151
|
Miyagishima KJ, Grünert U, Li W. Processing of S-cone signals in the inner plexiform layer of the mammalian retina. Vis Neurosci 2014; 31:153-63. [PMID: 24016424 PMCID: PMC12044801 DOI: 10.1017/s0952523813000308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Color information is encoded by two parallel pathways in the mammalian retina. One pathway compares signals from long- and middle-wavelength sensitive cones and generates red-green opponency. The other compares signals from short- and middle-/long-wavelength sensitive cones and generates blue-green (yellow) opponency. Whereas both pathways operate in trichromatic primates (including humans), the fundamental, phylogenetically ancient color mechanism shared among most mammals is blue-green opponency. In this review, we summarize the current understanding of how signals from short-wavelength sensitive cones are processed in the primate and nonprimate mammalian retina, with a focus on the inner plexiform layer where bipolar, amacrine, and ganglion cell processes interact to facilitate the generation of blue-green opponency.
Collapse
Affiliation(s)
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Wei Li
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
152
|
Zhao X, Stafford BK, Godin AL, King WM, Wong KY. Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. J Physiol 2014; 592:1619-36. [PMID: 24396062 DOI: 10.1113/jphysiol.2013.262782] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate non-image-forming visual responses, including pupillary constriction, circadian photoentrainment and suppression of pineal melatonin secretion. Five morphological types of ipRGCs, M1-M5, have been identified in mice. In order to understand their functions better, we studied the photoresponses of all five cell types, by whole-cell recording from fluorescently labelled ipRGCs visualized using multiphoton microscopy. All ipRGC types generated melanopsin-based ('intrinsic') as well as synaptically driven ('extrinsic') light responses. The intrinsic photoresponses of M1 cells were lower threshold, higher amplitude and faster than those of M2-M5. The peak amplitudes of extrinsic light responses differed among the ipRGC types; however, the responses of all cell types had comparable thresholds, kinetics and waveforms, and all cells received rod input. While all five types exhibited inhibitory amacrine-cell and excitatory bipolar-cell inputs from the 'on' channel, M1 and M3 received additional 'off'-channel inhibition, possibly through their 'off'-sublamina dendrites. The M2-M5 ipRGCs had centre-surround-organized receptive fields, implicating a capacity to detect spatial contrast. In contrast, the receptive fields of M1 cells lacked surround antagonism, which might be caused by the surround of the inhibitory input nullifying the surround of the excitatory input. All ipRGCs responded robustly to a wide range of motion speeds, and M1-M4 cells appeared tuned to different speeds, suggesting that they might analyse the speed of motion. Retrograde labelling revealed that M1-M4 cells project to the superior colliculus, suggesting that the contrast and motion information signalled by these cells could be used by this sensorimotor area to detect novel objects and motion in the visual field.
Collapse
Affiliation(s)
- Xiwu Zhao
- Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| | | | | | | | | |
Collapse
|
153
|
Vandewalle G, Collignon O, Hull JT, Daneault V, Albouy G, Lepore F, Phillips C, Doyon J, Czeisler CA, Dumont M, Lockley SW, Carrier J. Blue light stimulates cognitive brain activity in visually blind individuals. J Cogn Neurosci 2013; 25:2072-85. [PMID: 23859643 PMCID: PMC4497579 DOI: 10.1162/jocn_a_00450] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Light regulates multiple non-image-forming (or nonvisual) circadian, neuroendocrine, and neurobehavioral functions, via outputs from intrinsically photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so light is an important regulator of wakefulness and cognition. The roles of rods, cones, and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose nonrandomly about the presence of light despite their complete lack of sight. Furthermore, 2 sec of blue light modified EEG activity when administered simultaneously to auditory stimulations. fMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function.
