151
|
Abstract
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.
Collapse
Affiliation(s)
- David S Garbe
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
152
|
Minniti AN, Labarca M, Hurtado C, Brandan E. Caenorhabditis elegans syndecan (SDN-1) is required for normal egg laying and associates with the nervous system and the vulva. J Cell Sci 2005; 117:5179-90. [PMID: 15456854 DOI: 10.1242/jcs.01394] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Caenorhabditis elegans, the identification of many enzymes involved in the synthesis and modification of glycosaminoglycans (GAGs), essential components of proteoglycans, has attained special attention in recent years. Mutations in all the genes that encode for GAG biosynthetic enzymes show defects in the development of the vulva, specifically in the invagination of the vulval epithelium. Mutants for certain heparan sulfate modifying enzymes present axonal and cellular guidance defects in specific neuronal classes. Although most of the enzymes involved in the biosynthesis and modification of heparan sulfate have been characterized in C. elegans, little is known regarding the core proteins to which these GAGs covalently bind in proteoglycans. A single syndecan homologue (sdn-1) has been identified in the C. elegans genome through sequence analysis. In the present study, we show that C. elegans synthesizes sulfated proteoglycans, seen as three distinct species in western blot analysis. In the sdn-1 (ok449) deletion mutant allele we observed the lack of one species, which corresponds to a 50 kDa product after heparitinase treatment. The expression of sdn-1 mRNA and sequencing revealed that sdn-1 (ok449) deletion mutants lack two glycosylation sites. Hence, the missing protein in the western blot analysis probably corresponds to SDN-1. In addition, we show that SDN-1 localizes to the C. elegans nerve ring, nerve cords and to the vulva. SDN-1 is found specifically phosphorylated in nerve ring neurons and in the vulva, in both wild-type worms and sdn-1 (ok449) deletion mutants. These mutants show a defective egg-laying phenotype. Our results show for the first time, the identification, localization and some functional aspects of syndecan in the nematode C. elegans.
Collapse
Affiliation(s)
- Alicia N Minniti
- Centro de Regulación Celular y Patología, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, MIFAB, P. Universidad Católica de Chile, Casilla 114-D, Santiago
| | | | | | | |
Collapse
|
153
|
Abstract
Proteoglycans are complex macromolecules with the potential for extraordinary diversity. Several recent studies have demonstrated important roles for heparan sulfate and chondroitin sulfate proteoglycans (HSPGs and CSPGs) in axon pathfinding and have linked HSPGs to specific signaling pathways. More speculatively, there are hints of a "sugar code," in which specific sugar modifications might act instructively in guidance decisions. This raises the intriguing possibility that the complexity of neuronal wiring may in part reflect the complexity of proteoglycan modifications.
Collapse
Affiliation(s)
- Christine E. Holt
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - Barry J. Dickson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3-5, A-1030 Vienna, Austria
| |
Collapse
|
154
|
Abstract
Heparan sulfate proteoglycans (HSPGs) are cell-surface and extracellular matrix macromolecules that are composed of a core protein decorated with covalently linked glycosaminoglycan (GAG) chains. In vitro studies have demonstrated the roles of these molecules in many cellular functions, and recent in vivo studies have begun to clarify their essential functions in development. In particular, HSPGs play crucial roles in regulating key developmental signaling pathways, such as the Wnt, Hedgehog, transforming growth factor-beta, and fibroblast growth factor pathways. This review highlights recent findings regarding the functions of HSPGs in these signaling pathways during development.
