151
|
Zhang R, Yan X, Guo H, Hu L, Yan C, Wang Y, Yao Y. Supramolecular polymer networks based on pillar[5]arene: synthesis, characterization and application in the Fenton reaction. Chem Commun (Camb) 2020; 56:948-951. [DOI: 10.1039/c9cc09155f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New supramolecular networks with ferrocene units were efficiently constructed via orthogonal pillar[5]arene-based host–guest and H-bonding interaction. It can be applied in Fenton-like reaction in water.
Collapse
Affiliation(s)
- Runmiao Zhang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Xin Yan
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Hao Guo
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Lanping Hu
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- P. R. China
| |
Collapse
|
152
|
Ding JD, Jin WJ, Pei Z, Pei Y. Morphology transformation of pillararene-based supramolecular nanostructures. Chem Commun (Camb) 2020; 56:10113-10126. [DOI: 10.1039/d0cc03682j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this feature article, the construction methods and the factors that influence the morphological transformation of pillararene-based supramolecular nanostructures are reviewed.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Wen-Juan Jin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
153
|
Zhang H, Han J. The synthesis and applications of porphyrin-containing pillararenes. Org Biomol Chem 2020; 18:4894-4905. [DOI: 10.1039/d0ob00763c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress regarding the combination of porphyrins and pillararenes into hybrid compounds and supramolecular systems is summarized in this review.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
154
|
Wu J, Li B, Yang Y. Separation of Bromoalkanes Isomers by Nonporous Adaptive Crystals of Leaning Pillar[6]arene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911965] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)College of ChemistryJilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and MaterialsInstitute of Theoretical ChemistryJilin University Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)College of ChemistryJilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
155
|
Santos ECS, Dos Santos TC, Fernandes TS, Jorge FL, Nascimento V, Madriaga VGC, Cordeiro PS, Checca NR, Da Costa NM, Pinto LFR, Ronconi CM. A reversible, switchable pH-driven quaternary ammonium pillar[5]arene nanogate for mesoporous silica nanoparticles. J Mater Chem B 2019; 8:703-714. [PMID: 31867589 DOI: 10.1039/c9tb00946a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we describe the assembly and pH-driven operation of two nanocarriers based on non-functionalized (MCM-41) and carboxylate-functionalized (MCM-41-COOH) containers loaded with the anticancer drug doxorubicin (DOX) and capped by quaternary ammonium pillar[5]arene (P[5]A) nanogates. MCM-41 and MCM-41-COOH containers were synthesized and transmission and scanning electron microscopies showed nanoparticles with spherical morphology and dimensions of 85 ± 13 nm. The nanochannels of MCM-41 loaded with DOX were gated through the electrostatic interactions between P[5]A and the silanolate groups formed at the silica-water interface, yielding the MCM-41-DOX-P[5]A nanocarrier. The second nanocarrier was gated through the electrostatic interactions between the carboxylate groups mounted on the surface of MCM-41 and P[5]A, resulting in the MCM-41-COO-DOX-P[5]A nanocarrier. The DOX release profiles from both nanocarriers were investigated by UV-vis spectroscopy at different pH values (2.0, 5.5 and 7.4) and also in the presence of ions, such as citrate3- (19 mmol L-1) and Zn2+ (1.2 and 50 mmol L-1) at 37 °C. MCM-41-COO-DOX-P[5]A can be turned on and off eight times through the formation and breaking of electrostatic interactions. In vitro studies show that MCM-41-COO-DOX-P[5]A can penetrate and release DOX in the nucleus of human breast adenocarcinoma MCF-7 cancer cells leading to a pronounced cytotoxic effect. Therefore, the fabricated nanocarrier based on a water-soluble cationic pillar[5]arene nanogate, which is reversibly opened and closed by electrostatic interactions, can be considered as a promising drug transport and delivery technique for future cancer therapy.
Collapse
Affiliation(s)
- Evelyn C S Santos
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, Outeiro São João Batista s/n, Centro, 24020-150, Niterói, RJ, Brazil.
| | - Thiago C Dos Santos
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, Outeiro São João Batista s/n, Centro, 24020-150, Niterói, RJ, Brazil.
| | - Tamires S Fernandes
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, Outeiro São João Batista s/n, Centro, 24020-150, Niterói, RJ, Brazil.
| | - Fernanda L Jorge
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), André Cavalcanti 37, Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Vanessa Nascimento
- Departamento de Química Orgânica, Universidade Federal Fluminense, Campus do Valonguinho, Outeiro São João Batista s/n, Centro, 24020-150, Niterói, RJ, Brazil
| | - Vinicius G C Madriaga
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, Outeiro São João Batista s/n, Centro, 24020-150, Niterói, RJ, Brazil.
| | - Pâmella S Cordeiro
- Departamento de Química Orgânica, Universidade Federal Fluminense, Campus do Valonguinho, Outeiro São João Batista s/n, Centro, 24020-150, Niterói, RJ, Brazil
| | - Noemi R Checca
- Centro Brasileiro de Pesquisas Físicas (CBPF), Dr Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ, Brazil
| | - Nathalia Meireles Da Costa
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), André Cavalcanti 37, Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luís Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), André Cavalcanti 37, Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Célia M Ronconi
- Departamento de Química Inorgânica, Universidade Federal Fluminense, Campus do Valonguinho, Outeiro São João Batista s/n, Centro, 24020-150, Niterói, RJ, Brazil.
