151
|
Regulation of ATP-dependent chromatin remodelers: accelerators/brakes, anchors and sensors. Biochem Soc Trans 2018; 46:1423-1430. [PMID: 30467122 DOI: 10.1042/bst20180043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
All ATP-dependent chromatin remodelers have a DNA translocase domain that moves along double-stranded DNA when hydrolyzing ATP, which is the key action leading to DNA moving through nucleosomes. Recent structural and biochemical data from a variety of different chromatin remodelers have revealed that there are three basic ways in which these remodelers self-regulate their chromatin remodeling activity. In several instances, different domains within the catalytic subunit or accessory subunits through direct protein-protein interactions can modulate the ATPase and DNA translocation properties of the DNA translocase domain. These domains or subunits can stabilize conformations that either promote or interfere with the ability of the translocase domain to bind or retain DNA during translocation or alter the ability of the enzyme to hydrolyze ATP. Second, other domains or subunits are often necessary to anchor the remodeler to nucleosomes to couple DNA translocation and ATP hydrolysis to DNA movement around the histone octamer. These anchors provide a fixed point by which remodelers can generate sufficient torque to disrupt histone-DNA interactions and mobilize nucleosomes. The third type of self-regulation is in those chromatin remodelers that space nucleosomes or stop moving nucleosomes when a particular length of linker DNA has been reached. We refer to this third class as DNA sensors that can allosterically regulate nucleosome mobilization. In this review, we will show examples of these from primarily the INO80/SWR1, SWI/SNF and ISWI/CHD families of remodelers.
Collapse
|
152
|
Brandani GB, Takada S. Chromatin remodelers couple inchworm motion with twist-defect formation to slide nucleosomal DNA. PLoS Comput Biol 2018; 14:e1006512. [PMID: 30395604 PMCID: PMC6237416 DOI: 10.1371/journal.pcbi.1006512] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/15/2018] [Accepted: 09/13/2018] [Indexed: 01/25/2023] Open
Abstract
ATP-dependent chromatin remodelers are molecular machines that control genome organization by repositioning, ejecting, or editing nucleosomes, activities that confer them essential regulatory roles on gene expression and DNA replication. Here, we investigate the molecular mechanism of active nucleosome sliding by means of molecular dynamics simulations of the Snf2 remodeler translocase in complex with a nucleosome. During its inchworm motion driven by ATP consumption, the translocase overwrites the original nucleosome energy landscape via steric and electrostatic interactions to induce sliding of nucleosomal DNA unidirectionally. The sliding is initiated at the remodeler binding location via the generation of a pair of twist defects, which then spontaneously propagate to complete sliding throughout the entire nucleosome. We also reveal how remodeler mutations and DNA sequence control active nucleosome repositioning, explaining several past experimental observations. These results offer a detailed mechanistic picture of remodeling important for the complete understanding of these key biological processes. Nucleosomes are the protein-DNA complexes underlying Eukaryotic genome organization, and serve as regulators of gene expression by occluding DNA to other proteins. This regulation requires the precise positioning of nucleosomes along DNA. Chromatin remodelers are the molecular machines that consume ATP to slide nucleosome at their correct locations, but the mechanisms of remodeling are still unclear. Based on the static structural information of a remodeler bound on nucleosome, we performed molecular dynamics computer simulations revealing the details of how remodelers slide nucleosomal DNA: the inchworm-like motion of remodelers create small DNA deformations called twist defects, which then spontaneously propagate throughout the nucleosome to induce sliding. These simulations explain several past experimental findings and are important for our understanding of genome organization.
Collapse
Affiliation(s)
- Giovanni B. Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
153
|
Genome-wide Rules of Nucleosome Phasing in Drosophila. Mol Cell 2018; 72:661-672.e4. [DOI: 10.1016/j.molcel.2018.09.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
|
154
|
Lorch Y, Maier-Davis B, Kornberg RD. Histone Acetylation Inhibits RSC and Stabilizes the +1 Nucleosome. Mol Cell 2018; 72:594-600.e2. [PMID: 30401433 PMCID: PMC6290470 DOI: 10.1016/j.molcel.2018.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
The +1 nucleosome of yeast genes, within which reside transcription start sites, is characterized by histone acetylation, by the displacement of an H2A-H2B dimer, and by a persistent association with the RSC chromatin-remodeling complex. Here we demonstrate the interrelationship of these characteristics and the conversion of a nucleosome to the +1 state in vitro. Contrary to expectation, acetylation performs an inhibitory role, preventing the removal of a nucleosome by RSC. Inhibition is due to both enhanced RSC-histone interaction and diminished histone-chaperone interaction. Acetylation does not prevent all RSC activity, because stably bound RSC removes an H2A-H2B dimer on a timescale of seconds in an irreversible manner.
Collapse
Affiliation(s)
- Yahli Lorch
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Barbara Maier-Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
155
|
Abstract
Nucleosomes form the fundamental building blocks of eukaryotic chromatin, and previous attempts to understand the principles governing their genome-wide distribution have spurred much interest and debate in biology. In particular, the precise role of DNA sequence in shaping local chromatin structure has been controversial. This paper rigorously quantifies the contribution of hitherto-debated sequence features-including G+C content, 10.5 bp periodicity, and poly(dA:dT) tracts-to three distinct aspects of genome-wide nucleosome landscape: occupancy, translational positioning and rotational positioning. Our computational framework simultaneously learns nucleosome number and nucleosome-positioning energy from genome-wide nucleosome maps. In contrast to other previous studies, our model can predict both in vitro and in vivo nucleosome maps in Saccharomyces cerevisiae. We find that although G+C content is the primary determinant of MNase-derived nucleosome occupancy, MNase digestion biases may substantially influence this GC dependence. By contrast, poly(dA:dT) tracts are seen to deter nucleosome formation, regardless of the experimental method used. We further show that the 10.5 bp nucleotide periodicity facilitates rotational but not translational positioning. Applying our method to in vivo nucleosome maps demonstrates that, for a subset of genes, the regularly-spaced nucleosome arrays observed around transcription start sites can be partially recapitulated by DNA sequence alone. Finally, in vivo nucleosome occupancy derived from MNase-seq experiments around transcription termination sites can be mostly explained by the genomic sequence. Implications of these results and potential extensions of the proposed computational framework are discussed.
