151
|
He P, Wu W, Wang HD, Liao KL, Zhang W, Lv FL, Yang K. Why ligand cross-reactivity is high within peptide recognition domain families? A case study on human c-Src SH3 domain. J Theor Biol 2014; 340:30-7. [DOI: 10.1016/j.jtbi.2013.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/26/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
152
|
London N, Raveh B, Schueler-Furman O. Druggable protein-protein interactions--from hot spots to hot segments. Curr Opin Chem Biol 2013; 17:952-9. [PMID: 24183815 DOI: 10.1016/j.cbpa.2013.10.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 11/24/2022]
Abstract
Protein-Protein Interactions (PPIs) mediate numerous biological functions. As such, the inhibition of specific PPIs has tremendous therapeutic value. The notion that these interactions are 'undruggable' has petered out with the emergence of more and more successful examples of PPI inhibitors, expanding considerably the scope of potential drug targets. The accumulated data on successes in the inhibition of PPIs allow us to analyze the features that are required for such inhibition. Whereas it has been suggested and shown that targeting hot spots at PPI interfaces is a good strategy to achieve inhibition, in this review we focus on the notion that the most amenable interactions for inhibition are those that are mediated by a 'hot segment', a continuous epitope that contributes the majority of the binding energy. This criterion is both useful in guiding future target selection efforts, and in suggesting immediate inhibitory candidates--the dominant peptidic segment that mediates the targeted interaction.
Collapse
Affiliation(s)
- Nir London
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
153
|
Zhou Y, Ni Z, Chen K, Liu H, Chen L, Lian C, Yan L. Modeling Protein–Peptide Recognition Based on Classical Quantitative Structure–Affinity Relationship Approach: Implication for Proteome-Wide Inference of Peptide-Mediated Interactions. Protein J 2013; 32:568-78. [DOI: 10.1007/s10930-013-9519-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
154
|
Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, Beglov D, Schueler-Furman O, Kozakov D. Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins 2013; 81:2096-105. [PMID: 24123488 DOI: 10.1002/prot.24422] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 11/08/2022]
Abstract
Peptide-mediated interactions, in which a short linear motif binds to a globular domain, play major roles in cellular regulation. An accurate structural model of this type of interaction is an excellent starting point for the characterization of the binding specificity of a given peptide-binding domain. A number of different protocols have recently been proposed for the accurate modeling of peptide-protein complex structures, given the structure of the protein receptor and the binding site on its surface. When no information about the peptide binding site(s) is a priori available, there is a need for new approaches to locate peptide-binding sites on the protein surface. While several approaches have been proposed for the general identification of ligand binding sites, peptides show very specific binding characteristics, and therefore, there is a need for robust and accurate approaches that are optimized for the prediction of peptide-binding sites. Here, we present PeptiMap, a protocol for the accurate mapping of peptide binding sites on protein structures. Our method is based on experimental evidence that peptide-binding sites also bind small organic molecules of various shapes and polarity. Using an adaptation of ab initio ligand binding site prediction based on fragment mapping (FTmap), we optimize a protocol that specifically takes into account peptide binding site characteristics. In a high-quality curated set of peptide-protein complex structures PeptiMap identifies for most the accurate site of peptide binding among the top ranked predictions. We anticipate that this protocol will significantly increase the number of accurate structural models of peptide-mediated interactions.
Collapse
Affiliation(s)
- Assaf Lavi
- Department of Microbiology and Molecular Genetics Institute for Medical Research Israel-Canada, Hadassah Medical School The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
155
|
London N, Raveh B, Schueler-Furman O. Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr Opin Struct Biol 2013; 23:894-902. [PMID: 24138780 DOI: 10.1016/j.sbi.2013.07.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
Abstract
Peptide-mediated interactions are gaining increased attention due to their predominant roles in the many regulatory processes that involve dynamic interactions between proteins. The structures of such interactions provide an excellent starting point for their characterization and manipulation, and can provide leads for targeted inhibitor design. The relatively few experimentally determined structures of peptide-protein complexes can be complemented with an outburst of modeling approaches that have been introduced in recent years, with increasing accuracy and applicability to ever more systems. We review different methods to address the considerable challenges in modeling the binding of a short yet highly flexible peptide to its partner. These methods apply an array of sampling strategies and draw from a recent amassing of knowledge about the biophysical nature of peptide-protein interactions. We elaborate on applications of these structure-based approaches and in particular on the characterization of peptide binding specificity to different peptide-binding domains and enzymes. Such applications can identify new biological targets and thus complement our current view of protein-protein interactions in living organisms. Accurate peptide-protein docking is of particular importance in the light of increased appreciation of the crucial functional roles of disordered regions and the many linear binding motifs embedded within.
Collapse
Affiliation(s)
- Nir London
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
156
|
Han KQ, Wu G, Lv F. Development of QSAR-Improved Statistical Potential for the Structure-Based Analysis of ProteinPeptide Binding Affinities. Mol Inform 2013; 32:783-92. [DOI: 10.1002/minf.201300064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
|
157
|
Predicting binding within disordered protein regions to structurally characterised peptide-binding domains. PLoS One 2013; 8:e72838. [PMID: 24019881 PMCID: PMC3760854 DOI: 10.1371/journal.pone.0072838] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif) containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58).Next, we trained a bidirectional recurrent neural network (BRNN) using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72) showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods) clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.
Collapse
|
158
|
Das AA, Sharma OP, Kumar MS, Krishna R, Mathur PP. PepBind: a comprehensive database and computational tool for analysis of protein-peptide interactions. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:241-6. [PMID: 23896518 PMCID: PMC4357787 DOI: 10.1016/j.gpb.2013.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 02/26/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022]
Abstract
Protein-peptide interactions, where one partner is a globular protein (domain) and the other is a flexible linear peptide, are key components of cellular processes predominantly in signaling and regulatory networks, hence are prime targets for drug design. To derive the details of the protein-peptide interaction mechanism is often a cumbersome task, though it can be made easier with the availability of specific databases and tools. The Peptide Binding Protein Database (PepBind) is a curated and searchable repository of the structures, sequences and experimental observations of 3100 protein-peptide complexes. The web interface contains a computational tool, protein inter-chain interaction (PICI), for computing several types of weak or strong interactions at the protein-peptide interaction interface and visualizing the identified interactions between residues in Jmol viewer. This initial database release focuses on providing protein-peptide interface information along with structure and sequence information for protein-peptide complexes deposited in the Protein Data Bank (PDB). Structures in PepBind are classified based on their cellular activity. More than 40% of the structures in the database are found to be involved in different regulatory pathways and nearly 20% in the immune system. These data indicate the importance of protein-peptide complexes in the regulation of cellular processes.