Collapse
Affiliation(s)
- Gilles Vandewalle
- Functional Neuroimaging Unit, University of Montréal Geriatric Institute, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Olivier Collignon
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Université de Montréal, Montréal, Québec, Canada
- Centre de Recherches CHU Sainte-Justine, Montréal, Québec, Canada
| | - Joseph T. Hull
- Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Véronique Daneault
- Functional Neuroimaging Unit, University of Montréal Geriatric Institute, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Geneviève Albouy
- Functional Neuroimaging Unit, University of Montréal Geriatric Institute, Montréal, Québec, Canada
| | - Franco Lepore
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Université de Montréal, Montréal, Québec, Canada
| | | | - Julien Doyon
- Functional Neuroimaging Unit, University of Montréal Geriatric Institute, Montréal, Québec, Canada
| | - Charles A. Czeisler
- Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie Dumont
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Steven W. Lockley
- Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie Carrier
- Functional Neuroimaging Unit, University of Montréal Geriatric Institute, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| |
Collapse
|
154
|
Association between melanopsin gene polymorphism (I394T) and pupillary light reflex is dependent on light wavelength. J Physiol Anthropol 2013; 32:16. [PMID: 24119231 PMCID: PMC4015917 DOI: 10.1186/1880-6805-32-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/30/2013] [Indexed: 12/17/2022] Open
Abstract
Background Our aim was to determine the association between melanopsin gene polymorphism and pupillary light reflex under diverse photic conditions, including different intensities and wavelengths. Methods A total of 195 visually corrected subjects volunteered for investigation of the melanopsin gene of single nucleotide polymorphism (SNP) of rs1079610 (I394T). The genotype groups were TT (n = 126), TC (n = 55), and CC (n = 8), and 75 of the subjects, including subjects with TT (n = 34), TC (n = 33), and CC (n = 8) participated in our experiment. Three monochromatic lights with peak wavelengths of 465 nm (blue), 536 nm (green), and 632 nm (red) were prepared, and each light was projected to the subjects with five intensities, 12, 13, 14, 14.5 and 15 log photons/(cm2 s), for one minute. The pupil size of the left eye was measured under each light condition after a 1-minute adaptation. Results The pupils of the TC + CC genotypes (n = 38) were significantly smaller than those of the TT genotype (n = 31) under a blue (463 nm) light condition with 15 log photons/(cm2 s) (P < 0.05). In contrast, there were no significant differences under green (536 nm) and red (632 nm) light conditions. Conversely, relative pupil constrictions of the TC + CC genotypes were greater than those of the TT genotype under both blue and green conditions with high intensities (14.5 and 15 log photons/(cm2 s)). In contrast, there were no significant differences between genotype groups in pupil size and relative pupilloconstriction under the red light conditions. Conclusions Our findings suggest that the melanopsin gene polymorphism (I394T) functionally interacts with pupillary light reflex, depending on light intensity and, particularly, wavelength, and that under a light condition fulfilling both high intensity and short wavelength, the pupillary light response of subjects with the C allele (TC + CC) is more sensitive to light than that of subjects with the TT genotype.
Collapse
|
155
|
Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proc Natl Acad Sci U S A 2013; 110:7470-5. [PMID: 23589882 DOI: 10.1073/pnas.1304039110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are recently discovered photoreceptors in the mammalian eye. These photoreceptors mediate primarily nonimage visual functions, such as pupillary light reflex and circadian photoentrainment, which are generally expected to respond to the absolute light intensity. The classical rod and cone photoreceptors, on the other hand, mediate image vision by signaling contrast, accomplished by adaptation to light. Experiments by others have indicated that the ipRGCs do, in fact, light-adapt. We found the same but, in addition, have now quantified this light adaptation for the M1 ipRGC subtype. Interestingly, in incremental-flash-on-background experiments, the ipRGC's receptor current showed a flash sensitivity that adapted in background light according to the Weber-Fechner relation, well known to describe the adaptation behavior of rods and cones. Part of this light adaptation by ipRGCs appeared to be triggered by a Ca(2+) influx, in that the flash response elicited in the absence of extracellular Ca(2+) showed a normal rising phase but a slower decay phase, resulting in longer time to peak and higher sensitivity. There is, additionally, a prominent Ca(2+)-independent component of light adaptation not typically seen in rods and cones or in invertebrate rhabdomeric photoreceptors.
Collapse
|
156
|
Bailes HJ, Lucas RJ. Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades. Proc Biol Sci 2013; 280:20122987. [PMID: 23554393 PMCID: PMC3619500 DOI: 10.1098/rspb.2012.2987] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A subset of mammalian retinal ganglion cells expresses an opsin photopigment (melanopsin, Opn4) and is intrinsically photosensitive. The human retina contains melanopsin, but the literature lacks a direct investigation of its spectral sensitivity or G-protein selectivity. Here, we address this deficit by studying physiological responses driven by human melanopsin under heterologous expression in HEK293 cells. Luminescent reporters for common second messenger systems revealed that light induces a high amplitude increase in intracellular calcium and a modest reduction in cAMP in cells expressing human melanopsin, implying that this pigment is able to drive responses via both Gq and Gi/o class G-proteins. Melanopsins from mouse and amphioxus had a similar profile of G-protein coupling in HEK293 cells, but chicken Opn4m and Opn4x pigments exhibited some Gs activity in addition to a strong Gq/11 response. An action spectrum for the calcium response in cells expressing human melanopsin had the predicted form for an opsin : vitamin A1 pigment and peaked at 479 nm. The G-protein selectivity and spectral sensitivity of human melanopsin is similar to that previously described for rodents, supporting the utility of such laboratory animals for developing methods of manipulating this system using light or pharmacological agents.
