151
|
Wheeler BS. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res 2014; 21:587-600. [PMID: 24254230 DOI: 10.1007/s10577-013-9394-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA,
| |
Collapse
|
152
|
Molla-Herman A, Matias NR, Huynh JR. Chromatin modifications regulate germ cell development and transgenerational information relay. CURRENT OPINION IN INSECT SCIENCE 2014; 1:10-18. [PMID: 32846502 DOI: 10.1016/j.cois.2014.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 06/11/2023]
Abstract
Germ cells transmit genetic, cytoplasmic and epigenetic information to the next generation. Recent reports describe the importance of chromatin modifiers and small RNAs for germ cells development in Drosophila. We also review exciting progress in our understanding of piRNAs functions, which demonstrate that this class of small RNAs is both an adaptive and inheritable epigenetic memory.
Collapse
Affiliation(s)
- Anahi Molla-Herman
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France; CNRS UMR3215, Inserm U934, F-75248 Paris, France
| | - Neuza R Matias
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France; CNRS UMR3215, Inserm U934, F-75248 Paris, France
| | - Jean-René Huynh
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France; CNRS UMR3215, Inserm U934, F-75248 Paris, France.
| |
Collapse
|
153
|
Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 2014; 1:205-218. [PMID: 25512877 DOI: 10.1093/nsr/nwu014] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a complex class of small non-coding RNAs that are mostly 24-32 nucleotides in length and composed of at least hundreds of thousands of species that specifically interact with the PIWI protein subfamily of the ARGONAUTE family. Recent studies revealed that PIWI proteins interact with a number of proteins, especially the TUDOR-domain-containing proteins, to regulate piRNA biogenesis and regulatory function. Current research also provides evidence that PIWI proteins and piRNAs are not only crucial for transposon silencing in the germline, but also mediate novel mechanisms of epigenetic programming, DNA rearrangements, mRNA turnover, and translational control both in the germline and in the soma. These new discoveries begin to reveal an exciting new dimension of gene regulation in the cell.
Collapse
Affiliation(s)
- Hsueh-Yen Ku
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
154
|
van Wolfswinkel JC. Piwi and Potency: PIWI Proteins in Animal Stem Cells and Regeneration. Integr Comp Biol 2014; 54:700-13. [DOI: 10.1093/icb/icu084] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
155
|
Abstract
Since the human genome was sequenced, the term "epigenetics" is increasingly being associated with the hope that we are more than just the sum of our genes. Might what we eat, the air we breathe, or even the emotions we feel influence not only our genes but those of descendants? The environment can certainly influence gene expression and can lead to disease, but transgenerational consequences are another matter. Although the inheritance of epigenetic characters can certainly occur-particularly in plants-how much is due to the environment and the extent to which it happens in humans remain unclear.
Collapse
|
156
|
de Albuquerque BFM, Luteijn MJ, Cordeiro Rodrigues RJ, van Bergeijk P, Waaijers S, Kaaij LJT, Klein H, Boxem M, Ketting RF. PID-1 is a novel factor that operates during 21U-RNA biogenesis in Caenorhabditis elegans. Genes Dev 2014; 28:683-8. [PMID: 24696453 PMCID: PMC4015495 DOI: 10.1101/gad.238220.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Piwi–piRNA pathway represents a small RNA-based mechanism to silence invading DNA. It is unknown how transcripts are selected for generation of 21U-RNA, the piRNA class in C. elegans. Ketting and colleagues identify PID-1 as a 21U-RNA biogenesis factor and show that PID-1 affects an early step in the processing or transport of 21U precursor transcripts. The authors further show that maternal 21U-RNAs are essential to initiate silencing. This work provides novel insights into piRNA-induced silencing and small RNA biogenesis. The Piwi–piRNA pathway represents a small RNA-based mechanism responsible for the recognition and silencing of invading DNA. Biogenesis of piRNAs (21U-RNAs) is poorly understood. In Caenorhabditis elegans, the piRNA-binding Argonaute protein PRG-1 is the only known player acting downstream from precursor transcription. From a screen aimed at the isolation of piRNA-induced silencing-defective (Pid) mutations, we identified, among known Piwi pathway components, PID-1 as a novel player. PID-1 is a mostly cytoplasmic, germline-specific factor essential for 21U-RNA biogenesis, affecting an early step in the processing or transport of 21U precursor transcripts. We also show that maternal 21U-RNAs are essential to initiate silencing.