Collapse
Affiliation(s)
- Arindam Atanu Das
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | | | | | | | | |
Collapse
|
159
|
Tian F, Tan R, Guo T, Zhou P, Yang L. Fast and reliable prediction of domain–peptide binding affinity using coarse-grained structure models. Biosystems 2013; 113:40-9. [DOI: 10.1016/j.biosystems.2013.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/15/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
|
160
|
Verschueren E, Vanhee P, Rousseau F, Schymkowitz J, Serrano L. Protein-peptide complex prediction through fragment interaction patterns. Structure 2013; 21:789-97. [PMID: 23583037 DOI: 10.1016/j.str.2013.02.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 02/04/2013] [Accepted: 02/25/2013] [Indexed: 01/13/2023]
Abstract
The number of protein-peptide interactions in a cell is so large that experimental determination of all these complex structures would be a daunting task. Although homology modeling and refinement protocols have vastly improved the number and quality of predicted structural models, ab initio methods are still challenged by both the large number of possible docking sites and the conformational space accessible to flexible peptides. We present a method that addresses these challenges by sampling the entire accessible surface of a protein with a reduced conformational space of interacting backbone fragment pairs from unrelated structures. We demonstrate its potential by predicting ab initio the bound structure for a variety of protein-peptide complexes. In addition, we show the potential of our method for the discovery of domain interaction sites and domain-domain docking.
Collapse
Affiliation(s)
- Erik Verschueren
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation-CRG, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
161
|
Trellet M, Melquiond ASJ, Bonvin AMJJ. A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One 2013; 8:e58769. [PMID: 23516555 PMCID: PMC3596317 DOI: 10.1371/journal.pone.0058769] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/05/2013] [Indexed: 01/01/2023] Open
Abstract
Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design. In recent years, large-scale technologies have enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. Yet, the paucity of data regarding their molecular binding mechanisms together with their inherent flexibility makes the structural prediction of protein-peptide interactions very challenging. This leaves flexible docking as one of the few amenable computational techniques to model these complexes. We present here an ensemble, flexible protein-peptide docking protocol that combines conformational selection and induced fit mechanisms. Starting from an ensemble of three peptide conformations (extended, a-helix, polyproline-II), flexible docking with HADDOCK generates 79.4% of high quality models for bound/unbound and 69.4% for unbound/unbound docking when tested against the largest protein-peptide complexes benchmark dataset available to date. Conformational selection at the rigid-body docking stage successfully recovers the most relevant conformation for a given protein-peptide complex and the subsequent flexible refinement further improves the interface by up to 4.5 Å interface RMSD. Cluster-based scoring of the models results in a selection of near-native solutions in the top three for ∼75% of the successfully predicted cases. This unified conformational selection and induced fit approach to protein-peptide docking should open the route to the modeling of challenging systems such as disorder-order transitions taking place upon binding, significantly expanding the applicability limit of biomolecular interaction modeling by docking.
Collapse
Affiliation(s)
- Mikael Trellet
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Adrien S. J. Melquiond
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, The Netherlands
- * E-mail: (AM); (AB)
| | - Alexandre M. J. J. Bonvin
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, The Netherlands
- * E-mail: (AM); (AB)
| |
Collapse
|
162
|
Gógl G, Törő I, Reményi A. Protein-peptide complex crystallization: a case study on the ERK2 mitogen-activated protein kinase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:486-9. [PMID: 23519423 PMCID: PMC3605046 DOI: 10.1107/s0907444912051062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022]
Abstract
Linear motifs normally bind with only medium binding affinity (Kd of ∼0.1-10 µM) to shallow protein-interaction surfaces on their binding partners. The crystallization of proteins in complex with linear motif-containing peptides is often challenging because the energy gained upon crystal packing between symmetry mates in the crystal may be on a par with the binding energy of the protein-peptide complex. Furthermore, for extracellular signal-regulated kinase 2 (ERK2) the protein-peptide docking surface is comprised of a small hydrophobic surface patch that is often engaged in the crystal packing of apo ERK2 crystals. Here, a rational surface-engineering approach is presented that involves mutating protein surface residues that are distant from the peptide-binding ERK2 docking groove to alanines. These ERK2 surface mutations decrease the chance of `unwanted' crystal packing of ERK2 and the approach led to the structure determination of ERK2 in complex with new docking peptides. These findings highlight the importance of negative selection in crystal engineering for weakly binding protein-peptide complexes.
Collapse
Affiliation(s)
- Gergő Gógl
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Imre Törő
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Attila Reményi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| |
Collapse
|
163
|
Biomacromolecular quantitative structure–activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein–protein binding affinity. J Comput Aided Mol Des 2013; 27:67-78. [DOI: 10.1007/s10822-012-9625-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/12/2012] [Indexed: 01/22/2023]
|
164
|
Minde DP, Halff EF, Tans S. Designing disorder: Tales of the unexpected tails. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e26790. [PMID: 28516025 PMCID: PMC5424805 DOI: 10.4161/idp.26790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/24/2022]
Abstract
Protein tags of various sizes and shapes catalyze progress in biosciences. Well-folded tags can serve to solubilize proteins. Small, unfolded, peptide-like tags have become invaluable tools for protein purification as well as protein-protein interaction studies. Intrinsically Disordered Proteins (IDPs), which lack unique 3D structures, received exponentially increasing attention during the last decade. Recently, large ID tags have been developed to solubilize proteins and to engineer the pharmacological properties of protein and peptide pharmaceuticals. Here, we contrast the complementary benefits and applications of both folded and ID tags based on predictions of ID. Less structure often means more function in a shorter tag.