Collapse
Affiliation(s)
- Helena J Bailes
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
157
|
Higuchi S, Hida A, Tsujimura SI, Mishima K, Yasukouchi A, Lee SI, Kinjyo Y, Miyahira M. Melanopsin gene polymorphism I394T is associated with pupillary light responses in a dose-dependent manner. PLoS One 2013; 8:e60310. [PMID: 23555953 PMCID: PMC3610661 DOI: 10.1371/journal.pone.0060310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/26/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) play an important role in non-image forming responses to light, such as circadian photoentrainment, light-induced melatonin suppression, and pupillary light response. Although it is known that there are some single nucleotide polymorphisms (SNPs) in the melanopsin (OPN4) gene in humans, the associations of the SNPs with non-image forming responses to light remains unclear. In the present study, we examined the associations of melanopsin gene polymorphisms with pupillary light response. METHODS Japanese university students (mean age: 21.0 ± 1.7 years) with the genotypes of TT (n = 38), TC (n = 28) and CC (n = 7) at rs1079610 (I394T) located in the coding region participated in the present study. They were matched by age and sex ratio. Dark-adapted pupil size (<1 lx) was first measured. Then steady-state pupil size was measured during exposure to five lighting conditions (10 lx, 100 lx, 1000 lx, 3000 lx, 6000 lx in the vertical direction at eye level). RESULTS Significant interaction between the genotype of I394T (TT versus TC+CC) and luminance levels was found in pupil size. Under high illuminance levels (1000 lx, 3000 lx and 6000 lx), pupil sizes in subjects with the C allele were significantly smaller than those in subjects with the TT genotype. On the other hand, pupil size in subjects with the C allele under low illuminance (<1 lx) was significantly larger than that in subjects with the TT genotype. Percentages of pupil constriction under high illuminance levels were significantly greater in subjects with the C allele than in subjects with the TT genotype. CONCLUSIONS Human melanopsin gene polymorphism I394T interacted with irradiance in association with pupil size. This is the first evidence suggesting a functional connection between melanopsin gene polymorphism and pupillary light response as an index of non-image forming response to light.
Collapse
Affiliation(s)
- Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
- * E-mail:
| | - Akiko Hida
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Sei-ichi Tsujimura
- Department of Information Science and Biomedical Engineering, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kazuo Mishima
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Akira Yasukouchi
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
| | - Sang-il Lee
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
| | - Youhei Kinjyo
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
| | - Manabu Miyahira
- Department of Human Science, Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
| |
Collapse
|
158
|
|
159
|
|
160
|
Galindo-Romero C, Jiménez-López M, García-Ayuso D, Salinas-Navarro M, Nadal-Nicolás FM, Agudo-Barriuso M, Villegas-Pérez MP, Avilés-Trigueros M, Vidal-Sanz M. Number and spatial distribution of intrinsically photosensitive retinal ganglion cells in the adult albino rat. Exp Eye Res 2013; 108:84-93. [PMID: 23295345 DOI: 10.1016/j.exer.2012.12.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/17/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light and are responsible of the synchronization of the circadian rhythm with the photic stimulus and for the pupillary light reflex. To quantify the total population of rat-ipRGCs and to assess their spatial distribution we have developed an automated routine and used neighbour maps. Moreover, in all analysed retinas we have studied the general population of RGCs - identified by their Brn3a expression - and the population of ipRGCs - identified by melanopsin immunodetection - thus allowing the co-analysis of their topography. Our results show that the total mean number ± standard deviation of ipRGCs in the albino rat is 2047 ± 309. Their distribution in the retina seems to be complementary to that of Brn3a(+)RGCs, being denser in the periphery, especially in the superior retina where their highest densities are found in the temporal quadrant, above the visual streak. In addition, by tracing the retinas from both superior colliculi, we have also determined that 90.62% of the ipRGC project to these central targets.