Collapse
|
157
|
Basquin D, Spierer A, Begeot F, Koryakov DE, Todeschini AL, Ronsseray S, Vieira C, Spierer P, Delattre M. The Drosophila Su(var)3-7 gene is required for oogenesis and female fertility, genetically interacts with piwi and aubergine, but impacts only weakly transposon silencing. PLoS One 2014; 9:e96802. [PMID: 24820312 PMCID: PMC4018442 DOI: 10.1371/journal.pone.0096802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin is made of repetitive sequences, mainly transposable elements (TEs), the regulation of which is critical for genome stability. We have analyzed the role of the heterochromatin-associated Su(var)3-7 protein in Drosophila ovaries. We present evidences that Su(var)3-7 is required for correct oogenesis and female fertility. It accumulates in heterochromatic domains of ovarian germline and somatic cells nuclei, where it co-localizes with HP1. Homozygous mutant females display ovaries with frequent degenerating egg-chambers. Absence of Su(var)3-7 in embryos leads to defects in meiosis and first mitotic divisions due to chromatin fragmentation or chromosome loss, showing that Su(var)3-7 is required for genome integrity. Females homozygous for Su(var)3-7 mutations strongly impair repression of P-transposable element induced gonadal dysgenesis but have minor effects on other TEs. Su(var)3-7 mutations reduce piRNA cluster transcription and slightly impact ovarian piRNA production. However, this modest piRNA reduction does not correlate with transposon de-silencing, suggesting that the moderate effect of Su(var)3-7 on some TE repression is not linked to piRNA production. Strikingly, Su(var)3-7 genetically interacts with the piwi and aubergine genes, key components of the piRNA pathway, by strongly impacting female fertility without impairing transposon silencing. These results lead us to propose that the interaction between Su(var)3-7 and piwi or aubergine controls important developmental processes independently of transposon silencing.
Collapse
Affiliation(s)
- Denis Basquin
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Anne Spierer
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Flora Begeot
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Anne-Laure Todeschini
- Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, Paris, France
| | - Stéphane Ronsseray
- Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, Paris, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon1, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Pierre Spierer
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Marion Delattre
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
158
|
Klenov MS, Lavrov SA, Korbut AP, Stolyarenko AD, Yakushev EY, Reuter M, Pillai RS, Gvozdev VA. Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries. Nucleic Acids Res 2014; 42:6208-18. [PMID: 24782529 PMCID: PMC4041442 DOI: 10.1093/nar/gku268] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Piwi-interacting RNA (piRNA)-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of Drosophila melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their post-transcriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression.
Collapse
Affiliation(s)
- Mikhail S Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Sergey A Lavrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Alina P Korbut
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | - Evgeny Y Yakushev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Michael Reuter
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Ramesh S Pillai
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Vladimir A Gvozdev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
159
|
Abstract
Cell identities can be stable over a long time due to a “cellular memory” of expression profiles achieved through epigenetic mechanisms. In this review, Stuwe et al. describe recent studies demonstrating that short noncoding RNAs can also provide molecular signals that define epigenetic states of cells, leading to transgenerational epigenetic inheritance. Cells in multicellular organisms have distinct identities characterized by their profiles of expressed genes. Cell identities can be stable over a long time and through multiple cellular divisions but are also responsive to extracellular signals. Since the DNA sequence is identical in all cells, a “cellular memory” of expression profiles is achieved by what are defined as epigenetic mechanisms. Two major molecular principles—networks of transcription factors and maintenance of cis-chromatin modifications—have been implicated in maintaining cellular memory. Here we describe recent studies demonstrating that short noncoding RNAs can also provide molecular signals that define epigenetic states of cells. Small RNAs can act independently or cooperate with chromatin modifications to achieve long-lasting effects necessary for cellular memory and transgenerational inheritance.
