6-Cdt1-dependent helicase loading occurs through a unique DNA entry gate comprised of the Mcm2 and Mcm5 subunits. Controlled inhibition of DNA insertion triggers ATPase-driven complex disassembly in vitro, while in vivo analysis establishes that Mcm2/Mcm5 gate opening is essential for both helicase loading onto chromatin and cell cycle progression. Importantly, we demonstrate that the MCM2-7 helicase becomes loaded onto DNA as a single hexamer during ORC/Cdc6/Cdt1/MCM2-7 complex formation prior to MCM2-7 double hexamer formation. Our study establishes the existence of a unique DNA entry gate for regulated helicase loading, revealing key mechanisms in helicase loading, which has important implications for helicase activation.
Collapse
Affiliation(s)
- Stefan A Samel
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Alejandra Fernández-Cid
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alberto Riera
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - M Carmen Herrera
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom;
| |
Collapse
|
188
|
Brandão LN, Ferguson R, Santoro I, Jinks-Robertson S, Sclafani RA. The role of Dbf4-dependent protein kinase in DNA polymerase ζ-dependent mutagenesis in Saccharomyces cerevisiae. Genetics 2014; 197:1111-22. [PMID: 24875188 PMCID: PMC4125387 DOI: 10.1534/genetics.114.165308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/23/2014] [Indexed: 11/18/2022] Open
Abstract
The yeast Dbf4-dependent kinase (DDK) (composed of Dbf4 and Cdc7 subunits) is an essential, conserved Ser/Thr protein kinase that regulates multiple processes in the cell, including DNA replication, recombination and induced mutagenesis. Only DDK substrates important for replication and recombination have been identified. Consequently, the mechanism by which DDK regulates mutagenesis is unknown. The yeast mcm5-bob1 mutation that bypasses DDK's essential role in DNA replication was used here to examine whether loss of DDK affects spontaneous as well as induced mutagenesis. Using the sensitive lys2ΔA746 frameshift reversion assay, we show DDK is required to generate "complex" spontaneous mutations, which are a hallmark of the Polζ translesion synthesis DNA polymerase. DDK co-immunoprecipitated with the Rev7 regulatory, but not with the Rev3 polymerase subunit of Polζ. Conversely, Rev7 bound mainly to the Cdc7 kinase subunit and not to Dbf4. The Rev7 subunit of Polζ may be regulated by DDK phosphorylation as immunoprecipitates of yeast Cdc7 and also recombinant Xenopus DDK phosphorylated GST-Rev7 in vitro. In addition to promoting Polζ-dependent mutagenesis, DDK was also important for generating Polζ-independent large deletions that revert the lys2ΔA746 allele. The decrease in large deletions observed in the absence of DDK likely results from an increase in the rate of replication fork restart after an encounter with spontaneous DNA damage. Finally, nonepistatic, additive/synergistic UV sensitivity was observed in cdc7Δ pol32Δ and cdc7Δ pol30-K127R,K164R double mutants, suggesting that DDK may regulate Rev7 protein during postreplication "gap filling" rather than during "polymerase switching" by ubiquitinated and sumoylated modified Pol30 (PCNA) and Pol32.
Collapse
Affiliation(s)
- Luis N Brandão
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Rebecca Ferguson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Irma Santoro
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Sue Jinks-Robertson
- Department of Biology, Emory University, Atlanta, Georgia 30322 Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Robert A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
189
|
Abstract
Two sibling DNA polymerases synthesize most of the eukaryotic nuclear genome. A new study provides insights into the distinct protein interactions that deliver these replicases for asymmetric leading- and lagging-strand replication and reveals possible cross-talk between DNA replication and other cellular processes.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
190
|
Kang S, Warner MD, Bell SP. Multiple functions for Mcm2-7 ATPase motifs during replication initiation. Mol Cell 2014; 55:655-65. [PMID: 25087876 DOI: 10.1016/j.molcel.2014.06.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/29/2014] [Accepted: 06/26/2014] [Indexed: 11/26/2022]
Abstract
The Mcm2-7 replicative helicase is central to all steps of eukaryotic DNA replication. The hexameric ring of Mcm subunits forms six essential ATPases whose contributions to replication initiation remain unclear. Mcm2-7 complexes containing ATPase-motif mutations showed Mcm2-7 ATP binding and hydrolysis are required for helicase loading. Loading-defective Mcm2-7 mutant complexes were defective in initial Mcm2-7 recruitment or Cdt1 release. Comparison with Cdc6 ATPase mutants showed that Cdc6 ATP hydrolysis is not required for helicase loading but instead drives removal of Mcm2-7 complexes that cannot complete loading. A subset of Mcm2-7 ATPase-site mutants completed helicase loading but could not initiate replication. Individual mutants were defective in distinct events during helicase activation, including maintenance of DNA association, recruitment of the GINS helicase activator, and DNA unwinding. Consistent with its heterohexameric structure, our findings show that the six Mcm2-7 ATPase active sites are specialized for different functions during helicase loading and activation.