Collapse
Affiliation(s)
- C Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Regional Campus of International Excellence Campus Mare Nostrum, Instituto Murciano de Investigaciones Biosanitarias, Campus de Espinardo Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Brown TM, Allen AE, al-Enezi J, Wynne J, Schlangen L, Hommes V, Lucas RJ. The melanopic sensitivity function accounts for melanopsin-driven responses in mice under diverse lighting conditions. PLoS One 2013; 8:e53583. [PMID: 23301090 PMCID: PMC3536742 DOI: 10.1371/journal.pone.0053583] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/03/2012] [Indexed: 12/19/2022] Open
Abstract
In addition to rods and cones, photoreception in mammals extends to a third retinal cell type expressing the photopigment melanopsin. The influences of this novel opsin are widespread, ranging from pupillary and circadian responses to brightness perception, yet established approaches to quantifying the biological effects of light do not adequately account for melanopsin sensitivity. We have recently proposed a novel metric, the melanopic sensitivity function (V(Z)λ), to address this deficiency. Here, we further validate this new measure with a variety of tests based on potential barriers to its applicability identified in the literature or relating to obvious practical benefits. Using electrophysiogical approaches and pupillometry, initially in rodless+coneless mice, our data demonstrate that under a very wide range of different conditions (including switching between stimuli with highly divergent spectral content) the V(Z)λ function provides an accurate prediction of the sensitivity of melanopsin-dependent responses. We further show that V(Z)λ provides the best available description of the spectral sensitivity of at least one aspect of the visual response in mice with functional rods and cones: tonic firing activity in the lateral geniculate nuclei. Together, these data establish V(Z)λ as an important new approach for light measurement with widespread practical utility.
Collapse
Affiliation(s)
- Timothy M. Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jazi al-Enezi
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jonathan Wynne
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Vanja Hommes
- Philips Consumer Lifestyle, Drachten, The Netherlands
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
162
|
Abstract
The presence of a photopigment (melanopsin) within certain retinal ganglion cells was a surprising and significant discovery. This pigment is routinely described as "nonvisual" to highlight its signaling role in pupil dilation and circadian rhythms. Here we asked whether light absorbed by melanopsin can be seen by healthy human subjects. To answer this requires delivering intense (above rod saturation), well-controlled lights using four independent primaries. We collected detection thresholds to many four-primary stimuli. Threshold measurements in the fovea are explained by trichromatic theory, with no need to invoke a fourth photopigment. In the periphery, where melanopsin is present, threshold measurements deviate from trichromatic theory; at high photopic levels, sensitivity is explained by absorptions in four, not three, photopigment classes. We consider a series of hypotheses to explain the tetrasensitivity at high photopic levels in the human peripheral field. The most likely hypothesis is that in healthy human subjects melanopsin absorptions influence visibility.
Collapse
|
163
|
Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J Neurosci 2012; 32:13608-20. [PMID: 23015450 DOI: 10.1523/jneurosci.1422-12.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The photopigment melanopsin confers photosensitivity upon a minority of retinal output neurons. These intrinsically photosensitive retinal ganglion cells (ipRGCs) are more diverse than once believed, comprising five morphologically distinct types, M1 through M5. Here, in mouse retina, we provide the first in-depth characterization of M4 cells, including their structure, function, and central projections. M4 cells apparently correspond to ON α cells of earlier reports, and are easily distinguished from other ipRGCs by their very large somata. Their dendritic arbors are more radiate and highly branched than those of M1, M2, or M3 cells. The melanopsin-based intrinsic photocurrents of M4 cells are smaller than those of M1 and M2 cells, presumably because melanopsin is more weakly expressed; we can detect it immunohistochemically only with strong amplification. Like M2 cells, M4 cells exhibit robust, sustained, synaptically driven ON responses and dendritic stratification in the ON sublamina of the inner plexiform layer. However, their stratification patterns are subtly different, with M4 dendrites positioned just distal to those of M2 cells and just proximal to the ON cholinergic band. M4 receptive fields are large, with an ON center, antagonistic OFF surround and nonlinear spatial summation. Their synaptically driven photoresponses lack direction selectivity and show higher ultraviolet sensitivity in the ventral retina than in the dorsal retina, echoing the topographic gradient in S- and M-cone opsin expression. M4 cells are readily labeled by retrograde transport from the dorsal lateral geniculate nucleus and thus likely contribute to the pattern vision that persists in mice lacking functional rods and cones.
Collapse
|