Collapse
Affiliation(s)
- Evelyn Stuwe
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
160
|
Ma X, Wang S, Do T, Song X, Inaba M, Nishimoto Y, Liu LP, Gao Y, Mao Y, Li H, McDowell W, Park J, Malanowski K, Peak A, Perera A, Li H, Gaudenz K, Haug J, Yamashita Y, Lin H, Ni JQ, Xie T. Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary. PLoS One 2014; 9:e90267. [PMID: 24658126 PMCID: PMC3962343 DOI: 10.1371/journal.pone.0090267] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/12/2022] Open
Abstract
The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to its known role in somatic cap cells to maintain germline stem cells (GSCs), this study has demonstrated that Piwi has novel functions in somatic cells and germ cells of the Drosophila ovary to promote germ cell differentiation. Piwi knockdown in escort cells causes a reduction in escort cell (EC) number and accumulation of undifferentiated germ cells, some of which show active BMP signaling, indicating that Piwi is required to maintain ECs and promote germ cell differentiation. Simultaneous knockdown of dpp, encoding a BMP, in ECs can partially rescue the germ cell differentiation defect, indicating that Piwi is required in ECs to repress dpp. Consistent with its key role in piRNA production, TE transcripts increase significantly and DNA damage is also elevated in the piwi knockdown somatic cells. Germ cell-specific knockdown of piwi surprisingly causes depletion of germ cells before adulthood, suggesting that Piwi might control primordial germ cell maintenance or GSC establishment. Finally, Piwi inactivation in the germ line of the adult ovary leads to gradual GSC loss and germ cell differentiation defects, indicating the intrinsic role of Piwi in adult GSC maintenance and differentiation. This study has revealed new germline requirement of Piwi in controlling GSC maintenance and lineage differentiation as well as its new somatic function in promoting germ cell differentiation. Therefore, Piwi is required in multiple cell types to control GSC lineage development in the Drosophila ovary.
Collapse
Affiliation(s)
- Xing Ma
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Su Wang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Trieu Do
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Xiaoqing Song
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mayu Inaba
- Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yoshiya Nishimoto
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Lu-ping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yuan Gao
- School of Medicine, Tsinghua University, Beijing, China
| | - Ying Mao
- School of Medicine, Tsinghua University, Beijing, China
| | - Hui Li
- School of Medicine, Tsinghua University, Beijing, China
| | - William McDowell
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jungeun Park
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kate Malanowski
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Karin Gaudenz
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Yukiko Yamashita
- Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United Sates of America
| | - Jian-quan Ni
- School of Medicine, Tsinghua University, Beijing, China
| | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
161
|
Tatsuke T, Zhu L, Li Z, Mitsunobu H, Yoshimura K, Mon H, Lee JM, Kusakabe T. Roles of Piwi proteins in transcriptional regulation mediated by HP1s in cultured silkworm cells. PLoS One 2014; 9:e92313. [PMID: 24637637 PMCID: PMC3956929 DOI: 10.1371/journal.pone.0092313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
Piwi proteins are part of a superfamily of Argonaute proteins, which are one of the core components of the RNA silencing pathway in many eukaryotes. Piwi proteins are thought to repress the transposon expression both transcriptionally and post-transcriptionally. Recently, Drosophila melanogaster Piwi was recently reported to associate with chromatin and to interact directly with the Heterochromatin Protein 1 (HP1a). However, similar interactions have not been reported in other higher eukaryotes. Here we show that silkworm Piwi proteins interact with HP1s in the nucleus. The silkworm, Bombyx mori, has two Piwi proteins, Ago3 and Siwi, and two typical HP1 proteins, HP1a and HP1b. We found that HP1a plays an important role in the interaction between Ago3/Siwi and HP1b in the ovary-derived BmN4 cell line. We also found that Ago3/Siwi regulates the transcription in an HP1-dependent manner. These results suggest that silkworm Piwi proteins function as a chromatin regulator in collaboration with HP1a and HP1b.
