151
|
Wei Z, Wang Y, Shi Z, Zhou N, Ren G, Hao X, Zou L, Yao Y. Mung Bean Protein Suppresses Undernutrition-Induced Growth Deficits and Cognitive Dysfunction in Rats via Gut Microbiota-TLR4/NF-kB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12566-12577. [PMID: 34652137 DOI: 10.1021/acs.jafc.1c05220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early undernutrition has been found to be closely associated with subsequent neurodevelopment. However, studies examining crude growth in terms of body weight/tail length cannot clarify how diets might mediate associations between the gut microbiota and cognitive dysfunction. In the present study, Sprague-Dawley (SD) rats were fed a 7% protein diet and mung bean protein diet (MBPD) for 6 weeks to assess central nervous system functions. Bifidobacterium longum subsp, Alloprevotella, and Lactobacillus were significantly altered after supplementary MBPD. Additionally, tryptophan, tyrosine, and glycine significantly restored in the brain, and the choline system also improved. Moreover, mung bean supplementation also upregulated expression of the brain-derived neurotrophic factor, postsynaptic density 95 protein (PSD95), synaptosome-associated protein 25 (SNAP25), downregulated toll-like receptor 4 (TLR4), and nuclear factor kB (NF-kB). Metabolites in the serum also underwent changes. Together, these results showed that malnutrition perturbed neurodevelopment, while MBPD reversed this trend.
Collapse
Affiliation(s)
- Zuchen Wei
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, People's Republic of China
- Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area's Medicinal Herbs, College of Life Science & Engineering, the Chongqing Engineering, Chongqing Three Gorges University, No. 666 Tianxing Road, Wanzhou District, Chongqing 404000, People's Republic of China
| | - Yuanji Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, People's Republic of China
| | - Zhenxing Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, People's Republic of China
| | - Nong Zhou
- Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area's Medicinal Herbs, College of Life Science & Engineering, the Chongqing Engineering, Chongqing Three Gorges University, No. 666 Tianxing Road, Wanzhou District, Chongqing 404000, People's Republic of China
| | - Guixing Ren
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, People's Republic of China
| | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd., No. 10 Xianqiao Jiu Road, Chaoyang District, Beijing 100015, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 1 Chengluo Avenue, Longquan District, Chengdu 610106, People's Republic of China
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, People's Republic of China
| |
Collapse
|
152
|
Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron 2021; 109:3930-3953. [PMID: 34653349 DOI: 10.1016/j.neuron.2021.09.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Changes in the microbiota are associated with alterations in nervous system structure-function and behavior and have been implicated in the etiology of neuropsychiatric and neurodegenerative disorders. Most of these studies have centered on mammalian models due to their phylogenetic proximity to humans. Indeed, the germ-free mouse has been a particularly useful model organism for investigating microbiota-brain interactions. However, microbiota-brain axis research on simpler genetic model organisms with a vast and diverse scientific toolkit (zebrafish, Drosophila melanogaster, and Caenorhabditis elegans) is now also coming of age. In this review, we summarize the current state of microbiota-brain axis research in rodents and humans, and then we elaborate and discuss recent research on the neurobiological and behavioral effects of the microbiota in the model systems of fish, flies, and worms. We propose that a cross-species, holistic and mechanistic approach to unravel the microbiota-brain communication is an essential step toward rational microbiota-based therapeutics to combat brain disorders.
Collapse
|
153
|
Coley EJL, Hsiao EY. Malnutrition and the microbiome as modifiers of early neurodevelopment. Trends Neurosci 2021; 44:753-764. [PMID: 34303552 DOI: 10.1016/j.tins.2021.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023]
Abstract
Malnutrition refers to a dearth, excess, or altered differential ratios of calories, macronutrients, or micronutrients. Malnutrition, particularly during early life, is a pressing global health and socioeconomic burden that is increasingly associated with neurodevelopmental impairments. Understanding how perinatal malnutrition influences brain development is crucial to uncovering fundamental mechanisms for establishing behavioral neurocircuits, with the potential to inform public policy and clinical interventions for neurodevelopmental conditions. Recent studies reveal that the gut microbiome can mediate dietary effects on host physiology and that the microbiome modulates the development and function of the nervous system. This review discusses evidence that perinatal malnutrition alters brain development and examines the maternal and neonatal microbiome as a potential contributing factor.
Collapse
Affiliation(s)
- Elena J L Coley
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
154
|
Lee SK. Don't Worry, Heavy Moms; Just Eat Your Broccoli(or Kimchi)! Co-diet of high-fiber and high-fat helps give birth to healthy offspring through gut microbiota-to-brain signaling. Mol Cells 2021; 44:422-424. [PMID: 34140427 PMCID: PMC8245314 DOI: 10.14348/molcells.2021.0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Sciences, Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|