Collapse
Affiliation(s)
| | - Els F Halff
- Crystal and Structural Chemistry; Bijvoet Center for Biomolecular Research; Utrecht University; Utrecht, The Netherlands
| | - Sander Tans
- FOM Institute AMOLF; Amsterdam, The Netherlands
| |
Collapse
|
165
|
Use of fast conformational sampling to improve the characterization of VEGF A–peptide interactions. J Theor Biol 2013; 317:293-300. [DOI: 10.1016/j.jtbi.2012.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 01/25/2023]
|
166
|
Kastritis PL, Bonvin AMJJ. On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 2012; 10:20120835. [PMID: 23235262 PMCID: PMC3565702 DOI: 10.1098/rsif.2012.0835] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interactions between proteins are orchestrated in a precise and time-dependent manner, underlying cellular function. The binding affinity, defined as the strength of these interactions, is translated into physico-chemical terms in the dissociation constant (Kd), the latter being an experimental measure that determines whether an interaction will be formed in solution or not. Predicting binding affinity from structural models has been a matter of active research for more than 40 years because of its fundamental role in drug development. However, all available approaches are incapable of predicting the binding affinity of protein–protein complexes from coordinates alone. Here, we examine both theoretical and experimental limitations that complicate the derivation of structure–affinity relationships. Most work so far has concentrated on binary interactions. Systems of increased complexity are far from being understood. The main physico-chemical measure that relates to binding affinity is the buried surface area, but it does not hold for flexible complexes. For the latter, there must be a significant entropic contribution that will have to be approximated in the future. We foresee that any theoretical modelling of these interactions will have to follow an integrative approach considering the biology, chemistry and physics that underlie protein–protein recognition.
Collapse
Affiliation(s)
- Panagiotis L Kastritis
- Bijvoet Center for Biomolecular Research, Faculty of Science, Chemistry, Utrecht University, , Padualaan 8, Utrecht, The Netherlands
| | | |
Collapse
|
167
|
Menichelli E, Wu J, Campbell ZT, Wickens M, Williamson JR. Biochemical characterization of the Caenorhabditis elegans FBF.CPB-1 translational regulation complex identifies conserved protein interaction hotspots. J Mol Biol 2012; 425:725-37. [PMID: 23159558 DOI: 10.1016/j.jmb.2012.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
Caenorhabditis elegans CPB-1 (cytoplasmic polyadenylation element binding protein homolog-1) and FBF (fem-3 mRNA binding factor) are evolutionary conserved regulators of mRNA translation that belong to the CPEB (cytoplasmic polyadenylation element binding) and PUF (Pumilio and FBF) protein families, respectively. In hermaphrodite worms, CPB-1 and FBF control key steps during germline development, including stem cell maintenance and sex determination. While CPB-1 and FBF are known to interact, the molecular basis and function of the CPB-1⋅FBF complex are not known. The surface of CPB-1 that interacts with FBF was localized using in vivo and in vitro methods to a 10-residue region at the N-terminus of the protein and these residues are present in the FBF-binding protein GLD-3 (germline development defective-3). PUF proteins are characterized by the presence of eight α-helical repeats (PUF repeats) arranged side by side in an elongated structure. Critical residues for CPB-1 binding are found in the extended loop that connects PUF repeats 7 and 8. The same FBF residues also mediate binding to GLD-3, indicating a conserved binding mode between different protein partners. CPB-1 binding was competitive with GLD-3, suggestive of mutual exclusivity in vivo. RNA binding measurements demonstrated that CPB-1 alters the affinity of FBF for specific RNA sequences, implying a functional model where the coregulatory protein CPB-1 modulates FBF target selection.
Collapse
Affiliation(s)
- Elena Menichelli
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
168
|
Olsson N, Wallin S, James P, Borrebaeck CAK, Wingren C. Epitope-specificity of recombinant antibodies reveals promiscuous peptide-binding properties. Protein Sci 2012; 21:1897-910. [PMID: 23034898 DOI: 10.1002/pro.2173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/26/2012] [Indexed: 01/25/2023]
Abstract
Protein-peptide interactions are a common occurrence and essential for numerous cellular processes, and frequently explored in broad applications within biology, medicine, and proteomics. Therefore, understanding the molecular mechanism(s) of protein-peptide recognition, specificity, and binding interactions will be essential. In this study, we report the first detailed analysis of antibody-peptide interaction characteristics, by combining large-scale experimental peptide binding data with the structural analysis of eight human recombinant antibodies and numerous peptides, targeting tryptic mammalian and eukaryote proteomes. The results consistently revealed that promiscuous peptide-binding interactions, that is, both specific and degenerate binding, were exhibited by all antibodies, and the discovery was corroborated by orthogonal data, indicating that this might be a general phenomenon for low-affinity antibody-peptide interactions. The molecular mechanism for the degenerate peptide-binding specificity appeared to be executed through the use of 2-3 semi-conserved anchor residues in the C-terminal part of the peptides, in analogue to the mechanism utilized by the major histocompatibility complex-peptide complexes. In the long-term, this knowledge will be instrumental for advancing our fundamental understanding of protein-peptide interactions, as well as for designing, generating, and applying peptide specific antibodies, or peptide-binding proteins in general, in various biotechnical and medical applications.
Collapse
Affiliation(s)
- Niclas Olsson
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
169
|
Garai Á, Zeke A, Gógl G, Törő I, Fördős F, Blankenburg H, Bárkai T, Varga J, Alexa A, Emig D, Albrecht M, Reményi A. Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Sci Signal 2012; 5:ra74. [PMID: 23047924 DOI: 10.1126/scisignal.2003004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) have a docking groove that interacts with linear "docking" motifs in binding partners. To determine the structural basis of binding specificity between MAPKs and docking motifs, we quantitatively analyzed the ability of 15 docking motifs from diverse MAPK partners to bind to c-Jun amino-terminal kinase 1 (JNK1), p38α, and extracellular signal-regulated kinase 2 (ERK2). Classical docking motifs mediated highly specific binding only to JNK1, and only those motifs with a sequence pattern distinct from the classical MAPK binding docking motif consensus differentiated between the topographically similar docking grooves of ERK and p38α. Crystal structures of four complexes of MAPKs with docking peptides, representing JNK-specific, ERK-specific, or ERK- and p38-selective binding modes, revealed that the regions located between consensus positions in the docking motifs showed conformational diversity. Although the consensus positions in the docking motifs served as anchor points that bound to common MAPK surface features and mostly contributed to docking in a nondiscriminatory fashion, the conformation of the intervening region between the anchor points mostly determined specificity. We designed peptides with tailored MAPK binding profiles by rationally changing the length and amino acid composition of intervening regions located between anchor points. These results suggest a coherent structural model for MAPK docking specificity that reveals how short linear motifs binding to a common kinase docking groove can mediate diverse interaction patterns and contribute to correct MAPK partner selection in signaling networks.