Collapse
Affiliation(s)
- Hu Jin
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Alex I. Finnegan
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Jun S. Song
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
156
|
The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nat Struct Mol Biol 2018; 25:823-832. [PMID: 30177756 DOI: 10.1038/s41594-018-0115-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
Nuclear actin (N-actin) and actin-related proteins (Arps) are critical components of several chromatin modulating complexes, including the chromatin remodeler INO80, but their function is largely elusive. Here, we report the crystal structure of the 180-kDa Arp8 module of Saccharomyces cerevisiae INO80 and establish its role in recognition of extranucleosomal linker DNA. Arp8 engages N-actin in a manner distinct from that of other actin-fold proteins and thereby specifies recruitment of the Arp4-N-actin heterodimer to a segmented scaffold of the helicase-SANT-associated (HSA) domain of Ino80. The helical HSA domain spans over 120 Å and provides an extended binding platform for extranucleosomal entry DNA that is required for nucleosome sliding and genome-wide nucleosome positioning. Together with the recent cryo-electron microscopy structure of INO80Core-nucleosome complex, our findings suggest an allosteric mechanism by which INO80 senses 40-bp linker DNA to conduct highly processive chromatin remodeling.
Collapse
|
157
|
Baldi S, Krebs S, Blum H, Becker PB. Genome-wide measurement of local nucleosome array regularity and spacing by nanopore sequencing. Nat Struct Mol Biol 2018; 25:894-901. [DOI: 10.1038/s41594-018-0110-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
|
158
|
Brahma S, Ngubo M, Paul S, Udugama M, Bartholomew B. The Arp8 and Arp4 module acts as a DNA sensor controlling INO80 chromatin remodeling. Nat Commun 2018; 9:3309. [PMID: 30120252 PMCID: PMC6098158 DOI: 10.1038/s41467-018-05710-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear actin and actin-related proteins (Arps) are key components of chromatin remodeling and modifying complexes. Although Arps are essential for the functions of chromatin remodelers, their specific roles and mechanisms are unclear. Here we define the nucleosome binding interfaces and functions of the evolutionarily conserved Arps in the yeast INO80 chromatin remodeling complex. We show that the N-terminus of Arp8, C-terminus of Arp4 and the HSA domain of Ino80 bind extranucleosomal DNA 37-51 base pairs from the edge of nucleosomes and function as a DNA-length sensor that regulates nucleosome sliding by INO80. Disruption of Arp8 and Arp4 binding to DNA uncouples ATP hydrolysis from nucleosome mobilization by disengaging Arp5 from the acidic patch on histone H2A-H2B and the Ino80-ATPase domain from the Super-helical Location (SHL) -6 of nucleosomes. Our data suggest a functional interplay between INO80's Arp8-Arp4-actin and Arp5 modules in sensing the DNA length separating nucleosomes and regulating nucleosome positioning.
Collapse
Affiliation(s)
- Sandipan Brahma
- Department of Epigenetics & Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.,Center for Cancer Epigenetics, MD Anderson Cancer Center, Smithville, TX, 78957, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Mzwanele Ngubo
- Department of Epigenetics & Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.,Center for Cancer Epigenetics, MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Somnath Paul
- Department of Epigenetics & Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.,Center for Cancer Epigenetics, MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Maheshi Udugama
- Department of Biochemistry and Molecular Biology, Southern Illinois University, 1245 Lincoln Drive, Carbondale, 62901, USA.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - Blaine Bartholomew
- Department of Epigenetics & Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA. .,Center for Cancer Epigenetics, MD Anderson Cancer Center, Smithville, TX, 78957, USA.
| |
Collapse
|
159
|
Sundaramoorthy R, Hughes AL, El-Mkami H, Norman DG, Ferreira H, Owen-Hughes T. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. eLife 2018; 7:35720. [PMID: 30079888 PMCID: PMC6118821 DOI: 10.7554/elife.35720] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022] Open
Abstract
ATP-dependent chromatin remodelling proteins represent a diverse family of proteins that share ATPase domains that are adapted to regulate protein-DNA interactions. Here, we present structures of the Saccharomyces cerevisiae Chd1 protein engaged with nucleosomes in the presence of the transition state mimic ADP-beryllium fluoride. The path of DNA strands through the ATPase domains indicates the presence of contacts conserved with single strand translocases and additional contacts with both strands that are unique to Snf2 related proteins. The structure provides connectivity between rearrangement of ATPase lobes to a closed, nucleotide bound state and the sensing of linker DNA. Two turns of linker DNA are prised off the surface of the histone octamer as a result of Chd1 binding, and both the histone H3 tail and ubiquitin conjugated to lysine 120 are re-orientated towards the unravelled DNA. This indicates how changes to nucleosome structure can alter the way in which histone epitopes are presented.
Collapse
Affiliation(s)
| | - Amanda L Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hassane El-Mkami
- School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - David G Norman
- Nucleic Acids Structure Research Group, University of Dundee, Dundee, United Kingdom
| | - Helder Ferreira
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
160
|
McBride MJ, Pulice JL, Beird HC, Ingram DR, D'Avino AR, Shern JF, Charville GW, Hornick JL, Nakayama RT, Garcia-Rivera EM, Araujo DM, Wang WL, Tsai JW, Yeagley M, Wagner AJ, Futreal PA, Khan J, Lazar AJ, Kadoch C. The SS18-SSX Fusion Oncoprotein Hijacks BAF Complex Targeting and Function to Drive Synovial Sarcoma. Cancer Cell 2018; 33:1128-1141.e7. [PMID: 29861296 PMCID: PMC6791822 DOI: 10.1016/j.ccell.2018.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022]
Abstract
Synovial sarcoma (SS) is defined by the hallmark SS18-SSX fusion oncoprotein, which renders BAF complexes aberrant in two manners: gain of SSX to the SS18 subunit and concomitant loss of BAF47 subunit assembly. Here we demonstrate that SS18-SSX globally hijacks BAF complexes on chromatin to activate an SS transcriptional signature that we define using primary tumors and cell lines. Specifically, SS18-SSX retargets BAF complexes from enhancers to broad polycomb domains to oppose PRC2-mediated repression and activate bivalent genes. Upon suppression of SS18-SSX, reassembly of BAF47 restores enhancer activation, but is not required for proliferative arrest. These results establish a global hijacking mechanism for SS18-SSX on chromatin, and define the distinct contributions of two concurrent BAF complex perturbations.