Collapse
Affiliation(s)
- Tsuneyuki Tatsuke
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Li Zhu
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Zhiqing Li
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Hitoshi Mitsunobu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kaito Yoshimura
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Hiroaki Mon
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Jae Man Lee
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Takahiro Kusakabe
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
162
|
78495111110.1016/j.cell.2014.02.045" />
|
163
|
Minakhina S, Changela N, Steward R. Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery. Development 2014; 141:259-68. [PMID: 24381196 DOI: 10.1242/dev.101410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The maintenance of stem cells is central to generating diverse cell populations in many tissues throughout the life of an animal. Elucidating the mechanisms involved in how stem cells are formed and maintained is crucial to understanding both normal developmental processes and the growth of many cancers. Previously, we showed that Zfrp8/PDCD2 is essential for the maintenance of Drosophila hematopoietic stem cells. Here, we show that Zfrp8/PDCD2 is also required in both germline and follicle stem cells in the Drosophila ovary. Expression of human PDCD2 fully rescues the Zfrp8 phenotype, underlining the functional conservation of Zfrp8/PDCD2. The piRNA pathway is essential in early oogenesis, and we find that nuclear localization of Zfrp8 in germline stem cells and their offspring is regulated by some piRNA pathway genes. We also show that Zfrp8 forms a complex with the piRNA pathway protein Maelstrom and controls the accumulation of Maelstrom in the nuage. Furthermore, Zfrp8 regulates the activity of specific transposable elements also controlled by Maelstrom and Piwi. Our results suggest that Zfrp8/PDCD2 is not an integral member of the piRNA pathway, but has an overlapping function, possibly competing with Maelstrom and Piwi.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Rutgers University, Department of Molecular Biology, Waksman Institute, Cancer Institute of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
164
|
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505:353-359. [PMID: 24429634 PMCID: PMC4265809 DOI: 10.1038/nature12987] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
The discovery of millions of PIWI-interacting RNAs revealed a fascinating and unanticipated dimension of biology. The PIWI-piRNA pathway has been commonly perceived as germline-specific, even though the somatic function of PIWI proteins was documented when they were first discovered. Recent studies have begun to re-explore this pathway in somatic cells in diverse organisms, particularly lower eukaryotes. These studies have illustrated the multifaceted somatic functions of the pathway not only in transposon silencing but also in genome rearrangement and epigenetic programming, with biological roles in stem-cell function, whole-body regeneration, memory and possibly cancer.
Collapse
Affiliation(s)
- Robert J Ross
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Molly M Weiner
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| |
Collapse
|
165
|
Harding JL, Horswell S, Heliot C, Armisen J, Zimmerman LB, Luscombe NM, Miska EA, Hill CS. Small RNA profiling of Xenopus embryos reveals novel miRNAs and a new class of small RNAs derived from intronic transposable elements. Genome Res 2014; 24:96-106. [PMID: 24065776 PMCID: PMC3875865 DOI: 10.1101/gr.144469.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/04/2013] [Indexed: 12/22/2022]
Abstract
Small RNA control of gene expression is critical for developmental processes in vertebrate embryos. To determine the dynamics of small RNA expression and to uncover novel small RNAs in the early vertebrate embryo, we performed high-throughput sequencing of all small RNAs in Xenopus tropicalis embryos at three developmental time points and in dissected halves of gastrula embryos. This analysis allowed us to identify novel microRNAs and we show that microRNA expression is highly dynamic and spatially localized in early embryos. In addition, we have developed a microRNA prediction pipeline and demonstrate that it has the power to predict new miRNAs that are experimentally detectable in frogs, mice, and humans. By combining the small RNA sequencing with mRNA profiling at the different developmental stages, we identify a new class of small noncoding RNAs that we name siteRNAs, which align in clusters to introns of protein-coding genes. We show that siteRNAs are derived from remnants of transposable elements present in the introns. We find that genes containing clusters of siteRNAs are transcriptionally repressed as compared with all genes. Furthermore, we show that this is true for individual genes containing siteRNA clusters, and that these genes are enriched in specific repressive histone modifications. Our data thus suggest a new mechanism of siteRNA-mediated gene silencing in vertebrates, and provide an example of how mobile elements can affect gene regulation.
Collapse
Affiliation(s)
| | - Stuart Horswell
- Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | | | - Javier Armisen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom
| | - Lyle B. Zimmerman
- MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Nicholas M. Luscombe
- Computational Biology, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | - Eric A. Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom
| | | |
Collapse
|
166
|
Clark JP, Lau NC. Piwi Proteins and piRNAs step onto the systems biology stage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:159-97. [PMID: 25201106 PMCID: PMC4248790 DOI: 10.1007/978-1-4939-1221-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal germ cells are totipotent because they maintain a highly unique and specialized epigenetic state for its genome. To accomplish this, germ cells express a rich repertoire of specialized RNA-binding protein complexes such as the Piwi proteins and Piwi-interacting RNAs (piRNAs): a germ-cell branch of the RNA interference (RNAi) phenomenon which includes microRNA and endogenous small interfering RNA pathways. Piwi proteins and piRNAs are deeply conserved in animal evolution and play essential roles in fertility and regeneration. Molecular mechanisms for how these ribonucleoproteins act upon the transcriptome and genome are only now coming to light with the application of systems-wide approaches in both invertebrates and vertebrates. Systems biology studies on invertebrates have revealed that transcriptional and heritable silencing is a main mechanism driven by Piwi proteins and piRNA complexes. In vertebrates, Piwi-targeting mechanisms and piRNA biogenesis have progressed, while the discovery that the nuclease activity of Piwi protein is essential for vertebrate germ cell development but not completely required in invertebrates highlights the many complexities of this pathway in different animals. This review recounts how recent systems-wide approaches have rapidly accelerated our appreciation for the broad reach of the Piwi pathway on germline genome regulation and what questions facing the field await to be unraveled.