| |
Collapse
|
156
|
Polyelectrolyte nanoparticles based on functionalized silica and pillar[5]arene derivatives for recognition of model proteins. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2667-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
157
|
Yang JL, Yang YH, Xun YP, Wei KK, Gu J, Chen M, Yang LJ. Novel Amino-pillar[5]arene as a Fluorescent Probe for Highly Selective Detection of Au 3+ Ions. ACS OMEGA 2019; 4:17903-17909. [PMID: 31681900 PMCID: PMC6822224 DOI: 10.1021/acsomega.9b02951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
A novel fluorescent probe, amino-pillar[5]arene (APA), was prepared via a green, effective, and convenient synthetic method, which was characterized by nuclear magnetic resonance (NMR), infrared (IR), and high-resolution mass spectrometry. The fluorescence sensing behavior of the APA probe toward 22 metal ions in aqueous solutions were studied by fluorescence spectroscopy. The results showed that APA could be used as a selective fluorescent probe for the specificity detection of Au3+ ions. Moreover, the detection characteristics were investigated by fluorescence spectral titration, pH effect, fluorescence competitive experiments, Job's plot analysis, 1H NMR, and IR. The results indicated that detection of Au3+ ions by the APA probe could be achieved in the range of pH 1-13.5 and that other coexisting metal ions did not cause any marked interference. The titration analysis results indicated that the fluorescence intensity decreased as the concentration of Au3+ ions increased, with an excellent correlation (R 2 = 0.9942). The detection limit was as low as 7.59 × 10-8 mol·L-1, and the binding ratio of the APA probe with Au3+ ions was 2:1. Therefore, the APA probe has potential applications for detecting Au3+ ions in the environment and in living organisms.
Collapse
Affiliation(s)
- Jun-Li Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yun-Han Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yu-Peng Xun
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Ke-Ke Wei
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Jie Gu
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Mei Chen
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Li-Juan Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
158
|
Liu Y, Vashisth H. Conformational dynamics and interfacial interactions of peptide-appended pillar[5]arene water channels in biomimetic membranes. Phys Chem Chem Phys 2019; 21:22711-22721. [PMID: 31454001 DOI: 10.1039/c9cp04408f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide appended pillar[5]arene (PAP) is an artificial water channel resembling biological water channel proteins, which has shown a significant potential for designing bioinspired water purification systems. Given that PAP channels need to be incorporated at a high density in membrane matrices, it is critical to examine the role of channel-channel and channel-membrane interactions in governing the structural and functional characteristics of channels. To resolve the atomic-scale details of these interactions, we have carried out atomistic molecular dynamics (MD) simulations of multiple PAP channels inserted in a lipid or a block-copolymer (BCP) membrane matrix. Classical MD simulations on a sub-microsecond timescale showed clustering of channels only in the lipid membrane, but enhanced sampling MD simulations showed thermodynamically-favorable dimerized states of channels in both lipid and BCP membranes. The dimerized configurations of channels, with an extensive buried surface area, were stabilized via interactions between the aromatic groups in the peptide arms of neighboring channels. The conformational metrics characterizing the orientational and structural changes in channels revealed a higher flexibility in the lipid membrane as opposed to the BCP membrane although hydrogen bonds between the channel and the membrane molecules were not a major contributor to the stability of channels in the BCP membrane. We also found that the channels undergo wetting/dewetting transitions in both lipid and BCP membranes with a marginally higher probability of undergoing a dewetting transition in the BCP membrane. Collectively, these results highlight the role of channel dynamics in governing channel-channel and channel-membrane interfacial interactions, and provide atomic-scale insights needed to design stable and functional biomimetic membranes for efficient separations.
Collapse
Affiliation(s)
- Yong Liu
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA.
| | | |
Collapse
|
159
|
Lavendomme R, Desroches F, Moerkerke S, Topić F, Wouters J, Rissanen K, Luhmer M, Jabin I. Selective recognition of small hydrogen bond acceptors by a calix[6]arene-based molecular container. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1679374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre deBruxelles (ULB), Brussels, Belgium
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Florent Desroches
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Steven Moerkerke
- Laboratoire de Chimie Organique, Université libre deBruxelles (ULB), Brussels, Belgium
| | - Filip Topić
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Johan Wouters
- Département de Chimie, Université de Namur (UNamur), Namur, Belgium
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Michel Luhmer
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre deBruxelles (ULB), Brussels, Belgium
| |
Collapse
|
160
|
Wang M, Zhou J, Li E, Zhou Y, Li Q, Huang F. Separation of Monochlorotoluene Isomers by Nonporous Adaptive Crystals of Perethylated Pillar[5]arene and Pillar[6]arene. J Am Chem Soc 2019; 141:17102-17106. [DOI: 10.1021/jacs.9b09988] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mengbin Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yujuan Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
161
|
Fa S, Kakuta T, Yamagishi TA, Ogoshi T. Conformation and Planar Chirality of Pillar[n]arenes. CHEM LETT 2019. [DOI: 10.1246/cl.190544] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tada-aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
162
|
Mirzaei S, Wang D, Lindeman SV, Timerghazin QK, Rathore R. Redox-Induced Molecular Actuators: The Case of Oxy-Alternate Bridged Cyclotetraveratrylene. Org Lett 2019; 21:7987-7991. [PMID: 31553195 DOI: 10.1021/acs.orglett.9b02971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a practical two-step approach for the synthesis of hybrid-bridge macrocyclic molecules that has been used to synthesize two novel oxy-alternate-bridged macrocyclic molecules, oxy-alternate cyclotetraveratrylene (O-altCTTV) and oxy-alternate cyclohexaveratrylene (O-altCHV). Electrochemistry, absorption spectroscopy, X-ray crystallography, and DFT calculations demonstrate that O-altCTTV acts as a redox-induced molecular actuator, as its switches from the open conformation in the neutral state to the closed conformation in the cation-radical state.