Collapse
Affiliation(s)
- Matthew J McBride
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Chemical Biology, Harvard University, Cambridge, MA, USA
| | - John L Pulice
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hannah C Beird
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew R D'Avino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert T Nakayama
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Enrique M Garcia-Rivera
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dejka M Araujo
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jen-Wei Tsai
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle Yeagley
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Wagner
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Javed Khan
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Alexander J Lazar
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA; Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
161
|
Rawal Y, Chereji RV, Qiu H, Ananthakrishnan S, Govind CK, Clark DJ, Hinnebusch AG. SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev 2018; 32:695-710. [PMID: 29785963 PMCID: PMC6004078 DOI: 10.1101/gad.312850.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/12/2018] [Indexed: 12/30/2022]
Abstract
The nucleosome remodeling complex RSC functions throughout the yeast genome to set the positions of -1 and +1 nucleosomes and thereby determines the widths of nucleosome-depleted regions (NDRs). The related complex SWI/SNF participates in nucleosome remodeling/eviction and promoter activation at certain yeast genes, including those activated by transcription factor Gcn4, but did not appear to function broadly in establishing NDRs. By analyzing the large cohort of Gcn4-induced genes in mutants lacking the catalytic subunits of SWI/SNF or RSC, we uncovered cooperation between these remodelers in evicting nucleosomes from different locations in the promoter and repositioning the +1 nucleosome downstream to produce wider NDRs-highly depleted of nucleosomes-during transcriptional activation. SWI/SNF also functions on a par with RSC at the most highly transcribed constitutively expressed genes, suggesting general cooperation by these remodelers for maximal transcription. SWI/SNF and RSC occupancies are greatest at the most highly expressed genes, consistent with their cooperative functions in nucleosome remodeling and transcriptional activation. Thus, SWI/SNF acts comparably with RSC in forming wide nucleosome-free NDRs to achieve high-level transcription but only at the most highly expressed genes exhibiting the greatest SWI/SNF occupancies.
Collapse
Affiliation(s)
- Yashpal Rawal
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hongfang Qiu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sudha Ananthakrishnan
- Department of Biological Science, Oakland University, Rochester, Michigan 48309, USA
| | - Chhabi K Govind
- Department of Biological Science, Oakland University, Rochester, Michigan 48309, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
162
|
Gamarra N, Johnson SL, Trnka MJ, Burlingame AL, Narlikar GJ. The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h. eLife 2018; 7:35322. [PMID: 29664398 PMCID: PMC5976439 DOI: 10.7554/elife.35322] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
ISWI family chromatin remodeling motors use sophisticated autoinhibition mechanisms to control nucleosome sliding. Yet how the different autoinhibitory domains are regulated is not well understood. Here we show that an acidic patch formed by histones H2A and H2B of the nucleosome relieves the autoinhibition imposed by the AutoN and the NegC regions of the human ISWI remodeler SNF2h. Further, by single molecule FRET we show that the acidic patch helps control the distance travelled per translocation event. We propose a model in which the acidic patch activates SNF2h by providing a landing pad for the NegC and AutoN auto-inhibitory domains. Interestingly, the INO80 complex is also strongly dependent on the acidic patch for nucleosome sliding, indicating that this substrate feature can regulate remodeling enzymes with substantially different mechanisms. We therefore hypothesize that regulating access to the acidic patch of the nucleosome plays a key role in coordinating the activities of different remodelers in the cell. Every human cell contains nearly two meters of DNA, which is carefully packaged to form a dense structure known as chromatin. The building block of chromatin is the nucleosome, a unit composed of a short section of DNA tightly wound up around a spool-like core of proteins called histones. The tight structure of the nucleosome prevents the cell from accessing and ‘reading’ the genes in the packaged DNA, effectively switching off these genes. So the exact placement of nucleosomes helps manage which genes are turned on. Changing the position of the nucleosomes can ‘free’ the DNA and make genes available to the cell. Enzymes called chromatin remodelers move nucleosomes around – for example, they can make the histone core slide on the DNA strand. However, it is still unclear how these enzymes recognize nucleosomes. Previous research indicates that many proteins bind to nucleosomes by using a surface on the histone proteins called the acidic patch. Could chromatin remodelers also work by interacting with this acidic patch? To address this further, Gamarra et al. investigate how a chromatin remodeler enzyme known as SNF2h interacts with a nucleosome. By default, SNF2h is inactive because two of its regions called AutoN and NegC act as brakes. The experiments show that the acidic patch helps to bypass this inactivation and switches on SNF2h. Gamarra et al. propose that, when SNF2h docks on to the nucleosome, the patch provides a landing pad for the AutoN and NegC modules; this interaction activates the enzyme, which can then start remodeling the nucleosome. However, another type of chromatin remodeler also uses the patch to interact with nucleosomes but it does not have the AutoN and NegC regions. This suggests that chromatin remodelers work with the acidic patch in different ways. Overall, the findings deepen our understanding of how DNA is packaged in cells, and how this process may go wrong and cause disease.
Collapse
Affiliation(s)
- Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Tetrad Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Stephanie L Johnson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
163
|
Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 2018; 556:386-390. [PMID: 29643509 PMCID: PMC6071913 DOI: 10.1038/s41586-018-0029-y] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/16/2018] [Indexed: 01/26/2023]
Abstract
DNA in the eukaryotic nucleus is packaged in the form of nucleosomes, ~147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP dependent chromatin remodelers1–3 such as the 15 subunit INO80 complex4. INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, exchanging histone H2A.Z with H2A, and positioning +1 and -1 nucleosomes at promoter DNA5–8. A structure and mechanism for these remodeling reactions is lacking. Here we report the cryo-electron microscopy structure at 4.3Å resolution, with parts at 3.7Å, of an evolutionary conserved core INO80 complex from Chaetomium thermophilum bound to a nucleosome. INO80core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. A Rvb1/2 AAA+ ATPase hetero-hexamer is an assembly scaffold for the complex and acts as stator for the motor and nucleosome gripping subunits. The Swi2/Snf2 ATPase motor binds to SHL-6, unwraps ~15 base pairs, disrupts the H2A:DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5-Ies6 grip SHL-2/-3 acting as counter grip for the motor on the other side of the H2A/H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 core and entry DNA over a distance of ~90Å and packs against histone H2A/H2B near the acidic patch. Our structure together with biochemical data8 suggest a unified mechanism for nucleosome sliding and histone editing by INO80. The motor pumps entry DNA across H2A/H2B against Arp5 and the grappler, sliding nucleosomes as a ratchet. Transient exposure of H2A/H2B by the motor and differential recognition of H2A.Z and H2A may regulate histone exchange during translocation.