Collapse
Affiliation(s)
- Ágnes Garai
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Stavropoulos I, Khaldi N, Davey NE, O’Brien K, Martin F, Shields DC. Protein disorder and short conserved motifs in disordered regions are enriched near the cytoplasmic side of single-pass transmembrane proteins. PLoS One 2012; 7:e44389. [PMID: 22962613 PMCID: PMC3433447 DOI: 10.1371/journal.pone.0044389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023] Open
Abstract
Intracellular juxtamembrane regions of transmembrane proteins play pivotal roles in cell signalling, mediated by protein-protein interactions. Disordered protein regions, and short conserved motifs within them, are emerging as key determinants of many such interactions. Here, we investigated whether disorder and conserved motifs are enriched in the juxtamembrane area of human single-pass transmembrane proteins. Conserved motifs were defined as short disordered regions that were much more conserved than the adjacent disordered residues. Human single-pass proteins had higher mean disorder in their cytoplasmic segments than their extracellular parts. Some, but not all, of this effect reflected the shorter length of the cytoplasmic tail. A peak of cytoplasmic disorder was seen at around 30 residues from the membrane. We noted a significant increase in the incidence of conserved motifs within the disordered regions at the same location, even after correcting for the extent of disorder. We conclude that elevated disorder within the cytoplasmic tail of many transmembrane proteins is likely to be associated with enrichment for signalling interactions mediated by conserved short motifs.
Collapse
Affiliation(s)
- Ilias Stavropoulos
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Nora Khaldi
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Norman E. Davey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kevin O’Brien
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Finian Martin
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
171
|
Russo LC, Asega AF, Castro LM, Negraes PD, Cruz L, Gozzo FC, Ulrich H, Camargo ACM, Rioli V, Ferro ES. Natural intracellular peptides can modulate the interactions of mouse brain proteins and thimet oligopeptidase with 14-3-3ε and calmodulin. Proteomics 2012; 12:2641-55. [DOI: 10.1002/pmic.201200032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/31/2012] [Accepted: 06/03/2012] [Indexed: 02/03/2023]
Affiliation(s)
- Lilian C. Russo
- Department of Cell Biology and Development; Biomedical Sciences Institute; University of São Paulo; São Paulo Brazil
| | - Amanda F. Asega
- Laboratory of Applied Toxinology (LETA); Butantan Institute; SP Brazil
| | - Leandro M. Castro
- Department of Cell Biology and Development; Biomedical Sciences Institute; University of São Paulo; São Paulo Brazil
| | - Priscilla D. Negraes
- Biochemistry Department; Chemistry Institute; University of São Paulo; São Paulo Brazil
| | - Lilian Cruz
- Department of Cell Biology and Development; Biomedical Sciences Institute; University of São Paulo; São Paulo Brazil
| | - Fabio C. Gozzo
- Chemistry Institute; Campinas State University; Campinas SP Brazil
| | - Henning Ulrich
- Biochemistry Department; Chemistry Institute; University of São Paulo; São Paulo Brazil
| | | | - Vanessa Rioli
- Laboratory of Applied Toxinology (LETA); Butantan Institute; SP Brazil
| | - Emer S. Ferro
- Department of Cell Biology and Development; Biomedical Sciences Institute; University of São Paulo; São Paulo Brazil
| |
Collapse
|
172
|
|
173
|
A holistic in silico approach to predict functional sites in protein structures. Bioinformatics 2012; 28:1845-50. [DOI: 10.1093/bioinformatics/bts269] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
174
|
Sun JEP, Vranic J, Composto RJ, Streu C, Billings PC, Bennett JS, Weisel JW, Litvinov RI. Bimolecular integrin-ligand interactions quantified using peptide-functionalized dextran-coated microparticles. Integr Biol (Camb) 2011; 4:84-92. [PMID: 22120019 DOI: 10.1039/c1ib00085c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrins play a key role in cell-cell and cell-matrix interactions. Artificial surfaces grafted with integrin ligands, mimicking natural interfaces, have been used to study integrin-mediated cell adhesion. Here we report the use of a new chemical engineering technology in combination with single-molecule nanomechanical measurements to quantify peptide binding to integrins. We prepared latex beads with covalently-attached dextran. The beads were then functionalized with the bioactive peptides, cyclic RGDFK (cRGD) and the fibrinogen γC-dodecapeptide (H12), corresponding to the active sites for fibrinogen binding to the platelet integrin αIIbβ3. Using optical tweezers-based force spectroscopy to measure non-specific protein-protein interactions, we found the dextran-coated beads nonreactive towards fibrinogen, thus providing an inert platform for biospecific modifications. Using periodate oxidation followed by reductive amination, we functionalized the bead-attached dextran with either cRGD or H12 and used the peptide-grafted beads to measure single-molecule interactions with the purified αIIbβ3. Bimolecular force spectroscopy revealed that the peptide-functionalized beads were highly and specifically reactive with the immobilized αIIbβ3. Further, the cRGD- and H12-functionalized beads displayed a remarkable interaction profile with a bimodal force distribution up to 90 pN. The cRGD-αIIbβ3 interactions had greater binding strength than that of H12-αIIbβ3, indicating that they are more stable and resistant mechanically, consistent with the platelet reactivity of RGD-containing ligands. Thus, the results reported here describe the mechanistic characteristics of αIIbβ3-ligand interactions, confirming the utility of peptide-functionalized latex beads for the quantitative analysis of molecular recognition.
Collapse
Affiliation(s)
- Jessie E P Sun
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Tian F, Lv Y, Yang L. Structure-based prediction of protein–protein binding affinity with consideration of allosteric effect. Amino Acids 2011; 43:531-43. [DOI: 10.1007/s00726-011-1101-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/21/2011] [Indexed: 11/28/2022]
|
176
|
London N, Lamphear CL, Hougland JL, Fierke CA, Schueler-Furman O. Identification of a novel class of farnesylation targets by structure-based modeling of binding specificity. PLoS Comput Biol 2011; 7:e1002170. [PMID: 21998565 PMCID: PMC3188499 DOI: 10.1371/journal.pcbi.1002170] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/01/2011] [Indexed: 11/19/2022] Open
Abstract
Farnesylation is an important post-translational modification catalyzed by farnesyltransferase (FTase). Until recently it was believed that a C-terminal CaaX motif is required for farnesylation, but recent experiments have revealed larger substrate diversity. In this study, we propose a general structural modeling scheme to account for peptide binding specificity and recapitulate the experimentally derived selectivity profile of FTase in vitro. In addition to highly accurate recovery of known FTase targets, we also identify a range of novel potential targets in the human genome, including a new substrate class with an acidic C-terminal residue (CxxD/E). In vitro experiments verified farnesylation of 26/29 tested peptides, including both novel human targets, as well as peptides predicted to tightly bind FTase. This study extends the putative range of biological farnesylation substrates. Moreover, it suggests that the ability of a peptide to bind FTase is a main determinant for the farnesylation reaction. Finally, simple adaptation of our approach can contribute to more accurate and complete elucidation of peptide-mediated interactions and modifications in the cell.