Collapse
Affiliation(s)
- Saber Mirzaei
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201-1881 , United States
| | - Denan Wang
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201-1881 , United States
| | - Sergey V Lindeman
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201-1881 , United States
| | - Qadir K Timerghazin
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201-1881 , United States
| | - Rajendra Rathore
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201-1881 , United States
| |
Collapse
|
163
|
Hua B, Shao L, Zhang Z, Liu J, Huang F. Cooperative Silver Ion-Pair Recognition by Peralkylated Pillar[5]arenes. J Am Chem Soc 2019; 141:15008-15012. [DOI: 10.1021/jacs.9b08257] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhihua Zhang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
164
|
Mejía L, Hadad C. Effect of the Euclidean dimensionality on the energy transfer up-conversion luminescence. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
165
|
Wang XQ, Li WJ, Wang W, Wen J, Zhang Y, Tan H, Yang HB. Construction of Type III-C Rotaxane-Branched Dendrimers and Their Anion-Induced Dimension Modulation Feature. J Am Chem Soc 2019; 141:13923-13930. [PMID: 31411028 DOI: 10.1021/jacs.9b06739] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Starting from a novel rotaxane building block with dendrimer growth sites being located at both the wheel and axle component, we realized the successful construction of a new family of rotaxane-branched dendrimers, i.e., Type III-C rotaxane-branched dendrimers, up to fourth generation as a highly branched [46]rotaxane through a controllable divergent approach. In the resultant rotaxane-branched dendrimers, the wheel components of the rotaxane units are located on the branches as well as at the branching points, making them excellent candidates to mimic the amplified collective molecular motions. Thus, taking advantage of the urea moiety inserted into the axle components of the rotaxane units as the binding sites, the addition or removal of acetate anion as stimulus endows the individual rotaxane unit a switchable feature that lead to a collective expansion-contraction motion of the integrated rotaxane-branched dendrimers, thus allowing for the remarkable and reversible size modulation. Such a three-dimensional size switching feature makes Type III-C rotaxane-branched dendrimers a very promising platform toward the fabrication of novel dynamic smart materials.
Collapse
Affiliation(s)
- Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| | - Jin Wen
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , 16610 Prague 6 , Czech Republic
| | - Ying Zhang
- Department of Chemistry , Beijing Normal University , Beijing 100050 , People's Republic of China
| | - Hongwei Tan
- Department of Chemistry , Beijing Normal University , Beijing 100050 , People's Republic of China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute , East China Normal University , 3663 N. Zhongshan Road , Shanghai 200062 , People's Republic of China
| |
Collapse
|
166
|
Lou X, Song N, Yang Y. Enhanced Solution and Solid‐State Emission and Tunable White‐Light Emission Harvested by Supramolecular Approaches. Chemistry 2019; 25:11975-11982. [DOI: 10.1002/chem.201902700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/12/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Xin‐Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of, Nano-Micro Architecture ChemistryCollege of ChemistryJilin University 2699 Qianjin Street Changchun 130012 P.R. China
| | - Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of, Nano-Micro Architecture ChemistryCollege of ChemistryJilin University 2699 Qianjin Street Changchun 130012 P.R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of, Nano-Micro Architecture ChemistryCollege of ChemistryJilin University 2699 Qianjin Street Changchun 130012 P.R. China
- The State Key Laboratory of Refractories and MetallurgySchool of Chemistry and Chemical EngineeringWuhan University of Science and Technology Wuhan 430081 P.R. China
| |
Collapse
|
167
|
Chen J, Ni H, Meng Z, Wang J, Huang X, Dong Y, Sun C, Zhang Y, Cui L, Li J, Jia X, Meng Q, Li C. Supramolecular trap for catching polyamines in cells as an anti-tumor strategy. Nat Commun 2019; 10:3546. [PMID: 31391464 PMCID: PMC6685945 DOI: 10.1038/s41467-019-11553-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/20/2019] [Indexed: 01/14/2023] Open
Abstract
Polyamines are essential for the growth of eukaryotic cells and can be dysregulated in tumors. Here we describe a strategy to deplete polyamines through host-guest encapsulation using a peptide-pillar[5]arene conjugate (P1P5A, P1 = RGDSK(N3)EEEE) as a supramolecular trap. The RGD in the peptide sequence allows the molecule to bind to integrin αvβ3-overexpressing tumor cells. The negative charged glutamic acid residues enhance the inclusion affinities between the pillar[5]arene and cationic polyamines via electrostatic interactions and facilitate the solubility of the conjugate in aqueous media. The trap P1P5A efficiently encapsulates polyamines with association constants of 105-106 M-1. We show that P1P5A has a wide spectrum of antitumor activities, and induces apoptosis via affecting the polyamine biosynthetic pathway. Experiments in vivo show that P1P5A effectively inhibits the growth of breast adenocarcinoma xenografts in female nude mice. This work reveals an approach for suppressing tumor growth by using supramolecular macrocycles to trap polyamines in tumor cells.