Collapse
|
164
|
Abstract
The nucleosome serves as a general gene repressor, preventing all initiation of transcription except that which is brought about by specific positive regulatory mechanisms. The positive mechanisms begin with chromatin-remodeling by complexes that slide, disrupt, or otherwise alter the structure and organization of nucleosomes. RSC in yeast and its counterpart PBAF in human cells are the major remodeling complexes for transcription. RSC creates a nucleosome-free region in front of a gene, flanked by strongly positioned +1 and -1 nucleosomes, with the transcription start site typically 10-15 bp inside the border of the +1 nucleosome. RSC also binds stably to nucleosomes harboring regulatory elements and to +1 nucleosomes, perturbing their structures in a manner that partially exposes their DNA sequences. The cryo-electron microscope structure of a RSC-nucleosome complex reveals such a structural perturbation, with the DNA largely unwrapped from the nucleosome and likely interacting with a positively charged surface of RSC. Such unwrapping both exposes the DNA and enables its translocation across the histone octamer of the nucleosome by an ATP-dependent activity of RSC. Genetic studies have revealed additional roles of RSC in DNA repair, chromosome segregation, and other chromosomal DNA transactions. These functions of RSC likely involve the same fundamental activities, DNA unwrapping and DNA translocation.
Collapse
|
165
|
Chereji RV, Clark DJ. Major Determinants of Nucleosome Positioning. Biophys J 2018; 114:2279-2289. [PMID: 29628211 DOI: 10.1016/j.bpj.2018.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
The compact structure of the nucleosome limits DNA accessibility and inhibits the binding of most sequence-specific proteins. Nucleosomes are not randomly located on the DNA but positioned with respect to the DNA sequence, suggesting models in which critical binding sites are either exposed in the linker, resulting in activation, or buried inside a nucleosome, resulting in repression. The mechanisms determining nucleosome positioning are therefore of paramount importance for understanding gene regulation and other events that occur in chromatin, such as transcription, replication, and repair. Here, we review our current understanding of the major determinants of nucleosome positioning: DNA sequence, nonhistone DNA-binding proteins, chromatin-remodeling enzymes, and transcription. We outline the major challenges for the future: elucidating the precise mechanisms of chromatin opening and promoter activation, identifying the complexes that occupy promoters, and understanding the multiscale problem of chromatin fiber organization.
Collapse
Affiliation(s)
- Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
166
|
Poli J, Gasser SM, Papamichos-Chronakis M. The INO80 remodeller in transcription, replication and repair. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0290. [PMID: 28847827 DOI: 10.1098/rstb.2016.0290] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
The accessibility of eukaryotic genomes to the action of enzymes involved in transcription, replication and repair is maintained despite the organization of DNA into nucleosomes. This access is often regulated by the action of ATP-dependent nucleosome remodellers. The INO80 class of nucleosome remodellers has unique structural features and it is implicated in a diverse array of functions, including transcriptional regulation, DNA replication and DNA repair. Underlying these diverse functions is the catalytic activity of the main ATPase subunit, which in the context of a multisubunit complex can shift nucleosomes and carry out histone dimer exchange. In vitro studies showed that INO80 promotes replication fork progression on a chromatin template, while in vivo it was shown to facilitate replication fork restart after stalling and to help evict RNA polymerase II at transcribed genes following the collision of a replication fork with transcription. More recent work in yeast implicates INO80 in the general eviction and degradation of nucleosomes following high doses of oxidative DNA damage. Beyond these replication and repair functions, INO80 was shown to repress inappropriate transcription at promoters in the opposite direction to the coding sequence. Here we discuss the ways in which INO80's diverse functions help maintain genome integrity.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Jérôme Poli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,University of Montpellier and Centre de Recherche en Biologie Cellulaire (CRBM), UMR5237, CNRS, Montpellier 34095, Cedex 5, France
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland .,Faculty of Natural Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Manolis Papamichos-Chronakis
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
167
|
Ayala R, Willhoft O, Aramayo RJ, Wilkinson M, McCormack EA, Ocloo L, Wigley DB, Zhang X. Structure and regulation of the human INO80-nucleosome complex. Nature 2018; 556:391-395. [PMID: 29643506 PMCID: PMC5937682 DOI: 10.1038/s41586-018-0021-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/16/2018] [Indexed: 01/15/2023]
Abstract
Access to DNA within nucleosomes is required for a variety of processes in cells including transcription, replication and repair. Consequently, cells encode multiple systems that remodel nucleosomes. These complexes can be simple, involving one or a few protein subunits, or more complicated multi-subunit machines 1 . Biochemical studies2-4 have placed the motor domains of several chromatin remodellers in the superhelical location 2 region of the nucleosome. Structural studies of yeast Chd1 and Snf2-a subunit in the complex with the capacity to remodel the structure of chromatin (RSC)-in complex with nucleosomes5-7 have provided insights into the basic mechanism of nucleosome sliding performed by these complexes. However, how larger, multi-subunit remodelling complexes such as INO80 interact with nucleosomes and how remodellers carry out functions such as nucleosome sliding 8 , histone exchange 9 and nucleosome spacing10-12 remain poorly understood. Although some remodellers work as monomers 13 , others work as highly cooperative dimers11, 14, 15. Here we present the structure of the human INO80 chromatin remodeller with a bound nucleosome, which reveals that INO80 interacts with nucleosomes in a previously undescribed manner: the motor domains are located on the DNA at the entry point to the nucleosome, rather than at superhelical location 2. The ARP5-IES6 module of INO80 makes additional contacts on the opposite side of the nucleosome. This arrangement enables the histone H3 tails of the nucleosome to have a role in the regulation of the activities of the INO80 motor domain-unlike in other characterized remodellers, for which H4 tails have been shown to regulate the motor domains.