Collapse
Affiliation(s)
- Nir London
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Corissa L. Lamphear
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James L. Hougland
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carol A. Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
177
|
Characterization of PDZ domain–peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses. J Comput Aided Mol Des 2011; 25:947-58. [DOI: 10.1007/s10822-011-9474-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 09/13/2011] [Indexed: 01/04/2023]
|
178
|
Structure-based characterization of the binding of peptide to the human endophilin-1 Src homology 3 domain using position-dependent noncovalent potential analysis. J Mol Model 2011; 18:2153-61. [DOI: 10.1007/s00894-011-1197-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/20/2011] [Indexed: 02/05/2023]
|
179
|
Binding free energy landscape of domain-peptide interactions. PLoS Comput Biol 2011; 7:e1002131. [PMID: 21876662 PMCID: PMC3158039 DOI: 10.1371/journal.pcbi.1002131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/08/2011] [Indexed: 02/04/2023] Open
Abstract
Peptide recognition domains (PRDs) are ubiquitous protein domains which mediate large numbers of protein interactions in the cell. How these PRDs are able to recognize peptide sequences in a rapid and specific manner is incompletely understood. We explore the peptide binding process of PDZ domains, a large PRD family, from an equilibrium perspective using an all-atom Monte Carlo (MC) approach. Our focus is two different PDZ domains representing two major PDZ classes, I and II. For both domains, a binding free energy surface with a strong bias toward the native bound state is found. Moreover, both domains exhibit a binding process in which the peptides are mostly either bound at the PDZ binding pocket or else interact little with the domain surface. Consistent with this, various binding observables show a temperature dependence well described by a simple two-state model. We also find important differences in the details between the two domains. While both domains exhibit well-defined binding free energy barriers, the class I barrier is significantly weaker than the one for class II. To probe this issue further, we apply our method to a PDZ domain with dual specificity for class I and II peptides, and find an analogous difference in their binding free energy barriers. Lastly, we perform a large number of fixed-temperature MC kinetics trajectories under binding conditions. These trajectories reveal significantly slower binding dynamics for the class II domain relative to class I. Our combined results are consistent with a binding mechanism in which the peptide C terminal residue binds in an initial, rate-limiting step. The complex biological processes occurring in living organisms are enabled by numerous networks of interacting proteins. It is therefore of great interest to understand the physical interplay between proteins and, in particular, how this process gives rise to highly specific network connectivities. For a long time, the dominant molecular view of protein-protein interactions was the docking of more or less static folded structures, with specificity obtained from a complementarity in shape and charge distributions. Lately it has been realized that many of the links in protein networks are mediated by interactions between folded domains, on the one hand, and disordered polypeptide segments, on the other. We use an all-atom Monte Carlo based approach which attempts to capture this domain-peptide binding process in full and apply it to representative members of a common domain family. This allows us to examine and compare detailed aspects of the binding free energy landscapes which underlie specificity and affinity. Being able to model domain-peptide binding in a physically sound, yet computationally tractable way is essential for identifying molecular binding mechanisms and opens up possibilities for modifying interaction networks in a controlled way.
Collapse
|
180
|
London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O. Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucleic Acids Res 2011; 39:W249-53. [PMID: 21622962 PMCID: PMC3125795 DOI: 10.1093/nar/gkr431] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Peptide–protein interactions are among the most prevalent and important interactions in the cell, but a large fraction of those interactions lack detailed structural characterization. The Rosetta FlexPepDock web server (http://flexpepdock.furmanlab.cs.huji.ac.il/) provides an interface to a high-resolution peptide docking (refinement) protocol for the modeling of peptide–protein complexes, implemented within the Rosetta framework. Given a protein receptor structure and an approximate, possibly inaccurate model of the peptide within the receptor binding site, the FlexPepDock server refines the peptide to high resolution, allowing full flexibility to the peptide backbone and to all side chains. This protocol was extensively tested and benchmarked on a wide array of non-redundant peptide–protein complexes, and was proven effective when applied to peptide starting conformations within 5.5 Å backbone root mean square deviation from the native conformation. FlexPepDock has been applied to several systems that are mediated and regulated by peptide–protein interactions. This easy to use and general web server interface allows non-expert users to accurately model their specific peptide–protein interaction of interest.
Collapse
Affiliation(s)
- Nir London
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
181
|
Raveh B, London N, Zimmerman L, Schueler-Furman O. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 2011; 6:e18934. [PMID: 21572516 PMCID: PMC3084719 DOI: 10.1371/journal.pone.0018934] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 03/12/2011] [Indexed: 11/18/2022] Open
Abstract
Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions.
Collapse
Affiliation(s)
- Barak Raveh
- Department of Microbiology and Molecular Genetics, Hadassah Medical School, Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
- The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir London
- Department of Microbiology and Molecular Genetics, Hadassah Medical School, Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Lior Zimmerman
- Department of Microbiology and Molecular Genetics, Hadassah Medical School, Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Hadassah Medical School, Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
182
|
Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C. Transient protein-protein interactions: structural, functional, and network properties. Structure 2011; 18:1233-43. [PMID: 20947012 DOI: 10.1016/j.str.2010.08.007] [Citation(s) in RCA: 386] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/13/2010] [Accepted: 08/02/2010] [Indexed: 11/28/2022]
Abstract
Transient interactions, which involve protein interactions that are formed and broken easily, are important in many aspects of cellular function. Here we describe structural and functional properties of transient interactions between globular domains and between globular domains, short peptides, and disordered regions. The importance of posttranslational modifications in transient interactions is also considered. We review techniques used in the detection of the different types of transient protein-protein interactions. We also look at the role of transient interactions within protein-protein interaction networks and consider their contribution to different aspects of these networks.