Collapse
Affiliation(s)
- Junyi Chen
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Hanzhi Ni
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China.,Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Xiayang Huang
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China
| | - Yansheng Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Chao Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Yadan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Lei Cui
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Li
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China
| | - Xueshun Jia
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China.
| | - Chunju Li
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China. .,Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China. .,Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.
| |
Collapse
|
168
|
Wang X, Chen RX, Sue ACH, Zuilhof H, Aquino AJ, Lischka H. Introduction of polar or nonpolar groups at the hydroquinone units can lead to the destruction of the columnar structure of Pillar[5]arenes. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
169
|
Recognition Selectivities of Lasso-Type Pseudo[1]rotaxane Based on a Mono-Ester-Functionalized Pillar[5]arene. Molecules 2019; 24:molecules24152693. [PMID: 31344932 PMCID: PMC6695583 DOI: 10.3390/molecules24152693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 12/25/2022] Open
Abstract
Two types of mono-ester-functionalized pillar[5]arenes, P1 and P2, bearing different side-chain groups, were synthesized. Their host–guest complexation and self-inclusion properties were studied by 1H NMR and 2D nuclear overhauser effect spectroscopy (NOESY) NMR measurements. The results showed that the substituents on their phenolic units have a great influence on the self-assembly of both pillar[5]arenes, although they both could form stable pseudo[1]rotaxanes at room temperature. When eight bulky 4-brombutyloxy groups were capped on the cavity, instead of methoxy groups, pseudo[1]rotaxane P1 became less stable and its locked ester group in the inner space of cavity was not as deep as P2, leading to distinctly different host–guest properties between P1 and P2 with 1,6-dibromohexane. Moreover, pillar[5]arene P1 displayed effective molecular recognition toward 1,6-dichlorohexane and 1,2-bromoethane among the guest dihalides. In addition, the self-complex models and stabilities between P1 and P2 were also studied by computational modeling and experimental calculations.
Collapse
|
170
|
Wu JR, Yang YW. Geminiarene: Molecular Scale Dual Selectivity for Chlorobenzene and Chlorocyclohexane Fractionation. J Am Chem Soc 2019; 141:12280-12287. [DOI: 10.1021/jacs.9b03559] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
171
|
Affiliation(s)
- Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi’an Shaanxi 710069 China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| | - Lingyan Gao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| |
Collapse
|
172
|
Wang X, Wu JR, Liang F, Yang YW. In Situ Gold Nanoparticle Synthesis Mediated by a Water-Soluble Leaning Pillar[6]arene for Self-Assembly, Detection, and Catalysis. Org Lett 2019; 21:5215-5218. [DOI: 10.1021/acs.orglett.9b01827] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China
| | - Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| |
Collapse
|
173
|
Li P, Chen Y, Liu Y. Calixarene/pillararene-based supramolecular selective binding and molecular assembly. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
174
|
Lan S, Yang X, Shi K, Fan R, Ma D. Pillarquinone‐Based Porous Polymer for a Highly‐Efficient Heterogeneous Organometallic Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shang Lan
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| | - Xuan Yang
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| | - Kejia Shi
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| | - Rong Fan
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| | - Da Ma
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| |
Collapse
|
175
|
Demay-Drouhard P, Du K, Samanta K, Wan X, Yang W, Srinivasan R, Sue ACH, Zuilhof H. Functionalization at Will of Rim-Differentiated Pillar[5]arenes. Org Lett 2019; 21:3976-3980. [PMID: 31002251 PMCID: PMC6558637 DOI: 10.1021/acs.orglett.9b01123] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The development of
an efficient synthetic route toward rim-differentiated C5-symmetric pillar[5]arenes (P[5]s), whose two
rims are decorated with different chemical functionalities, opens
up successive transformations of this macrocyclic scaffold. This paper
describes a gram-scale synthesis of a C5-symmetric penta-hydroxy P[5] precursor, and a range of highly efficient
reactions that allow functionalizing either rim at will via, e.g.,
sulfur(VI) fluoride exchange (SuFEx) reactions, esterifications, or
Suzuki–Miyaura coupling. Afterward, BBr3 demethylation
activates another rim for similar functionalizations.
Collapse
Affiliation(s)
- Paul Demay-Drouhard
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China.,Laboratory of Organic Chemistry , Wageningen University , Stippeneng 4 , 6703 WE Wageningen , The Netherlands
| | - Ke Du
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China
| | - Kushal Samanta
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China.,Laboratory of Organic Chemistry , Wageningen University , Stippeneng 4 , 6703 WE Wageningen , The Netherlands
| | - Xintong Wan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China
| | - Weiwei Yang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China
| | - Rajavel Srinivasan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China
| | - Andrew C-H Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China.,Laboratory of Organic Chemistry , Wageningen University , Stippeneng 4 , 6703 WE Wageningen , The Netherlands.,Department of Chemical and Materials Engineering , King Abdulaziz University , 21589 Jeddah , Saudi Arabia
| |
Collapse
|
176
|
Yakimova L, Padnya P, Tereshina D, Kunafina A, Nugmanova A, Osin Y, Evtugyn V, Stoikov I. Interpolyelectrolyte mixed nanoparticles from anionic and cationic thiacalix[4]arenes for selective recognition of model biopolymers. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
177
|
Fa S, Kakuta T, Yamagishi TA, Ogoshi T. One-, Two-, and Three-Dimensional Supramolecular Assemblies Based on Tubular and Regular Polygonal Structures of Pillar[n]arenes. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pillar[ n]arenes, which were first reported by our group in 2008, are promising macrocyclic compounds in supramolecular chemistry. The simple, tubular, and highly symmetrical shape of pillar[ n]arenes has allowed various supramolecular assemblies with well-defined structures to be constructed. The pillar-shaped structures of pillar[ n]arenes are suitable for surface modification and formation of one-dimensional (1D) channels. The regular polygonal prism shape of organized pillar[ n]arenes contributes to the construction of highly assembled structures such as two-dimensional (2D) sheets and three-dimensional (3D) spheres. In this minireview, we describe supramolecular assemblies with various dimensions. First, we discuss 1D supramolecular assemblies based on tubular structures of pillar[ n]arenes. Second, 2D supramolecular sheet formation based on regular polygonal structures is described. Finally, 3D supramolecular assemblies such as vesicles and 3D frameworks constructed from pillar[ n]arenes are discussed.