Collapse
Affiliation(s)
- Rafael Ayala
- Section of Structural Biology, Dept. Medicine, Imperial College London, London, UK
| | - Oliver Willhoft
- Section of Structural Biology, Dept. Medicine, Imperial College London, London, UK
| | - Ricardo J Aramayo
- Section of Structural Biology, Dept. Medicine, Imperial College London, London, UK
| | - Martin Wilkinson
- Section of Structural Biology, Dept. Medicine, Imperial College London, London, UK
| | | | - Lorraine Ocloo
- Section of Structural Biology, Dept. Medicine, Imperial College London, London, UK
| | - Dale B Wigley
- Section of Structural Biology, Dept. Medicine, Imperial College London, London, UK.
| | - Xiaodong Zhang
- Section of Structural Biology, Dept. Medicine, Imperial College London, London, UK.
| |
Collapse
|
168
|
Vinayachandran V, Reja R, Rossi MJ, Park B, Rieber L, Mittal C, Mahony S, Pugh BF. Widespread and precise reprogramming of yeast protein-genome interactions in response to heat shock. Genome Res 2018; 28:357-366. [PMID: 29444801 PMCID: PMC5848614 DOI: 10.1101/gr.226761.117] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/25/2018] [Indexed: 11/24/2022]
Abstract
Gene expression is controlled by a variety of proteins that interact with the genome. Their precise organization and mechanism of action at every promoter remains to be worked out. To better understand the physical interplay among genome-interacting proteins, we examined the temporal binding of a functionally diverse subset of these proteins: nucleosomes (H3), H2AZ (Htz1), SWR (Swr1), RSC (Rsc1, Rsc3, Rsc58, Rsc6, Rsc9, Sth1), SAGA (Spt3, Spt7, Ubp8, Sgf11), Hsf1, TFIID (Spt15/TBP and Taf1), TFIIB (Sua7), TFIIH (Ssl2), FACT (Spt16), Pol II (Rpb3), and Pol II carboxyl-terminal domain (CTD) phosphorylation at serines 2, 5, and 7. They were examined under normal and acute heat shock conditions, using the ultrahigh resolution genome-wide ChIP-exo assay in Saccharomyces cerevisiae Our findings reveal a precise positional organization of proteins bound at most genes, some of which rapidly reorganize within minutes of heat shock. This includes more precise positional transitions of Pol II CTD phosphorylation along the 5' ends of genes than previously seen. Reorganization upon heat shock includes colocalization of SAGA with promoter-bound Hsf1, a change in RSC subunit enrichment from gene bodies to promoters, and Pol II accumulation within promoter/+1 nucleosome regions. Most of these events are widespread and not necessarily coupled to changes in gene expression. Together, these findings reveal protein-genome interactions that are robustly reprogrammed in precise and uniform ways far beyond what is elicited by changes in gene expression.
Collapse
Affiliation(s)
- Vinesh Vinayachandran
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rohit Reja
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bongsoo Park
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lila Rieber
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chitvan Mittal
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
169
|
Chereji RV, Ramachandran S, Bryson TD, Henikoff S. Precise genome-wide mapping of single nucleosomes and linkers in vivo. Genome Biol 2018; 19:19. [PMID: 29426353 PMCID: PMC5807854 DOI: 10.1186/s13059-018-1398-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022] Open
Abstract
We developed a chemical cleavage method that releases single nucleosome dyad-containing fragments, allowing us to precisely map both single nucleosomes and linkers with high accuracy genome-wide in yeast. Our single nucleosome positioning data reveal that nucleosomes occupy preferred positions that differ by integral multiples of the DNA helical repeat. By comparing nucleosome dyad positioning maps to existing genomic and transcriptomic data, we evaluated the contributions of sequence, transcription, and histones H1 and H2A.Z in defining the chromatin landscape. We present a biophysical model that neglects DNA sequence and shows that steric occlusion suffices to explain the salient features of nucleosome positioning.
Collapse
Affiliation(s)
- Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Srinivas Ramachandran
- Howard Hughes Medical Institute and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Terri D Bryson
- Howard Hughes Medical Institute and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
170
|
Schwarz M, Schall K, Kallis E, Eustermann S, Guariento M, Moldt M, Hopfner KP, Michaelis J. Single-molecule nucleosome remodeling by INO80 and effects of histone tails. FEBS Lett 2018; 592:318-331. [PMID: 29331030 DOI: 10.1002/1873-3468.12973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 01/30/2023]
Abstract
Genome maintenance and integrity requires continuous alterations of the compaction state of the chromatin structure. Chromatin remodelers, among others the INO80 complex, help organize chromatin by repositioning, reshaping, or evicting nucleosomes. We report on INO80 nucleosome remodeling, assayed by single-molecule Foerster resonance energy transfer on canonical nucleosomes as well as nucleosomes assembled from tailless histones. Nucleosome repositioning by INO80 is a processively catalyzed reaction. During the initiation of remodeling, probed by the INO80 bound state, the nucleosome reveals structurally heterogeneous states for tailless nucleosomes (in contrast to wild-type nucleosomes). We, therefore, propose an altered energy landscape for the INO80-mediated nucleosome sliding reaction in the absence of histone tails.
Collapse
Affiliation(s)
- Marianne Schwarz
- Faculty of Natural Sciences, Institute of Biophysics, Ulm University, Germany.,Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kevin Schall
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eleni Kallis
- Faculty of Natural Sciences, Institute of Biophysics, Ulm University, Germany
| | - Sebastian Eustermann
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mara Guariento
- Faculty of Natural Sciences, Institute of Biophysics, Ulm University, Germany
| | - Manuela Moldt
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Michaelis
- Faculty of Natural Sciences, Institute of Biophysics, Ulm University, Germany
| |
Collapse
|
171
|
Li J, Sagendorf JM, Chiu TP, Pasi M, Perez A, Rohs R. Expanding the repertoire of DNA shape features for genome-scale studies of transcription factor binding. Nucleic Acids Res 2018; 45:12877-12887. [PMID: 29165643 PMCID: PMC5728407 DOI: 10.1093/nar/gkx1145] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022] Open
Abstract
Uncovering the mechanisms that affect the binding specificity of transcription factors (TFs) is critical for understanding the principles of gene regulation. Although sequence-based models have been used successfully to predict TF binding specificities, we found that including DNA shape information in these models improved their accuracy and interpretability. Previously, we developed a method for modeling DNA binding specificities based on DNA shape features extracted from Monte Carlo (MC) simulations. Prediction accuracies of our models, however, have not yet been compared to accuracies of models incorporating DNA shape information extracted from X-ray crystallography (XRC) data or Molecular Dynamics (MD) simulations. Here, we integrated DNA shape information extracted from MC or MD simulations and XRC data into predictive models of TF binding and compared their performance. Models that incorporated structural information consistently showed improved performance over sequence-based models regardless of data source. Furthermore, we derived and validated nine additional DNA shape features beyond our original set of four features. The expanded repertoire of 13 distinct DNA shape features, including six intra-base pair and six inter-base pair parameters and minor groove width, is available in our R/Bioconductor package DNAshapeR and enables a comprehensive structural description of the double helix on a genome-wide scale.