Collapse
Affiliation(s)
- James R Perkins
- Department of Structural and Molecular Biology, University College of London, Gower Street, WC1E 6BT London, UK.
| | | | | | | | | |
Collapse
|
183
|
Stein A, Mosca R, Aloy P. Three-dimensional modeling of protein interactions and complexes is going 'omics. Curr Opin Struct Biol 2011; 21:200-8. [PMID: 21320770 DOI: 10.1016/j.sbi.2011.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
High-throughput interaction discovery initiatives have revealed the existence of hundreds of multiprotein complexes whose functions are regulated through thousands of protein-protein interactions (PPIs). However, the structural details of these interactions, often necessary to understand their function, are only available for a tiny fraction, and the experimental difficulties surrounding complex structure determination make computational modeling techniques paramount. In this manuscript, we critically review some of the most recent developments in the field of structural bioinformatics applied to the modeling of protein interactions and complexes, from large macromolecular machines to domain-domain and peptide-mediated interactions. In particular, we place a special emphasis on those methods that can be applied in a proteome-wide manner, and discuss how they will help in the ultimate objective of building 3D interactome networks.
Collapse
Affiliation(s)
- Amelie Stein
- Institute for Research in Biomedicine (IRB Barcelona), Joint IRB-BSC Program in Computational Biology, c/Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | | | | |
Collapse
|
184
|
Abstract
Peptide-protein interactions are prevalent in the living cell and form a key component of the overall protein-protein interaction network. These interactions are drawing increasing interest due to their part in signaling and regulation, and are thus attractive targets for computational structural modeling. Here we report an overview of current techniques for the high resolution modeling of peptide-protein complexes. We dissect this complicated challenge into several smaller subproblems, namely: modeling the receptor protein, predicting the peptide binding site, sampling an initial peptide backbone conformation and the final refinement of the peptide within the receptor binding site. For each of these conceptual stages, we present available tools, approaches, and their reported performance. We summarize with an illustrative example of this process, highlighting the success and current challenges still facing the automated blind modeling of peptide-protein interactions. We believe that the upcoming years will see considerable progress in our ability to create accurate models of peptide-protein interactions, with applications in binding-specificity prediction, rational design of peptide-mediated interactions and the usage of peptides as therapeutic agents.
Collapse
Affiliation(s)
- Nir London
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
185
|
Vanhee P, Stricher F, Baeten L, Verschueren E, Serrano L, Rousseau F, Schymkowitz J. Modeling protein-peptide interactions using protein fragments: fitting the pieces? BMC Bioinformatics 2010. [DOI: 10.1186/1471-2105-11-s10-o1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
186
|
London N, Raveh B, Movshovitz-Attias D, Schueler-Furman O. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins 2010; 78:3140-9. [PMID: 20607702 PMCID: PMC2952690 DOI: 10.1002/prot.22785] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we assess on a large scale the possibility of deriving self-inhibitory peptides from protein domains with globular architectures. Such inhibitory peptides would inhibit interactions of their origin domain by mimicking its mode of binding to cognate partners, and could serve as promising leads for rational design of inhibitory drugs. For our large-scale analysis, we analyzed short linear segments that were cut out of protein interfaces in silico in complex structures of protein-protein docking Benchmark 3.0 and CAPRI targets from rounds 1-19. Our results suggest that more than 50% of these globular interactions are dominated by one short linear segment at the domain interface, which provides more than half of the original interaction energy. Importantly, in many cases the derived peptides show strong energetic preference for their original binding mode independently of the context of their original domain, as we demonstrate by extensive computational peptide docking experiments. As an in depth case study, we computationally design a candidate peptide to inhibit the EphB4-EphrinB2 interaction based on a short peptide derived from the G-H loop in EphrinB2. Altogether, we provide an elaborate framework for the in silico selection of candidate inhibitory molecules for protein-protein interactions. Such candidate molecules can be readily subjected to wet-laboratory experiments and provide highly promising starting points for subsequent drug design.
Collapse
Affiliation(s)
- Nir London
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, POB 12272, Jerusalem, 91120 Israel
| | - Barak Raveh
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, POB 12272, Jerusalem, 91120 Israel
- The Blavatnik School of Computer Science, Tel-Aviv University, P.O.B. 39040, Ramat Aviv, 69978 Israel
| | - Dana Movshovitz-Attias
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, 91904, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, POB 12272, Jerusalem, 91120 Israel
| |
Collapse
|
187
|
Raveh B, London N, Schueler-Furman O. Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 2010; 78:2029-40. [PMID: 20455260 DOI: 10.1002/prot.22716] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A wide range of regulatory processes in the cell are mediated by flexible peptides that fold upon binding to globular proteins. Computational efforts to model these interactions are hindered by the large number of rotatable bonds in flexible peptides relative to typical ligand molecules, and the fact that different peptides assume different backbone conformations within the same binding site. In this study, we present Rosetta FlexPepDock, a novel tool for refining coarse peptide-protein models that allows significant changes in both peptide backbone and side chains. We obtain high resolution models, often of sub-angstrom backbone quality, over an extensive and general benchmark that is based on a large nonredundant dataset of 89 peptide-protein interactions. Importantly, side chains of known binding motifs are modeled particularly well, typically with atomic accuracy. In addition, our protocol has improved modeling quality for the important application of cross docking to PDZ domains. We anticipate that the ability to create high resolution models for a wide range of peptide-protein complexes will have significant impact on structure-based functional characterization, controlled manipulation of peptide interactions, and on peptide-based drug design.