Collapse
Affiliation(s)
- Josef P. Clark
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
167
|
PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells. Proc Natl Acad Sci U S A 2013; 111:337-42. [PMID: 24367095 DOI: 10.1073/pnas.1320965111] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI-piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality.
Collapse
|
168
|
Cecere G, Grishok A. A nuclear perspective on RNAi pathways in metazoans. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:223-33. [PMID: 24361586 DOI: 10.1016/j.bbagrm.2013.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 12/27/2022]
Abstract
The role of RNA interference (RNAi) in post-transcriptional regulation of complementary targets is well known. However, less is known about transcriptional silencing mechanisms mediated by RNAi. Such mechanisms have been characterized in yeast and plants, which suggests that similar RNA silencing mechanisms might operate in animals. A growing amount of experimental evidence indicates that short RNAs and their co-factor Argonaute proteins can regulate many nuclear processes in metazoans. PIWI-interacting RNAs (piRNAs) initiate transcriptional silencing of transposable elements, which leads to heterochromatin formation and/or DNA methylation. In addition, Argonaute proteins and short RNAs directly regulate Pol II transcription and splicing of euchromatic protein-coding genes and also affect genome architecture. Therefore, RNAi pathways can have a profound global impact on the transcriptional programs in cells during animal development. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Germano Cecere
- Department of Biochemistry and Molecular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Alla Grishok
- Department of Biochemistry and Molecular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
169
|
Amaral PP, Dinger ME, Mattick JS. Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 2013; 12:254-78. [PMID: 23709461 DOI: 10.1093/bfgp/elt016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells and organisms are subject to challenges and perturbations in their environment and physiology in all stages of life. The molecular response to such changes, including insulting conditions such as pathogen infections, involves coordinated modulation of gene expression programmes and has not only homeostatic but also ecological and evolutionary importance. Although attention has been primarily focused on signalling pathways and protein networks, non-coding RNAs (ncRNAs), which comprise a significant output of the genomes of prokaryotes and especially eukaryotes, are increasingly implicated in the molecular mechanisms of these responses. Long and short ncRNAs not only regulate development and cell physiology, they are also involved in disease states, including cancers, in host-pathogen interactions, and in a variety of stress responses. Indeed, regulatory RNAs are part of genetically encoded response networks and also underpin epigenetic processes, which are emerging as key mechanisms of adaptation and transgenerational inheritance. Here we present the growing evidence that ncRNAs are intrinsically involved in cellular and organismal adaptation processes, in both robustness and protection to stresses, as well as in mechanisms generating evolutionary change.
Collapse
|
170
|
Skipper KA, Andersen PR, Sharma N, Mikkelsen JG. DNA transposon-based gene vehicles - scenes from an evolutionary drive. J Biomed Sci 2013; 20:92. [PMID: 24320156 PMCID: PMC3878927 DOI: 10.1186/1423-0127-20-92] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation.
Collapse
Affiliation(s)
| | | | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Wilh, Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
171
|
Abstract
Several recent studies demonstrate that piRNAs guide Piwi protein to repress transposon transcription in fly ovaries, much as fission yeast use siRNAs to silence repeat sequences. Still mysterious though is how Piwi targets euchromatic transposons for silencing, but not the specialized heterochromatic loci that produce piRNA precursors.
Collapse
|
172
|
Abstract
The regulation of gene expression by non-coding RNAs (ncRNAs) has become a new paradigm in biology. RNA-mediated gene silencing pathways have been studied extensively, revealing diverse epigenetic and posttranscriptional mechanisms. In contrast, the roles of ncRNAs in activating gene expression remains poorly understood. In this review, we summarize the current knowledge of gene activation by small RNAs, long non-coding RNAs, and enhancer-derived RNAs, with an emphasis on epigenetic mechanisms.