Collapse
Affiliation(s)
- Jinsen Li
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Jared M Sagendorf
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Tsu-Pei Chiu
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Marco Pasi
- Centre for Biomolecular Sciences and School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alberto Perez
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Remo Rohs
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
172
|
Resetting the Yeast Epigenome with Human Nucleosomes. Cell 2017; 171:1508-1519.e13. [PMID: 29198523 DOI: 10.1016/j.cell.2017.10.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/11/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023]
Abstract
Humans and yeast are separated by a billion years of evolution, yet their conserved histones retain central roles in gene regulation. Here, we "reset" yeast to use core human nucleosomes in lieu of their own (a rare event taking 20 days), which initially only worked with variant H3.1. The cells adapt by acquiring suppressor mutations in cell-division genes or by acquiring certain aneuploid states. Converting five histone residues to their yeast counterparts restored robust growth. We reveal that humanized nucleosomes are positioned according to endogenous yeast DNA sequence and chromatin-remodeling network, as judged by a yeast-like nucleosome repeat length. However, human nucleosomes have higher DNA occupancy, globally reduce RNA content, and slow adaptation to new conditions by delaying chromatin remodeling. These humanized yeasts (including H3.3) pose fundamental new questions about how chromatin is linked to many cell processes and provide a platform to study histone variants via yeast epigenome reprogramming.
Collapse
|
173
|
Roy K, Chanfreau GF. A global function for transcription factors in assisting RNA polymerase II termination. Transcription 2017; 9:41-46. [PMID: 29106321 DOI: 10.1080/21541264.2017.1300121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The role of transcription factors (TFs) on nucleosome positioning, RNA polymerase recruitment, and transcription initiation has been extensively characterized. Here, we propose that a subset of TFs such as Reb1, Abf1, Rap1, and TFIIIB also serve a major function in partitioning transcription units by assisting the Nrd1p-Nab3p-Sen1p Pol II termination pathway.
Collapse
Affiliation(s)
- Kevin Roy
- a Department of Chemistry and Biochemistry and the Molecular Biology Institute , University of California Los Angeles , CA , USA
| | - Guillaume F Chanfreau
- a Department of Chemistry and Biochemistry and the Molecular Biology Institute , University of California Los Angeles , CA , USA
| |
Collapse
|
174
|
Sun L, Luk E. Dual function of Swc5 in SWR remodeling ATPase activation and histone H2A eviction. Nucleic Acids Res 2017; 45:9931-9946. [PMID: 28973436 PMCID: PMC5622370 DOI: 10.1093/nar/gkx589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
The chromatin remodeler SWR deposits histone H2A.Z at promoters and other regulatory sites via an ATP-driven histone exchange reaction that replaces nucleosomal H2A with H2A.Z. Simultaneous binding of SWR to both H2A nucleosome and free H2A.Z induces SWR ATPase activity and engages the histone exchange mechanism. Swc5 is a conserved subunit of the 14-polypeptide SWR complex that is required for the histone exchange reaction, but its molecular role is unknown. We found that Swc5, although not required for substrate binding, is required for SWR ATPase stimulation, suggesting that Swc5 is required to couple substrate recognition to ATPase activation. A biochemical complementation assay was developed to show that a unique, conserved domain at the C-terminus of Swc5, called Bucentaur (BCNT), is essential for the histone exchange activity of SWR, whereas an acidic region at the N-terminus is required for optimal SWR function. In vitro studies showed the acidic N-terminus of Swc5 preferentially binds to the H2A–H2B dimer and exhibits histone chaperone activity. We propose that an auxiliary function of Swc5 in SWR is to assist H2A ejection as H2A.Z is inserted into the nucleosome.
Collapse
Affiliation(s)
- Lu Sun
- Department of Biochemistry and Cell Biology, Stony Brook University, NY 11794-5215, USA
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, NY 11794-5215, USA
| |
Collapse
|
175
|
Imre L, Simándi Z, Horváth A, Fenyőfalvi G, Nánási P, Niaki EF, Hegedüs É, Bacsó Z, Weyemi U, Mauser R, Ausio J, Jeltsch A, Bonner W, Nagy L, Kimura H, Szabó G. Nucleosome stability measured in situ by automated quantitative imaging. Sci Rep 2017; 7:12734. [PMID: 28986581 PMCID: PMC5630628 DOI: 10.1038/s41598-017-12608-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Current approaches have limitations in providing insight into the functional properties of particular nucleosomes in their native molecular environment. Here we describe a simple and powerful method involving elution of histones using intercalators or salt, to assess stability features dependent on DNA superhelicity and relying mainly on electrostatic interactions, respectively, and measurement of the fraction of histones remaining chromatin-bound in the individual nuclei using histone type- or posttranslational modification- (PTM-) specific antibodies and automated, quantitative imaging. The method has been validated in H3K4me3 ChIP-seq experiments, by the quantitative assessment of chromatin loop relaxation required for nucleosomal destabilization, and by comparative analyses of the intercalator and salt induced release from the nucleosomes of different histones. The accuracy of the assay allowed us to observe examples of strict association between nucleosome stability and PTMs across cell types, differentiation state and throughout the cell-cycle in close to native chromatin context, and resolve ambiguities regarding the destabilizing effect of H2A.X phosphorylation. The advantages of the in situ measuring scenario are demonstrated via the marked effect of DNA nicking on histone eviction that underscores the powerful potential of topological relaxation in the epigenetic regulation of DNA accessibility.