Collapse
Affiliation(s)
- Barak Raveh
- Department of Microbiology and Molecular Genetics, Insitute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, 91120 Israel
| | | | | |
Collapse
|
188
|
Shameer K, Madan LL, Veeranna S, Gopal B, Sowdhamini R. PeptideMine--a webserver for the design of peptides for protein-peptide binding studies derived from protein-protein interactomes. BMC Bioinformatics 2010; 11:473. [PMID: 20858292 PMCID: PMC2955050 DOI: 10.1186/1471-2105-11-473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 09/22/2010] [Indexed: 01/18/2023] Open
Abstract
Background Signal transduction events often involve transient, yet specific, interactions between structurally conserved protein domains and polypeptide sequences in target proteins. The identification and validation of these associating domains is crucial to understand signal transduction pathways that modulate different cellular or developmental processes. Bioinformatics strategies to extract and integrate information from diverse sources have been shown to facilitate the experimental design to understand complex biological events. These methods, primarily based on information from high-throughput experiments, have also led to the identification of new connections thus providing hypothetical models for cellular events. Such models, in turn, provide a framework for directing experimental efforts for validating the predicted molecular rationale for complex cellular processes. In this context, it is envisaged that the rational design of peptides for protein-peptide binding studies could substantially facilitate the experimental strategies to evaluate a predicted interaction. This rational design procedure involves the integration of protein-protein interaction data, gene ontology, physico-chemical calculations, domain-domain interaction data and information on functional sites or critical residues. Results Here we describe an integrated approach called "PeptideMine" for the identification of peptides based on specific functional patterns present in the sequence of an interacting protein. This approach based on sequence searches in the interacting sequence space has been developed into a webserver, which can be used for the identification and analysis of peptides, peptide homologues or functional patterns from the interacting sequence space of a protein. To further facilitate experimental validation, the PeptideMine webserver also provides a list of physico-chemical parameters corresponding to the peptide to determine the feasibility of using the peptide for in vitro biochemical or biophysical studies. Conclusions The strategy described here involves the integration of data and tools to identify potential interacting partners for a protein and design criteria for peptides based on desired biochemical properties. Alongside the search for interacting protein sequences using three different search programs, the server also provides the biochemical characteristics of candidate peptides to prune peptide sequences based on features that are most suited for a given experiment. The PeptideMine server is available at the URL: http://caps.ncbs.res.in/peptidemine
Collapse
Affiliation(s)
- Khader Shameer
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, 560065, India
| | | | | | | | | |
Collapse
|
189
|
Lange S, Sylvester M, Schümann M, Freund C, Krause E. Identification of Phosphorylation-Dependent Interaction Partners of the Adapter Protein ADAP using Quantitative Mass Spectrometry: SILAC vs 18O-Labeling. J Proteome Res 2010; 9:4113-22. [DOI: 10.1021/pr1003054] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sabine Lange
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marc Sylvester
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Michael Schümann
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Christian Freund
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
190
|
Stein A, Aloy P. Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures. PLoS Comput Biol 2010; 6:e1000789. [PMID: 20502673 PMCID: PMC2873903 DOI: 10.1371/journal.pcbi.1000789] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 04/15/2010] [Indexed: 11/18/2022] Open
Abstract
Many biological responses to intra- and extracellular stimuli are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. These peptide stretches are often found in unstructured regions of proteins, and contain a consensus motif complementary to the interaction surface displayed by their binding partners. While most current methods for the de novo discovery of such motifs exploit their tendency to occur in disordered regions, our work here focuses on another observation: upon binding to their partner domain, motifs adopt a well-defined structure. Indeed, through the analysis of all peptide-mediated interactions of known high-resolution three-dimensional (3D) structure, we found that the structure of the peptide may be as characteristic as the consensus motif, and help identify target peptides even though they do not match the established patterns. Our analyses of the structural features of known motifs reveal that they tend to have a particular stretched and elongated structure, unlike most other peptides of the same length. Accordingly, we have implemented a strategy based on a Support Vector Machine that uses this features, along with other structure-encoded information about binding interfaces, to search the set of protein interactions of known 3D structure and to identify unnoticed peptide-mediated interactions among them. We have also derived consensus patterns for these interactions, whenever enough information was available, and compared our results with established linear motif patterns and their binding domains. Finally, to cross-validate our identification strategy, we scanned interactome networks from four model organisms with our newly derived patterns to see if any of them occurred more often than expected. Indeed, we found significant over-representations for 64 domain-motif interactions, 46 of which had not been described before, involving over 6,000 interactions in total for which we could suggest the molecular details determining the binding. Protein-protein interactions are paramount in any aspect of the cellular life. Some proteins form large macromolecular complexes that execute core functionalities of the cell, while others transmit information in signalling networks to co-ordinate these processes. The latter type, of more transient nature, often occurs through the recognition of a small linear sequence motif in one protein by a specialized globular domain in the other. These peptide stretches often contain a consensus pattern complementary to the interaction surface displayed by their binding partners, and adopt a well-defined structure upon binding. Information that is currently available only from high-resolution three-dimensional (3D) structures, and that can be as characteristic as the consensus motif itself. In this manuscript, we present a strategy to identify novel domain-motif interactions (DMIs) among the set of protein complexes of known 3D structures, which provides information on the consensus motif and binding domain and also allows ready identification of the key interacting residues. A detailed knowledge of the interface is critical to plan further functional studies and for the development of interfering elements, be it drug-like compounds or novel engineered binding proteins or peptides. The small interfaces typical for DMIs make them interesting candidates for all these applications.
Collapse
Affiliation(s)
- Amelie Stein
- Institute for Research in Biomedicine, Joint IRB-BSC Program in Computational Biology, Barcelona, Spain
| | - Patrick Aloy
- Institute for Research in Biomedicine, Joint IRB-BSC Program in Computational Biology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- * E-mail:
| |
Collapse
|
191
|
The structural basis of peptide-protein binding strategies. Structure 2010; 18:188-99. [PMID: 20159464 DOI: 10.1016/j.str.2009.11.012] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/08/2009] [Accepted: 11/11/2009] [Indexed: 02/05/2023]
Abstract
Peptide-protein interactions are very prevalent, mediating key processes such as signal transduction and protein trafficking. How can peptides overcome the entropic cost involved in switching from an unstructured, flexible peptide to a rigid, well-defined bound structure? A structure-based analysis of peptide-protein interactions unravels that most peptides do not induce conformational changes on their partner upon binding, thus minimizing the entropic cost of binding. Furthermore, peptides display interfaces that are better packed than protein-protein interfaces and contain significantly more hydrogen bonds, mainly those involving the peptide backbone. Additionally, "hot spot" residues contribute most of the binding energy. Finally, peptides tend to bind in the largest pockets available on the protein surface. Our study is based on peptiDB, a new and comprehensive data set of 103 high-resolution peptide-protein complex structures. In addition to improved understanding of peptide-protein interactions, our findings have direct implications for the structural modeling, design, and manipulation of these interactions.
Collapse
|
192
|
Pasikowski P, Cydzik M, Kluczyk A, Stefanowicz P, Szewczuk Z. Ubiquitin fragments: their known biological activities and putative roles. Biomol Concepts 2010; 1:67-83. [PMID: 25961987 DOI: 10.1515/bmc.2010.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ubiquitin (Ub) is involved in many key processes of cell biology. Identification of compounds that could interfere in the ubiquitination process is of importance. It could be expected that peptides derived from the Ub-binding regions might be able to interact with Ub receptors themselves and modify an ability of the Ub receptors interactions. This review summarizes current knowledge about known Ub-derived peptides and discusses putative activity of unexplored Ub fragments. Among identified biologically active Ub-derived peptides, its decapeptide fragment of the LEDGRTLSDY sequence was found to exhibit strong immunosuppressive effects on the cellular and humoral immune responses, comparable to that of cyclosporine. Some of the Ub fragments possess strong antibacterial and antifungal potency. In the search for new peptides that could interfere in the interaction of Ub with other proteins, we investigated the pentapeptide Ub sequences present in non-ubiquitin proteins. Based on examination of the Swiss-Prot database, we postulated that sequences of some Ub fragments often exist in other protein molecules. However, some of those motives are represented more frequently than others and could be involved in regulation of cellular processes related to Ub.