Collapse
Affiliation(s)
- Shixin Fa
- 1WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | - Takahiro Kakuta
- 1WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | | | - Tomoki Ogoshi
- 1WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| |
Collapse
|
178
|
Zhao Q, Chen Y, Sun B, Qian C, Cheng M, Jiang J, Lin C, Wang L. Pillar[5]arene Based Pseudo[1]rotaxane Operating as Acid/Base-Controllable Two State Molecular Shuttle. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Zhao
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Yuan Chen
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Baobao Sun
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Cheng Qian
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Ming Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Juli Jiang
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Chen Lin
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
- School of Petrochemical Engineering; School of Chemistry and Chemical Engineering; Changzhou University; 213164 Changzhou China
| |
Collapse
|
179
|
Li Z, Li X, Yang YW. Conjugated Macrocycle Polymer Nanoparticles with Alternating Pillarenes and Porphyrins as Struts and Cyclic Nodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805509. [PMID: 30735309 DOI: 10.1002/smll.201805509] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Conjugated macrocycle polymers (CMPs) integrated using the macrocyclic confinement effect make imposing restrictions feasible on the growth of metal nanoparticles with confined size and high dispersion. For a proof-of-concept exploration, a novel nanoscale CMP is reported, denoted as DMP[5]-TPP-CMP, comprising two representative types of macrocyclic compounds, i.e., pillararene and porphyrin, as alternating strut/node components in the skeleton. With abundant anchoring sites, CMP implanted with Pd nanoparticles (Pd@DMP[5]-TPP-CMP, Pd@CMP for short) is successfully obtained through a simple post-treatment, exhibiting remarkable catalytic activity in Suzuki-Miyaura coupling (SMC) and nitrophenol reduction. The as-prepared Pd@CMP material shows favorable performance in expediting the process of SMC with an appreciable yield even under mild conditions, as well as in facilitating the electron transfer process from borohydride to nitrophenol through metal-hydride complex to produce aminophenol with a very short transformation time of 3 min and superior apparent kinetic rate constant k app of 1.9 × 10-2 s-1 , higher than most palladium supports. Significantly, this multifunctional Pd@CMP composite material not only enriches the family of CMPs, but also sheds light on the development of green catalysts with excellent stability and easy recyclability without deactivation.
Collapse
Affiliation(s)
- Zheng Li
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Department of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xi Li
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Department of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Department of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| |
Collapse
|
180
|
|
181
|
Cheng HB, Zhang YM, Liu Y, Yoon J. Turn-On Supramolecular Host-Guest Nanosystems as Theranostics for Cancer. Chem 2019. [DOI: 10.1016/j.chempr.2018.12.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
182
|
Wang M, Du X, Tian H, Jia Q, Deng R, Cui Y, Wang C, Meguellati K. Design and synthesis of self-included pillar[5]arene-based bis-[1]rotaxanes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
183
|
Ogoshi T, Sueto R, Yagyu M, Kojima R, Kakuta T, Yamagishi TA, Doitomi K, Tummanapelli AK, Hirao H, Sakata Y, Akine S, Mizuno M. Molecular weight fractionation by confinement of polymer in one-dimensional pillar[5]arene channels. Nat Commun 2019; 10:479. [PMID: 30696824 PMCID: PMC6351637 DOI: 10.1038/s41467-019-08372-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022] Open
Abstract
Confinement of polymers in nano-spaces can induce unique molecular dynamics and properties. Here we show molecular weight fractionation by the confinement of single polymer chains of poly(ethylene oxide) (PEO) in the one-dimensional (1D) channels of crystalline pillar[5]arene. Pillar[5]arene crystals are activated by heating under reduced pressure. The activated crystals are immersed in melted PEO, causing the crystals to selectively take up PEO with high mass fraction. The high mass fractionation is caused by the greater number of attractive CH/π interactions between PEO C-H groups and the π-electron-rich 1D channel of the pillar[5]arene with increasing PEO chain length. The molecular motion of the confined PEO (PEO chain thickness of ~3.7 Å) in the 1D channel of pillar[5]arenes (diameter of ~4.7 Å) is highly restricted compared with that of neat PEO. Confinement of polymers in nano-spaces can induce unique molecular dynamics and properties. Here the authors show high mass fractionation by the confinement of single polymer chains of poly(ethylene oxide) in the one-dimensional channels of crystalline pillar[5]arene.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Ryuta Sueto
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masafumi Yagyu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ryosuke Kojima
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuki Doitomi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Anil Kumar Tummanapelli
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hajime Hirao
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.,Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
184
|
Liu Y, Shi K, Ma D. Water-Soluble Pillar[n]arene Mediated Supramolecular Self-Assembly: Multi-Dimensional Morphology Controlled by Host Size. Chem Asian J 2019; 14:307-312. [PMID: 30520241 DOI: 10.1002/asia.201801705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 11/08/2022]
Abstract
We report tunable supramolecular self-assemblies formed by water-soluble pillar[n]arenes (WPns, n=5-7) and bipyridinium-azobenzene guests. Nanoscale or microscale morphology of self-assemblies in water was controlled by the host size of WPn. Supramolecular self-assemblies could undergo morphology conversion under irradiation with UV light.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Kejia Shi