Collapse
Affiliation(s)
- László Imre
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Zoltán Simándi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Attila Horváth
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - György Fenyőfalvi
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Erfaneh Firouzi Niaki
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Éva Hegedüs
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Zsolt Bacsó
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary
| | - Urbain Weyemi
- Center for Cancer Research National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Rebekka Mauser
- Institute of Biochemistry, Stuttgart University, Stuttgart, Germany
| | - Juan Ausio
- University of Victoria, Department of Biochemistry, Victoria, BC, V8W 3P6, Canada
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Stuttgart, Germany
| | - William Bonner
- Center for Cancer Research National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - László Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4032, Hungary.,Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.,MTA-DE "Lendulet" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4032, Hungary.
| |
Collapse
|
176
|
García A, González S, Antequera F. Nucleosomal organization and DNA base composition patterns. Nucleus 2017; 8:469-474. [PMID: 28635365 PMCID: PMC5703254 DOI: 10.1080/19491034.2017.1337611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 11/23/2022] Open
Abstract
Nucleosomes are the basic units of chromatin. They compact the genome inside the nucleus and regulate the access of proteins to DNA. In the yeast genome, most nucleosomes occupy well-defined positions, which are maintained under many different physiological situations and genetic backgrounds. Although several short sequence elements have been described that favor or reduce the affinity between histones and DNA, the extent to which the DNA sequence affects nucleosome positioning in the genomic context remains unclear. Recent analyses indicate that the base composition pattern of mononucleosomal DNA differs among species, and that the same sequence elements have a different impact on nucleosome positioning in different genomes despite the high level of phylogenetic conservation of histones. These studies have also shown that the DNA sequence contributes to nucleosome positioning to the point that it is possible to design synthetic DNA molecules capable of generating regular and species-specific nucleosomal patterns in vivo.
Collapse
Affiliation(s)
- Alicia García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Sara González
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
177
|
Xue Y, Pradhan SK, Sun F, Chronis C, Tran N, Su T, Van C, Vashisht A, Wohlschlegel J, Peterson CL, Timmers HTM, Kurdistani SK, Carey MF. Mot1, Ino80C, and NC2 Function Coordinately to Regulate Pervasive Transcription in Yeast and Mammals. Mol Cell 2017; 67:594-607.e4. [PMID: 28735899 DOI: 10.1016/j.molcel.2017.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 01/02/2023]
Abstract
Pervasive transcription initiates from cryptic promoters and is observed in eukaryotes ranging from yeast to mammals. The Set2-Rpd3 regulatory system prevents cryptic promoter function within expressed genes. However, conserved systems that control pervasive transcription within intergenic regions have not been well established. Here we show that Mot1, Ino80 chromatin remodeling complex (Ino80C), and NC2 co-localize on chromatin and coordinately suppress pervasive transcription in S. cerevisiae and murine embryonic stem cells (mESCs). In yeast, all three proteins bind subtelomeric heterochromatin through a Sir3-stimulated mechanism and to euchromatin via a TBP-stimulated mechanism. In mESCs, the proteins bind to active and poised TBP-bound promoters along with promoters of polycomb-silenced genes apparently lacking TBP. Depletion of Mot1, Ino80C, or NC2 by anchor away in yeast or RNAi in mESCs leads to near-identical transcriptome phenotypes, with new subtelomeric transcription in yeast, and greatly increased pervasive transcription in both yeast and mESCs.
Collapse
Affiliation(s)
- Yong Xue
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Suman K Pradhan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Fei Sun
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Constantinos Chronis
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nancy Tran
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Christopher Van
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - H T Marc Timmers
- Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
178
|
Kasinathan S, Zentner GE, Xin B, Rohs R, Henikoff S. Correspondence: Reply to 'DNA shape is insufficient to explain binding'. Nat Commun 2017; 8:15644. [PMID: 28580953 PMCID: PMC5465350 DOI: 10.1038/ncomms15644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sivakanthan Kasinathan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98195, USA
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Beibei Xin
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA
| | - Remo Rohs
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
179
|
Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 2017; 18:548-562. [PMID: 28537572 DOI: 10.1038/nrm.2017.47] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in genomics technology have provided the means to probe myriad chromatin interactions at unprecedented spatial and temporal resolution. This has led to a profound understanding of nucleosome organization within the genome, revealing that nucleosomes are highly dynamic. Nucleosome dynamics are governed by a complex interplay of histone composition, histone post-translational modifications, nucleosome occupancy and positioning within chromatin, which are influenced by numerous regulatory factors, including general regulatory factors, chromatin remodellers, chaperones and polymerases. It is now known that these dynamics regulate diverse cellular processes ranging from gene transcription to DNA replication and repair.
Collapse
|
180
|
Kubik S, Bruzzone MJ, Shore D. Establishing nucleosome architecture and stability at promoters: Roles of pioneer transcription factors and the RSC chromatin remodeler. Bioessays 2017; 39. [PMID: 28345796 DOI: 10.1002/bies.201600237] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Improvements in deep sequencing, together with methods to rapidly deplete essential transcription factors (TFs) and chromatin remodelers, have recently led to a more detailed picture of promoter nucleosome architecture in yeast and its relationship to transcriptional regulation. These studies revealed that ∼40% of all budding yeast protein-coding genes possess a unique promoter structure, where we propose that an unusually unstable nucleosome forms immediately upstream of the transcription start site (TSS). This "fragile" nucleosome (FN) promoter architecture relies on the combined action of the essential RSC (Remodels Structure of Chromatin) nucleosome remodeler and pioneer transcription factors (PTFs). FNs are associated with genes whose expression is high, coupled to cell growth, and characterized by low cell-to-cell variability (noise), suggesting that they may promote these features. Recent studies in metazoans suggest that the presence of dynamic nucleosomes upstream of the TSS at highly expressed genes may be conserved throughout evolution.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
181
|
Vainshtein Y, Rippe K, Teif VB. NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data. BMC Genomics 2017; 18:158. [PMID: 28196481 PMCID: PMC5309995 DOI: 10.1186/s12864-017-3580-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/10/2017] [Indexed: 12/21/2022] Open
Abstract
Background Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. Results Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Conclusions The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3580-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yevhen Vainshtein
- Functional Genomics Group, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569, Stuttgart, Germany.