Collapse
|
193
|
Gould CM, Diella F, Via A, Puntervoll P, Gemünd C, Chabanis-Davidson S, Michael S, Sayadi A, Bryne JC, Chica C, Seiler M, Davey NE, Haslam N, Weatheritt RJ, Budd A, Hughes T, Pas J, Rychlewski L, Travé G, Aasland R, Helmer-Citterich M, Linding R, Gibson TJ. ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 2009; 38:D167-80. [PMID: 19920119 PMCID: PMC2808914 DOI: 10.1093/nar/gkp1016] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a 'Bar Code' format, which also displays known instances from homologous proteins through a novel 'Instance Mapper' protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation.
Collapse
Affiliation(s)
- Cathryn M Gould
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
All-Atom Monte Carlo Approach to Protein–Peptide Binding. J Mol Biol 2009; 393:1118-28. [DOI: 10.1016/j.jmb.2009.08.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 08/19/2009] [Indexed: 11/23/2022]
|
195
|
Vanhee P, Reumers J, Stricher F, Baeten L, Serrano L, Schymkowitz J, Rousseau F. PepX: a structural database of non-redundant protein-peptide complexes. Nucleic Acids Res 2009; 38:D545-51. [PMID: 19880386 PMCID: PMC2808939 DOI: 10.1093/nar/gkp893] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although protein–peptide interactions are estimated to constitute up to 40% of all protein interactions, relatively little information is available for the structural details of these interactions. Peptide-mediated interactions are a prime target for drug design because they are predominantly present in signaling and regulatory networks. A reliable data set of nonredundant protein–peptide complexes is indispensable as a basis for modeling and design, but current data sets for protein–peptide interactions are often biased towards specific types of interactions or are limited to interactions with small ligands. In PepX (http://pepx.switchlab.org), we have designed an unbiased and exhaustive data set of all protein–peptide complexes available in the Protein Data Bank with peptide lengths up to 35 residues. In addition, these complexes have been clustered based on their binding interfaces rather than sequence homology, providing a set of structurally diverse protein–peptide interactions. The final data set contains 505 unique protein–peptide interface clusters from 1431 complexes. Thorough annotation of each complex with both biological and structural information facilitates searching for and browsing through individual complexes and clusters. Moreover, we provide an additional source of data for peptide design by annotating peptides with naturally occurring backbone variations using fragment clusters from the BriX database.
Collapse
Affiliation(s)
- Peter Vanhee
- VIB SWITCH Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
196
|
Via A, Gould CM, Gemünd C, Gibson TJ, Helmer-Citterich M. A structure filter for the Eukaryotic Linear Motif Resource. BMC Bioinformatics 2009; 10:351. [PMID: 19852836 PMCID: PMC2774702 DOI: 10.1186/1471-2105-10-351] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 10/24/2009] [Indexed: 01/31/2023] Open
Abstract
Background Many proteins are highly modular, being assembled from globular domains and segments of natively disordered polypeptides. Linear motifs, short sequence modules functioning independently of protein tertiary structure, are most abundant in natively disordered polypeptides but are also found in accessible parts of globular domains, such as exposed loops. The prediction of novel occurrences of known linear motifs attempts the difficult task of distinguishing functional matches from stochastically occurring non-functional matches. Although functionality can only be confirmed experimentally, confidence in a putative motif is increased if a motif exhibits attributes associated with functional instances such as occurrence in the correct taxonomic range, cellular compartment, conservation in homologues and accessibility to interacting partners. Several tools now use these attributes to classify putative motifs based on confidence of functionality. Results Current methods assessing motif accessibility do not consider much of the information available, either predicting accessibility from primary sequence or regarding any motif occurring in a globular region as low confidence. We present a method considering accessibility and secondary structural context derived from experimentally solved protein structures to rectify this situation. Putatively functional motif occurrences are mapped onto a representative domain, given that a high quality reference SCOP domain structure is available for the protein itself or a close relative. Candidate motifs can then be scored for solvent-accessibility and secondary structure context. The scores are calibrated on a benchmark set of experimentally verified motif instances compared with a set of random matches. A combined score yields 3-fold enrichment for functional motifs assigned to high confidence classifications and 2.5-fold enrichment for random motifs assigned to low confidence classifications. The structure filter is implemented as a pipeline with both a graphical interface via the ELM resource and through a Web Service protocol. Conclusion New occurrences of known linear motifs require experimental validation as the bioinformatics tools currently have limited reliability. The ELM structure filter will aid users assessing candidate motifs presenting in globular structural regions. Most importantly, it will help users to decide whether to expend their valuable time and resources on experimental testing of interesting motif candidates.
Collapse
Affiliation(s)
- Allegra Via
- Center for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy.
| | | | | | | | | |
Collapse
|
197
|
Rubinstein M, Niv MY. Peptidic modulators of protein-protein interactions: progress and challenges in computational design. Biopolymers 2009; 91:505-13. [PMID: 19226619 DOI: 10.1002/bip.21164] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the decline in productivity of drug-development efforts, novel approaches to rational drug design are being introduced and developed. Naturally occurring and synthetic peptides are emerging as novel promising compounds that can specifically and efficiently modulate signaling pathways in vitro and in vivo. We describe sequence-based approaches that use peptides to mimic proteins in order to inhibit the interaction of the mimicked protein with its partners. We then discuss a structure-based approach, in which protein-peptide complex structures are used to rationally design and optimize peptidic inhibitors. We survey flexible peptide docking techniques and discuss current challenges and future directions in the rational design of peptidic inhibitors.
Collapse
Affiliation(s)
- Mor Rubinstein
- The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|
198
|
Vanhee P, Stricher F, Baeten L, Verschueren E, Lenaerts T, Serrano L, Rousseau F, Schymkowitz J. Protein-Peptide Interactions Adopt the Same Structural Motifs as Monomeric Protein Folds. Structure 2009; 17:1128-36. [DOI: 10.1016/j.str.2009.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 01/24/2023]
|