Collapse
Affiliation(s)
- Sukhyun Kang
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Megan D Warner
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
191
|
Singh J. Role of DNA replication in establishment and propagation of epigenetic states of chromatin. Semin Cell Dev Biol 2014; 30:131-43. [PMID: 24794003 DOI: 10.1016/j.semcdb.2014.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
DNA replication is the fundamental process of duplication of the genetic information that is vital for survival of all living cells. The basic mechanistic steps of replication initiation, elongation and termination are conserved among bacteria, lower eukaryotes, like yeast and metazoans. However, the details of the mechanisms are different. Furthermore, there is a close coordination between chromatin assembly pathways and various components of replication machinery whereby DNA replication is coupled to "chromatin replication" during cell cycle. Thereby, various epigenetic modifications associated with different states of gene expression in differentiated cells and the related chromatin structures are faithfully propagated during the cell division through tight coupling with the DNA replication machinery. Several examples are found in lower eukaryotes like budding yeast and fission yeast with close parallels in metazoans.
Collapse
Affiliation(s)
- Jagmohan Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
| |
Collapse
|
192
|
Myc induced replicative stress response: How to cope with it and exploit it. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:517-24. [PMID: 24735945 DOI: 10.1016/j.bbagrm.2014.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Myc is a cellular oncogene frequently deregulated in cancer that has the ability to stimulate cellular growth by promoting a number of proliferative and pro-survival pathways. Here we will focus on how Myc controls a number of diverse cellular processes that converge to ensure processivity and robustness of DNA synthesis, thus preventing the inherent replicative stress responses usually evoked by oncogenic lesions. While these processes provide cancer cells with a long-term proliferative advantage, they also represent cancer liabilities that can be exploited to devise innovative therapeutic approaches to target Myc overexpressing tumors. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
193
|
Vo N, Taga A, Inaba Y, Yoshida H, Cotterill S, Yamaguchi M. Drosophila Mcm10 is required for DNA replication and differentiation in the compound eye. PLoS One 2014; 9:e93450. [PMID: 24686397 PMCID: PMC3970972 DOI: 10.1371/journal.pone.0093450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Mini chromosome maintenance 10 (Mcm10) is an essential protein, which is conserved from S. cerevisiae to Drosophila and human, and is required for the initiation of DNA replication. Knockdown of Drosophila Mcm10 (dMcm10) by RNA interference in eye imaginal discs induces abnormal eye morphology (rough eye phenotype), and the number of ommatidia is decreased in adult eyes. We also observed a delay in the S phase and M phase in eye discs of dMcm10 knockdown fly lines. These results show important roles for dMcm10 in the progression of S and M phases. Furthermore, genome damage and apoptosis were induced by dMcm10 knockdown in eye imaginal discs. Surprisingly, when we used deadpan-lacZ and klingon-lacZ enhancer trap lines to monitor the photoreceptor cells in eye discs, knockdown of dMcm10 by the GMR-GAL4 driver reduced the signals of R7 photoreceptor cells. These data suggest an involvement of dMcm10 in R7 cell differentiation. This involvement appears to be independent of the apoptosis induced by dMcm10 knockdown. Together, these results suggest that dMcm10 knockdown has an effect on DNA replication and R7 cell differentiation.