| | - Karsten Rippe
- Research Group Genome Organization & Function, German Cancer Research Center (DKFZ) and Bioquant, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Vladimir B Teif
- School of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK.
| |
Collapse
|
182
|
Winger J, Bowman GD. The Sequence of Nucleosomal DNA Modulates Sliding by the Chd1 Chromatin Remodeler. J Mol Biol 2017; 429:808-822. [PMID: 28189426 DOI: 10.1016/j.jmb.2017.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
Chromatin remodelers are ATP-dependent enzymes that are critical for reorganizing and repositioning nucleosomes in concert with many basic cellular processes. For the chromodomain helicase DNA-binding protein 1 (Chd1) remodeler, nucleosome sliding has been shown to depend on the DNA flanking the nucleosome, transcription factor binding at the nucleosome edge, and the presence of the histone H2A/H2B dimer on the entry side. Here, we report that Chd1 is also sensitive to the sequence of DNA within the nucleosome and slides nucleosomes made with the 601 Widom positioning sequence asymmetrically. Kinetic and equilibrium experiments show that poly(dA:dT) tracts perturb remodeling reactions if within one and a half helical turns of superhelix location 2 (SHL2), where the Chd1 ATPase engages nucleosomal DNA. These sequence-dependent effects do not rely on the Chd1 DNA-binding domain and are not due to differences in nucleosome affinity. Using site-specific cross-linking, we show that internal poly(dA:dT) tracts do not block the engagement of the ATPase motor with SHL2, yet they promote multiple translational positions of DNA with respect to both Chd1 and the histone core. We speculate that Chd1 senses the sequence-dependent response of DNA as the remodeler ATPase perturbs the duplex at SHL2. These results suggest that the sequence sensitivity of histones and remodelers occur at unique segments of DNA on the nucleosome, allowing them to work together or in opposition to determine nucleosome positions throughout the genome.
Collapse
Affiliation(s)
- Jessica Winger
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregory D Bowman
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
183
|
El Kennani S, Adrait A, Shaytan AK, Khochbin S, Bruley C, Panchenko AR, Landsman D, Pflieger D, Govin J. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones. Epigenetics Chromatin 2017; 10:2. [PMID: 28096900 PMCID: PMC5223428 DOI: 10.1186/s13072-016-0109-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Histones and histone variants are essential components of the nuclear chromatin. While mass spectrometry has opened a large window to their characterization and functional studies, their identification from proteomic data remains challenging. Indeed, the current interpretation of mass spectrometry data relies on public databases which are either not exhaustive (Swiss-Prot) or contain many redundant entries (UniProtKB or NCBI). Currently, no protein database is ideally suited for the analysis of histones and the complex array of mammalian histone variants. RESULTS We propose two proteomics-oriented manually curated databases for mouse and human histone variants. We manually curated >1700 gene, transcript and protein entries to produce a non-redundant list of 83 mouse and 85 human histones. These entries were annotated in accordance with the current nomenclature and unified with the "HistoneDB2.0 with Variants" database. This resource is provided in a format that can be directly read by programs used for mass spectrometry data interpretation. In addition, it was used to interpret mass spectrometry data acquired on histones extracted from mouse testis. Several histone variants, which had so far only been inferred by homology or detected at the RNA level, were detected by mass spectrometry, confirming the existence of their protein form. CONCLUSIONS Mouse and human histone entries were collected from different databases and subsequently curated to produce a non-redundant protein-centric resource, MS_HistoneDB. It is dedicated to the proteomic study of histones in mouse and human and will hopefully facilitate the identification and functional study of histone variants.
Collapse
Affiliation(s)
- Sara El Kennani
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Annie Adrait
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Saadi Khochbin
- CNRS UMR 5309 INSERM U1209, Institute of Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Christophe Bruley
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Delphine Pflieger
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Jérôme Govin
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
184
|
Bowman GD, McKnight JN. Sequence-specific targeting of chromatin remodelers organizes precisely positioned nucleosomes throughout the genome. Bioessays 2016; 39:1-8. [PMID: 27862071 DOI: 10.1002/bies.201600183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eukaryotic genomes are functionally organized into chromatin, a compact packaging of nucleoproteins with the basic repeating unit known as the nucleosome. A major focus for the chromatin field has been understanding what rules govern nucleosome positioning throughout the genome, and here we review recent findings using a novel, sequence-targeted remodeling enzyme. Nucleosomes are often packed into evenly spaced arrays that are reproducibly positioned, but how such organization is established and maintained through dramatic events such as DNA replication is poorly understood. We hypothesize that a major fraction of positioned nucleosomes arises from sequence-specific targeting of chromatin remodelers to generate "founding" nucleosomes, providing reproducible, predictable, and condition-specific nucleation sites against which neighboring nucleosomes are packed into evenly spaced arrays.
Collapse
Affiliation(s)
- Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
185
|
Stringing Nucleosome Necklaces in the Yeast Genome. Cell 2016; 167:600-601. [PMID: 27768882 DOI: 10.1016/j.cell.2016.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a reconstituted system containing genomic DNA and purified proteins from yeast, Krietenstein et al. uncover the direct contributions of key factors in nucleosome positioning and conceptualize the process into four distinct stages.
Collapse
|
186
|
Pulice JL, Kadoch C. Composition and Function of Mammalian SWI/SNF Chromatin Remodeling Complexes in Human Disease. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:53-60. [PMID: 28408647 DOI: 10.1101/sqb.2016.81.031021] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mammalian SWI/SNF (BAF) chromatin remodeling complexes play critical roles in maintaining chromatin architecture and gene expression. Genomic sequencing efforts over the past several years have unveiled a major role for these complexes in the development of human cancer as well as neurologic disease, prompting the need to interrogate underlying mechanisms and to develop new methods to comprehensively understand mSWI/SNF complex function. Here we discuss the emerging insights from genetic, biochemical, and functional genomic studies in the field and suggest approaches toward further basic investigations, as well as therapeutic targeting of chromatin remodeling machinery.
Collapse
Affiliation(s)
- John L Pulice
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02215
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02215
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| |
Collapse
|