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
185
|
Li H, Yang Y, Xu F, Liang T, Wen H, Tian W. Pillararene-based supramolecular polymers. Chem Commun (Camb) 2019; 55:271-285. [PMID: 30418439 DOI: 10.1039/c8cc08085b] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pillararenes, as a new type of macrocyclic hosts, possess columnar structures and electron-rich cavities. Pillararenes not only recognize suitable cations, but also bind many neutral molecules. Due to the easy modification of pillararenes, various functional groups can be conveniently attached to the rim of pillararenes to provide suitable interaction sites, and the modified pillararenes even bind anionic guests. Thus, pillararenes and their derivatives have presented intriguing and unique host-guest recognition nature in the past few years, which make them ideal building blocks for the preparation of supramolecular polymers. Pillararene-based supramolecular polymers (PSPs) not only possess many merits of traditional covalent polymers but also have many specific properties, such as self-reparability, degradability, and self-adaptation. This feature paper gives an overview of the preparation of PSPs and covers recent research advance and future trends of pillararene-based host-guest pairs, assembly methods, topological architectures, stimuli-responsiveness, and functional features. We expect that the review will be helpful to researchers working in the fields of supramolecular chemistry and polymer science.
Collapse
Affiliation(s)
- Hui Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | | | | | | | | | | |
Collapse
|
186
|
Wu JR, Li B, Zhang JW, Yang YW. Semi-Rigid Molecular-Clip-Based Molecular Crystal Gearshift. ACS APPLIED MATERIALS & INTERFACES 2019; 11:998-1003. [PMID: 30525365 DOI: 10.1021/acsami.8b20108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new version of molecular clip, with a semi-rigid symmetrical crab-type architecture and flexible cavity size, has been successfully designed and synthesized via a one-pot Friedel-Crafts alkylation reaction. The X-ray single-crystal diffraction data provide a simple and intuitive explanation, not only for its well-preorganized and regulated conformation but also for its selective and tunable guest-binding capability. For the first time, the newly designed molecular clip was demonstrated to be not only a controllable variable-speed nonporous adsorption material in solution iodine capture, but also capable of on-off switching in volatile iodine capture. The presented new concept of molecular crystal gearshift directly from the molecular clip crystals represents an important advance in the development of synthetic receptor chemistry, which will exert a significant influence on small-molecule crystallography.
Collapse
Affiliation(s)
| | | | - Jiang-Wei Zhang
- State Key Laboratory of Catalysis & Gold Catalysis Research Center Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | | |
Collapse
|
187
|
Abstract
A fluorescent pillarene-based coordination polymer was constructed from dicarboxylic acid-functionalized copillar[5]arene and Cr3+, for sensing of Fe3+, acetone, and nitrophenols.
Collapse
Affiliation(s)
- Ming-Xue Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
| |
Collapse
|
188
|
Chen J, Wang Y, Wang C, Long R, Chen T, Yao Y. Functionalization of inorganic nanomaterials with pillar[n]arenes. Chem Commun (Camb) 2019; 55:6817-6826. [PMID: 31139803 DOI: 10.1039/c9cc03165k] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pillar[n]arenes, which consist of hydroquinone units linked by -CH2- bridges at 2,5-positions, are a relatively new class of synthetic macrocycles since 2008. Their facile preparation and flexible modification properties make them ideal stabilizers for inorganic nanomaterials. Furthermore, their symmetrical and columnar architectures with very rigid and π-rich cavities endow them with rich host-guest properties. This Feature Article provides an overview of the functionalization of inorganic nanomaterials with pillar[n]arenes and their applications. These inorganic nanomaterials are classified into three major classes according to different types of compositions: (1) novel metal nanomaterials; (2) hybrid metal nanomaterials; and (3) porous materials. The applications of these nanomaterials such as catalysis, drug delivery, cancer therapy, and sensing have been comprehensively discussed.
Collapse
Affiliation(s)
- Jiao Chen
- College of Chemistry and Chemical Engineer, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | | | | | | | | | | |
Collapse
|
189
|
Li B, He T, Shen X, Tang D, Yin S. Fluorescent supramolecular polymers with aggregation induced emission properties. Polym Chem 2019. [DOI: 10.1039/c8py01396a] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes the recent developments in AIE fluorescent supramolecular polymeric materials based on different types of intermolecular noncovalent interactions, and their wide ranging applications as chemical sensors, organic electronic materials, bio-imaging agents and so on.
Collapse
Affiliation(s)
- Bo Li
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Tian He
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Xi Shen
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Danting Tang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Shouchun Yin
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| |
Collapse
|
190
|
Wei J, Jin TT, Yin YF, Jiang XM, Zheng ST, Zhan TG, Cui J, Liu LJ, Kong LC, Zhang KD. Red-light-responsive molecular encapsulation in water: an ideal combination of photochemistry and host–guest interaction. Org Chem Front 2019. [DOI: 10.1039/c8qo01157e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Red-light-responsive CB[8]-mediated host–guest system featured with high photoisomerization ratio was fabricated which could be used as molecular container with red-light-activated release ability.