Collapse
Affiliation(s)
- Nicole Vo
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
- Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Ayano Taga
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
- Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Yasuhiro Inaba
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
- Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
- Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Sue Cotterill
- Department of Basic Medical Sciences, St Georges University of London, London, United Kingdom
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
- Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan
- * E-mail:
| |
Collapse
|
194
|
Froelich CA, Kang S, Epling LB, Bell SP, Enemark EJ. A conserved MCM single-stranded DNA binding element is essential for replication initiation. eLife 2014; 3:e01993. [PMID: 24692448 PMCID: PMC3970758 DOI: 10.7554/elife.01993] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI:http://dx.doi.org/10.7554/eLife.01993.001 When DNA was first recognised to be a double helix, it was clear that this structure could easily explain how DNA could be replicated. Each strand was made of bases—represented by the letters ‘A’, ‘C’, ‘G’ and ‘T’—and the two strands were held together by bonds between pairs of bases, one from each strand. Moreover, ‘A’ always paired with ‘T’, and ‘C’ always paired with ‘G’. Therefore, if the two strands were separated, each could be used as a template to guide the synthesis of a new complementary strand and thus create two copies of the original double-stranded molecule. One of the first steps in this replication process involves a ring-shaped complex of six proteins, called an MCM helicase, separating the two strands. To prepare for DNA replication, two MCM helicase rings wrap around the double-stranded DNA. Then, after the helicase has been activated, the bonds between the DNA base pairs break, and the two rings separate with one ring encircling each DNA strand. However, the details of the interactions between the helicase and the DNA during these events are not fully understood. Now Froelich, Kang et al. have solved the three-dimensional structure of an MCM helicase ring—taken from a microbe originally found at deep ocean vents—on its own and also when bound to a short piece of single-stranded DNA. The helicase ring becomes more oval when the DNA binds to it. Moreover, rather than passing straight through the ring, the DNA wraps part of the way around the inside of the ring. Specific amino acids—the building blocks of proteins—on the inside of the ring interact with the single-stranded DNA, and these amino acids are also found in MCM proteins in many other organisms. Furthermore, swapping these amino acids for different amino acids significantly reduced the ability of the ring to bind to single-stranded DNA, but its ability to bind to double-stranded DNA was only slightly affected. Engineering similar changes into the ring complexes of yeast cells was lethal, and the mutant complexes were less able to be loaded onto the DNA, or to be activated and separate the two strands ready for replication. These insights into how helicases are loaded onto double-stranded DNA, and select one DNA strand to encircle, have improved our understanding of how DNA replication is initiated: a process that is vital for living things. DOI:http://dx.doi.org/10.7554/eLife.01993.002
Collapse
Affiliation(s)
- Clifford A Froelich
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
| | | | | | | | | |
Collapse
|
195
|
Zech J, Dalgaard JZ. Replisome components--post-translational modifications and their effects. Semin Cell Dev Biol 2014; 30:144-53. [PMID: 24685613 DOI: 10.1016/j.semcdb.2014.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/10/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022]
Abstract
The process of DNA replication is highly regulated, but at the same time very dynamic. Once S-phase is initiated and replication elongation is occurring, the cells are committed to complete replication in order to ensure genome stability and survival. Many pathways exist to resolve situations where normal replisome progression is not possible. It is becoming more and more evident that post-translational modifications of replisome components play a key role in regulating these pathways which ensure fork progression. Here we review the known modifications of the progressing replisome and how these modifications are thought to affect DNA replication in unperturbed and perturbed S-phases.
Collapse
Affiliation(s)
- Juergen Zech
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK
| | - Jacob Zeuthen Dalgaard
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK.
| |
Collapse
|
196
|
Becker JR, Nguyen HD, Wang X, Bielinsky AK. Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair. Cell Cycle 2014; 13:1737-48. [PMID: 24674891 DOI: 10.4161/cc.28652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mcm10 is a multifunctional replication factor with reported roles in origin activation, polymerase loading, and replication fork progression. The literature supporting these variable roles is controversial, and it has been debated whether Mcm10 has an active role in elongation. Here, we provide evidence that the mcm10-1 allele confers alterations in DNA synthesis that lead to defective-replisome-induced mutagenesis (DRIM). Specifically, we observed that mcm10-1 cells exhibited elevated levels of PCNA ubiquitination and activation of the translesion polymerase, pol-ζ. Whereas translesion synthesis had no measurable impact on viability, mcm10-1 mutants also engaged in error-free postreplicative repair (PRR), and this pathway promoted survival at semi-permissive conditions. Replication gaps in mcm10-1 were likely caused by elongation defects, as dbf4-1 mutants, which are compromised for origin activation did not display any hallmarks of replication stress. Furthermore, we demonstrate that deficiencies in priming, induced by a pol1-1 mutation, also resulted in DRIM, but not in error-free PRR. Similar to mcm10-1 mutants, DRIM did not rescue the replication defect in pol1-1 cells. Thus, it appears that DRIM is not proficient to fill replication gaps in pol1-1 and mcm10-1 mutants. Moreover, the ability to correctly prime nascent DNA may be a crucial prerequisite to initiate error-free PRR.