Collapse
Affiliation(s)
- Xinhua Lin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, The University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
155
|
Abstract
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Collapse
Affiliation(s)
- Céline Plachez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
156
|
Jenniskens GJ, Veerkamp JH, van Kuppevelt TH. Heparan sulfates in skeletal muscle development and physiology. J Cell Physiol 2005; 206:283-94. [PMID: 15991249 DOI: 10.1002/jcp.20450] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have seen an emerging interest in the composition of the skeletal muscle extracellular matrix (ECM) and in the developmental and physiological roles of its constituents. Many cell surface-associated and ECM-embedded molecules occur in highly organized spatiotemporal patterns, suggesting important roles in the development and functioning of skeletal muscle. Glycans are historically underrepresented in the study of skeletal muscle ECM, even though studies from up to 30 years ago have demonstrated specific carbohydrates and glycoproteins to be concentrated in neuromuscular junctions (NMJs). Changes in glycan profile and distribution during myogenesis and synaptogenesis hint at an active involvement of glycoconjugates in muscle development. A modest amount of literature involves glycoconjugates in muscle ion housekeeping, but a recent surge of evidence indicates that glycosylation defects are causal for many congenital (neuro)muscular disorders, rendering glycosylation essential for skeletal muscle integrity. In this review, we focus on a single class of ECM-resident glycans and their emerging roles in muscle development, physiology, and pathology: heparan sulfate proteoglycans (HSPGs), notably their heparan sulfate (HS) moiety.
Collapse
Affiliation(s)
- Guido J Jenniskens
- Department of Biochemistry 194, University Medical Center, NCMLS, Nijmegen, The Netherlands
| | | | | |
Collapse
|
157
|
Lee JS, Chien CB. When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet 2004; 5:923-35. [PMID: 15573124 DOI: 10.1038/nrg1490] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although there have previously been hints that heparan sulphate proteoglycans (HSPGs) are important for axon guidance, as they are for many other biological processes, there has been little in vivo evidence for interaction with known axon-guidance pathways. Genetic analyses of fly, mouse, nematode and zebrafish mutants now confirm the role of HSPGs in axon guidance and are beginning to show that they might have a key role in modulating the action of axon-guidance ligands and receptors.
Collapse
Affiliation(s)
- Jeong-Soo Lee
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 North 1900 East, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
158
|
Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ, Flanagan JG, Yamaguchi Y, Sretavan DW, Giger RJ, Kolodkin AL. Semaphorin 5A Is a Bifunctional Axon Guidance Cue Regulated by Heparan and Chondroitin Sulfate Proteoglycans. Neuron 2004; 44:961-75. [PMID: 15603739 DOI: 10.1016/j.neuron.2004.12.002] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 11/24/2004] [Accepted: 11/29/2004] [Indexed: 10/26/2022]
Abstract
The response of neuronal growth cones to axon guidance cues depends on the developmental context in which these cues are encountered. We show here that the transmembrane protein semaphorin 5A (Sema5A) is a bifunctional guidance cue exerting both attractive and inhibitory effects on developing axons of the fasciculus retroflexus, a diencephalon fiber tract associated with limbic function. The thrombospondin repeats of Sema5A physically interact with the glycosaminoglycan portion of both chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPGs). CSPGs function as precisely localized extrinsic cues that convert Sema5A from an attractive to an inhibitory guidance cue. Therefore, glycosaminoglycan bound guidance cues provide a molecular mechanism for CSPG-mediated inhibition of axonal extension. Further, axonal HSPGs are required for Sema5A-mediated attraction, suggesting that HSPGs are components of functional Sema5A receptors. Thus, neuronal responses to Sema5A are proteoglycan dependent and interpreted according to the biological context in which this membrane bound guidance cue is presented.