Collapse
|
191
|
Du XS, Jia Q, Wang CY, Meguellati K, Yang YW. A pillar[5]arene with an amino-terminated arm stabilizes the formation of aliphatic hemiaminals and imines. Chem Commun (Camb) 2019; 55:5736-5739. [DOI: 10.1039/c9cc01947b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-included mono-amino substituted pillar[5]arene efficiently stabilizes the hemiaminal and imine formation from the reaction of aliphatic amines and aldehydes.
Collapse
Affiliation(s)
- Xu-Sheng Du
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Qiong Jia
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
192
|
Abstract
This feature article summarizes the latest research progress in the design and development of new synthetic macrocyclic arenes.
Collapse
Affiliation(s)
- Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- 2699 Qianjin Street
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- 2699 Qianjin Street
| |
Collapse
|
193
|
Hu XY, Gao L, Mosel S, Ehlers M, Zellermann E, Jiang H, Knauer SK, Wang L, Schmuck C. From Supramolecular Vesicles to Micelles: Controllable Construction of Tumor-Targeting Nanocarriers Based on Host-Guest Interaction between a Pillar[5]arene-Based Prodrug and a RGD-Sulfonate Guest. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803952. [PMID: 30456872 DOI: 10.1002/smll.201803952] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/30/2018] [Indexed: 06/09/2023]
Abstract
The targeting ability, drug-loading capacity, and size of the drug nanocarriers are crucial for enhancing the therapeutic index for cancer therapy. Herein, the morphology and size-controllable fabrication of supramolecular tumor-targeting nanocarriers based on host-guest recognition between a novel pillar[5]arene-based prodrug WP5-DOX and a Arg-Gly-Asp (RGD)-modified sulfonate guest RGD-SG is reported. The amphiphilic WP5-DOX⊃RGD-SG complex with a molar ratio of 5:1 self-assembles into vesicles, whereas smaller-sized micelles can be obtained by changing the molar ratio to 1:3. This represents a novel strategy of controllable construction of supramolecular nanovehicles with different sizes and morphologies based on the same host-guest interactions by using different host-guest ratios. Furthermore, in vitro and in vivo studies reveal that both these prodrug nanocarriers could selectively deliver doxorubicin to RGD receptor-overexpressing cancer cells, leading to longer blood retention time, enhanced antitumor efficacy, and reduced systematic toxicity in murine tumor model, suggesting their potential application for targeted drug delivery.
Collapse
Affiliation(s)
- Xiao-Yu Hu
- Applied Chemistry Department, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institute for Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Lei Gao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Stefanie Mosel
- Institute for Biology, University of Duisburg-Essen, Essen, 45117, Germany
| | - Martin Ehlers
- Institute for Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Elio Zellermann
- Institute for Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Hao Jiang
- Institute for Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Shirley K Knauer
- Institute for Biology, University of Duisburg-Essen, Essen, 45117, Germany
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| |
Collapse
|
194
|
The synthesis of water-soluble phosphate pillar[5]arenes functionalized graphene as a fluorescent probe for sensitive detection of paraquat. Talanta 2018; 195:472-479. [PMID: 30625572 DOI: 10.1016/j.talanta.2018.11.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/22/2023]
Abstract
We describe a selective and sensitive fluorescence platform for the detection of paraquat (PQ) based on competitive host-guest recognition between phosphate pillar[5]arenes (PWP5) and probe (Safranine T, ST) with using PWP5 functionalized reduced graphene (PWP5-rGO) as the receptor. PQ is a positive charge molecule that is captured by PWP5 via electrostatic interactions. The host-guest interaction between PWP5 and PQ is studied by 1H NMR. Therefore, a selective and sensitive fluorescence sensing of detection PQ is developed. It has a linear response ranges of 0.01-2.0 and 2.0-50.0 μM and a low detection limit of 0.0035 μM (S/N = 3) for PQ. The sensing platform is also used to test PQ in two water samples with satisfying results. It suggests that this approach has potential applications for the determination of PQ.
Collapse
|
195
|
Lou XY, Li YP, Yang YW. Gated Materials: Installing Macrocyclic Arenes-Based Supramolecular Nanovalves on Porous Nanomaterials for Controlled Cargo Release. Biotechnol J 2018; 14:e1800354. [PMID: 30457707 DOI: 10.1002/biot.201800354] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/21/2018] [Indexed: 12/31/2022]
Abstract
Supramolecular nanovalves are an emerging class of important elements that are functionalized on the surfaces of inorganic or hybrid nanocarriers in the constructions of smart cargo delivery systems. Taking advantage of the pseudorotaxane structure via host-guest complexation and the dynamic nature of supramolecular interactions, macrocyclic arene-based supramolecular nanovalves have shown great promise in the applications of drug delivery and controlled release. Careful selection of diverse external stimuli, such as pH variations, temperature changes, redox, enzymes, light irradiation, and competitive binding, can activate the opening and closing of the nanovalves by altering the supramolecular structure or binding affinities. Meanwhile, the porous solid supports in controlled release systems also play an important role in the functionalities of the nanocarriers, which include, but not limited to, mesoporous silica nanoparticles (MSNs), metal-organic frameworks (MOFs), core-shell nanomaterials, and rare-earth porous nanomaterials. The elaborate decoration by macrocyclic arenes-based supramolecular nanovalves on porous nanomaterials has provided intelligent controlled release platforms. In this review, we will focus on the overview of supramolecular nanovalves based on two typical macrocyclic arenes, that is, calixarenes and pillarenes, and their operation manners in the controlled release processes.