Collapse
Affiliation(s)
- Jordan R Becker
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Hai Dang Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Xiaohan Wang
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| |
Collapse
|
197
|
Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep 2014; 7:62-9. [PMID: 24685139 DOI: 10.1016/j.celrep.2014.03.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/15/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022] Open
Abstract
The Rif1 protein, originally identified as a telomere-binding factor in yeast, has recently been implicated in DNA replication control from yeast to metazoans. Here, we show that budding yeast Rif1 protein inhibits activation of prereplication complexes (pre-RCs). This inhibitory function requires two N-terminal motifs, RVxF and SILK, associated with recruitment of PP1 phosphatase (Glc7). In G1 phase, we show both that Glc7 interacts with Rif1 in an RVxF/SILK-dependent manner and that two proteins implicated in pre-RC activation, Mcm4 and Sld3, display increased Dbf4-dependent kinase (DDK) phosphorylation in rif1 mutants. Rif1 also interacts with Dbf4 in yeast two-hybrid assays, further implicating this protein in direct modulation of pre-RC activation through the DDK. Finally, we demonstrate Rif1 RVxF/SILK motif-dependent recruitment of Glc7 to telomeres and earlier replication of these regions in cells where the motifs are mutated. Our data thus link Rif1 to negative regulation of replication origin firing through recruitment of the Glc7 phosphatase.
Collapse
|
198
|
Thu YM, Bielinsky AK. MCM10: one tool for all-Integrity, maintenance and damage control. Semin Cell Dev Biol 2014; 30:121-30. [PMID: 24662891 DOI: 10.1016/j.semcdb.2014.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/10/2014] [Indexed: 01/16/2023]
Abstract
Minichromsome maintenance protein 10 (Mcm10) is an essential replication factor that is required for the activation of the Cdc45:Mcm2-7:GINS helicase. Mcm10's ability to bind both ds and ssDNA appears vital for this function. In addition, Mcm10 interacts with multiple players at the replication fork, including DNA polymerase-α and proliferating cell nuclear antigen with which it cooperates during DNA elongation. Mcm10 lacks enzymatic function, but instead provides the replication apparatus with an oligomeric scaffold that likely acts in the coordination of DNA unwinding and DNA synthesis. Not surprisingly, loss of Mcm10 engages checkpoint, DNA repair and SUMO-dependent rescue pathways that collectively counteract replication stress and chromosome breakage. Here, we review Mcm10's structure and function and explain how it contributes to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Yee Mon Thu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
199
|
Davé A, Cooley C, Garg M, Bianchi A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep 2014; 7:53-61. [PMID: 24656819 PMCID: PMC3989773 DOI: 10.1016/j.celrep.2014.02.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/20/2014] [Accepted: 02/14/2014] [Indexed: 01/23/2023] Open
Abstract
The firing of eukaryotic origins of DNA replication requires CDK and DDK kinase activities. DDK, in particular, is involved in setting the temporal program of origin activation, a conserved feature of eukaryotes. Rif1, originally identified as a telomeric protein, was recently implicated in specifying replication timing in yeast and mammals. We show that this function of Rif1 depends on its interaction with PP1 phosphatases. Mutations of two PP1 docking motifs in Rif1 lead to early replication of telomeres in budding yeast and misregulation of origin firing in fission yeast. Several lines of evidence indicate that Rif1/PP1 counteract DDK activity on the replicative MCM helicase. Our data suggest that the PP1/Rif1 interaction is downregulated by the phosphorylation of Rif1, most likely by CDK/DDK. These findings elucidate the mechanism of action of Rif1 in the control of DNA replication and demonstrate a role of PP1 phosphatases in the regulation of origin firing. Rif1 recruits protein phosphatase 1 to telomeres and DNA replication origins PP1 docking motifs mediate the effect of Rif1 on DNA replication timing The PP1 recruitment activity of Rif1 counteracts DDK action on Mcm4 Mutations in putative CDK/DDK sites near the PP1 motifs in Rif1 affect PP1 recruitment
Collapse
Affiliation(s)
- Anoushka Davé
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Carol Cooley
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Mansi Garg
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Alessandro Bianchi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
200
|
On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JFX. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J 2014; 33:605-20. [PMID: 24566989 PMCID: PMC3989654 DOI: 10.1002/embj.201387369] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/17/2013] [Accepted: 01/10/2014] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2-7 helicase is first loaded into prereplicative complexes (pre-RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of "firing factors." Here, we show that plasmids containing pre-RCs assembled with purified proteins support complete and semi-conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK). DDK phosphorylation of Mcm2-7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin-dependent in this system. These experiments indicate that Mcm2-7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins.
Collapse
Affiliation(s)
- Kin Fan On
- Chromosome Replication Laboratory, Cancer Research UK London Research InstituteSouth Mimms, Herts, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer ResearchLondon, UK
| | - David Frith
- Protein Analysis and Proteomics, Cancer Research UK London Research Institute, Clare Hall LaboratoriesSouth Mimms, Herts, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics, Cancer Research UK London Research Institute, Clare Hall LaboratoriesSouth Mimms, Herts, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer ResearchLondon, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, Cancer Research UK London Research InstituteSouth Mimms, Herts, UK
| |
Collapse
|