Collapse
Affiliation(s)
- David B Kantor
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Lee JS, von der Hardt S, Rusch MA, Stringer SE, Stickney HL, Talbot WS, Geisler R, Nüsslein-Volhard C, Selleck SB, Chien CB, Roehl H. Axon Sorting in the Optic Tract Requires HSPG Synthesis by ext2 (dackel) and extl3 (boxer). Neuron 2004; 44:947-60. [PMID: 15603738 DOI: 10.1016/j.neuron.2004.11.029] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 09/15/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
Retinal ganglion cell (RGC) axons are topographically ordered in the optic tract according to their retinal origin. In zebrafish dackel (dak) and boxer (box) mutants, some dorsal RGC axons missort in the optic tract but innervate the tectum topographically. Molecular cloning reveals that dak and box encode ext2 and extl3, glycosyltransferases implicated in heparan sulfate (HS) biosynthesis. Both genes are required for HS synthesis, as shown by biochemical and immunohistochemical analysis, and are expressed maternally and then ubiquitously, likely playing permissive roles. Missorting in box can be rescued by overexpression of extl3. dak;box double mutants show synthetic pathfinding phenotypes that phenocopy robo2 mutants, suggesting that Robo2 function requires HS in vivo; however, tract sorting does not require Robo function, since it is normal in robo2 null mutants. This genetic evidence that heparan sulfate proteoglycan function is required for optic tract sorting provides clues to begin understanding the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jeong-Soo Lee
- Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, Utah 84103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Howitt JA, Clout NJ, Hohenester E. Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of Slit. EMBO J 2004; 23:4406-12. [PMID: 15496984 PMCID: PMC526463 DOI: 10.1038/sj.emboj.7600446] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 09/22/2004] [Indexed: 11/08/2022] Open
Abstract
Recognition of the large secreted protein Slit by receptors of the Robo family provides fundamental signals in axon guidance and other developmental processes. In Drosophila, Slit-Robo signalling regulates midline crossing and the lateral position of longitudinal axon tracts. We report the functional dissection of Drosophila Slit, using structure analysis, site-directed mutagenesis and in vitro assays. The N-terminal region of Slit consists of a tandem array of four independently folded leucine-rich repeat (LRR) domains, connected by disulphide-tethered linkers. All three Drosophila Robos were found to compete for a single highly conserved site on the concave face of the second LRR domain of Slit. We also found that this domain is sufficient for biological activity in a chemotaxis assay. Other Slit activities may require Slit dimerisation mediated by the fourth LRR domain. Our results show that a small portion of Slit is able to induce Robo signalling and indicate that the distinct functions of Drosophila Robos are encoded in their divergent cytosolic domains.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Axons/physiology
- Binding Sites
- Cell Line
- Cell Movement
- Cells, Cultured
- Chromatography, Gel
- Conserved Sequence
- Crystallography, X-Ray
- Culture Media, Conditioned
- Cysteine/chemistry
- Drosophila/chemistry
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila Proteins/chemistry
- Drosophila Proteins/isolation & purification
- Drosophila Proteins/metabolism
- Endothelium, Vascular/cytology
- Humans
- Leucine/chemistry
- Leucine/genetics
- Leucine/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/isolation & purification
- Nerve Tissue Proteins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Immunologic/isolation & purification
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Repetitive Sequences, Amino Acid
- Sequence Homology, Amino Acid
- Umbilical Veins/cytology
- Water/chemistry
- Roundabout Proteins
Collapse
Affiliation(s)
- Jason A Howitt
- Department of Biological Sciences, Imperial College London, London, UK.
| | | | | |
Collapse
|
161
|
Belenkaya TY, Han C, Yan D, Opoka RJ, Khodoun M, Liu H, Lin X. Drosophila Dpp Morphogen Movement Is Independent of Dynamin-Mediated Endocytosis but Regulated by the Glypican Members of Heparan Sulfate Proteoglycans. Cell 2004; 119:231-44. [PMID: 15479640 DOI: 10.1016/j.cell.2004.09.031] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 08/23/2004] [Accepted: 08/24/2004] [Indexed: 12/19/2022]
Abstract
The Drosophila transforming growth factor beta (TGF-beta) homolog Decapentaplegic (Dpp) acts as a morphogen that forms a long-range concentration gradient to direct the anteroposterior patterning of the wing. Both planar transcytosis initiated by Dynamin-mediated endocytosis and extracellular diffusion have been proposed for Dpp movement across cells. In this work, we found that Dpp is mainly extracellular, and its extracellular gradient coincides with its activity gradient. We demonstrate that a blockage of endocytosis by the dynamin mutant shibire does not block Dpp movement but rather inhibits Dpp signal transduction, suggesting that endocytosis is not essential for Dpp movement but is involved in Dpp signaling. Furthermore, we show that Dpp fails to move across cells mutant for dally and dally-like (dly), two Drosophila glypican members of heparin sulfate proteoglycan (HSPG). Our results support a model in which Dpp moves along the cell surface by restricted extracellular diffusion involving the glypicans Dally and Dly.
Collapse
Affiliation(s)
- Tatyana Y Belenkaya
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|