Collapse
Affiliation(s)
- Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu-Peng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
196
|
Shetty D, Trabolsi A. Making pillar[6]arenes to lean: an art of tuning a supramolecular host. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9362-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
197
|
Song N, Lou XY, Hou W, Wang CY, Wang Y, Yang YW. Pillararene-Based Fluorescent Supramolecular Systems: The Key Role of Chain Length in Gelation. Macromol Rapid Commun 2018; 39:e1800593. [DOI: 10.1002/marc.201800593] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Wei Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Changchun 130012 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
198
|
Wu MX, Yan HJ, Gao J, Cheng Y, Yang J, Wu JR, Gong BJ, Zhang HY, Yang YW. Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34655-34663. [PMID: 30226739 DOI: 10.1021/acsami.8b13758] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multifunctional supramolecular nanomaterials capable of targeted and multimodal therapy hold great potential to improve the efficiency of cancer therapeutics. Herein, we report a proof-of-concept nanoplatform for effective chemophotothermal therapy via the integration of folic acid-based active targeting and supramolecular nanovalves-based passive targeting. Inspired by facile surface engineering and designable layer-by-layer assembly concept, we design and synthesize PPy@UiO-66@WP6@PEI-Fa nanoparticles (PUWPFa NPs) to achieve efficient synergistic chemophotothermal therapy, taking advantage of the desirable photothermal conversion capability of polypyrrole nanoparticles (PPy NPs) and high drug-loading capacity of hybrid scaffolds. Significantly, pillararene-based pseudorotaxanes as pH/temperature dual-responsive nanovalves allow targeted drug delivery in pathological environment with sustained release over 4 days, which is complementary to photothermal therapy, and folic acid-conjugated polyethyleneimine (PEI-Fa) at the outmost layer through electrostatic interactions is able to enhance tumor-targeting and therapeutic efficiency. Such PUWPFa NPs showed efficient synergistic chemophotothermal therapy of cervical cancer both in vitro and in vivo. The present strategy offers not only the distinctly targeted drug delivery and release, but also excellent tumor inhibition efficacy of simultaneous chemophotothermal therapy, opening a new avenue for effective cancer treatment.
Collapse
Affiliation(s)
- Ming-Xue Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Hong-Jing Yan
- Hospital of Stomatology , Jilin University , 1500 Qinghua Road , Changchun 130012 , P. R. China
| | - Jia Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Yan Cheng
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Bai-Juan Gong
- Hospital of Stomatology , Jilin University , 1500 Qinghua Road , Changchun 130012 , P. R. China
| | - Hai-Yuan Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
- Department of Chemistry & Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive East , Los Angeles , California 90095 , United States
| |
Collapse
|
199
|
Barbera L, De Plano LM, Franco D, Gattuso G, Guglielmino SPP, Lando G, Notti A, Parisi MF, Pisagatti I. Antiadhesive and antibacterial properties of pillar[5]arene-based multilayers. Chem Commun (Camb) 2018; 54:10203-10206. [PMID: 30137099 DOI: 10.1039/c8cc05659e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new type of coating, based on carboxylato-pillar[5]arene/poly(allylamine hydrochloride) multilayer films, for the sustained release of antibiotics with in vitro antiadhesive and antimicrobial activity against Gram-positive and Gram-negative bacteria is described.
Collapse
Affiliation(s)
- Lucia Barbera
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Wang K, Wang MM, Dou HX, Xing SY, Zhu BL, Cui JH. Comparative Study on the Supramolecular Assemblies Formed by Calixpyridinium and Two Alginates with Different Viscosities. ACS OMEGA 2018; 3:10033-10041. [PMID: 31459131 PMCID: PMC6645020 DOI: 10.1021/acsomega.8b01554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/31/2018] [Indexed: 06/09/2023]
Abstract
In this work, a comparative study on the supramolecular assemblies formed by calixpyridinium and two alginates with different viscosities was performed. We found that sodium alginate (SA) with medium viscosity (SA-M) had a better capability to induce aggregation of calixpyridinium in comparison with SA with low viscosity (SA-L) because of the stronger electrostatic interactions between calixpyridinium and SA-M. Therefore, the morphology of calixpyridinium-SA-M supramolecular aggregates was a compact spherical structure, while that of calixpyridinium-SA-L supramolecular aggregates was an incompact lamellar structure. As a result, adding much more amount of 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt to calixpyridinium-SA-M solution was required to achieve the balance of the competitive binding, and in comparison with calixpyridinium-SA-L supramolecular aggregates, calixpyridinium-SA-M supramolecular aggregates were more sensitive to alkali. However, for the same reason, in comparison with calixpyridinium-SA-M supramolecular aggregates, calixpyridinium-SA-L supramolecular aggregates were much more stable in water not only at room temperature but also at a higher temperature, and even in salt solution. Therefore, in comparison with calixpyridinium-SA-L supramolecular aggregates, calixpyridinium-SA-M supramolecular aggregates exhibited a completely opposite response to acid because of the generation of salt. Because SA is an important biomaterial with excellent biocompatibility, it is anticipated that this comparative study is extremely important in constructing functional supramolecular biomaterials.
Collapse
|