Collapse
Affiliation(s)
- Alan L Jiao
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven, CT USA
| | - Frank J Slack
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven, CT USA
| |
Collapse
|
173
|
Mani SR, Megosh H, Lin H. PIWI proteins are essential for early Drosophila embryogenesis. Dev Biol 2013; 385:340-9. [PMID: 24184635 DOI: 10.1016/j.ydbio.2013.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/23/2013] [Accepted: 10/20/2013] [Indexed: 11/16/2022]
Abstract
PIWI proteins, a subfamily of the ARGONAUTE/PIWI protein family, have been implicated in transcriptional and posttranscriptional gene regulation and transposon silencing mediated by small non-coding RNAs, especially piRNAs. Although these proteins are known to be required for germline development, their somatic function remains elusive. Here, we examine the maternal function of all three PIWI proteins in Drosophila; Piwi, Aubergine (Aub) and Argonaute3 (Ago3) during early embryogenesis. In syncytial embryos, Piwi displays an embryonic stage-dependent localization pattern. Piwi is localized in the cytoplasm during mitotic cycles 1-10. Between cycles 11 and 14, Piwi remains in the cytoplasm during mitosis but moves into the somatic nucleus during interphase. Beyond cycle 14, it stays in the nucleus. Aub and Ago3 are diffusely cytoplasmic from cycle 1 to 14. Embryos maternally depleted of any one of the three PIWI proteins display severe mitotic defects, including abnormal chromosome and nuclear morphology, cell cycle arrest, asynchronous nuclear division and aberrant nuclear migration. Furthermore, all three PIWI proteins are required for the assembly of mitotic machinery and progression through mitosis. Embryos depleted of maternal PIWI proteins also exhibit chromatin organization abnormalities. These observations indicate that maternal Piwi, Aub and Ago3 play a critical role in the maintenance of chromatin structure and cell cycle progression during early embryogenesis, with compromised chromatin integrity as a possible cause of the observed mitotic defects. Our study demonstrates the essential function of PIWI proteins in the first phase of somatic development.
Collapse
Affiliation(s)
- Sneha Ramesh Mani
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06509, USA
| | - Heather Megosh
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06509, USA; Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA.
| |
Collapse
|
174
|
Dönertas D, Sienski G, Brennecke J. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev 2013; 27:1693-705. [PMID: 23913922 DOI: 10.1101/gad.221150.113] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a small RNA silencing system that keeps selfish genetic elements such as transposons under control in animal gonads. Several lines of evidence indicate that nuclear PIWI family proteins guide transcriptional silencing of their targets, yet the composition of the underlying silencing complex is unknown. Here we demonstrate that the double CHHC zinc finger protein gametocyte-specific factor 1 (Gtsf1) is an essential factor for Piwi-mediated transcriptional repression in Drosophila. Cells lacking Gtsf1 contain nuclear Piwi loaded with piRNAs, yet Piwi's silencing capacity is ablated. Gtsf1 interacts directly with a small subpool of nuclear Piwi, and loss of Gtsf1 phenocopies loss of Piwi in terms of deregulation of transposons, loss of H3K9 trimethylation (H3K9me3) marks at euchromatic transposon insertions, and deregulation of genes in proximity to repressed transposons. We propose that only a small fraction of nuclear Piwi is actively engaged in target silencing and that Gtsf1 is an essential component of the underlying Piwi-centered silencing complex.
Collapse
Affiliation(s)
- Derya Dönertas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences IMBA, 1030 Vienna, Austria
| | | | | |
Collapse
|
175
|
Ohtani H, Iwasaki YW, Shibuya A, Siomi H, Siomi MC, Saito K. DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes Dev 2013; 27:1656-61. [PMID: 23913921 DOI: 10.1101/gad.221515.113] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Piwi-piRNA (PIWI-interacting RNA) complex (Piwi-piRISC) in Drosophila ovarian somatic cells represses transposons transcriptionally to maintain genome integrity; however, the underlying mechanisms remain obscure. Here, we reveal that DmGTSF1, a Drosophila homolog of gametocyte-specific factor 1 (GTSF1) (which is required for transposon silencing in mouse testes), is necessary for Piwi-piRISC to repress target transposons and neighboring genes. DmGTSF1 depletion affected neither piRNA biogenesis nor nuclear import of Piwi-piRISC. DmGTSF1 mutations caused derepression of transposons and loss of ovary follicle layers, resulting in female infertility. We suggest that DmGTSF1, a nuclear Piwi interactor, is an integral factor in Piwi-piRISC-mediated transcriptional silencing.
Collapse
Affiliation(s)
- Hitoshi Ohtani
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
176
|
Using machine learning and high-throughput RNA sequencing to classify the precursors of small non-coding RNAs. Methods 2013; 67:28-35. [PMID: 24145223 DOI: 10.1016/j.ymeth.2013.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 11/21/2022] Open
Abstract
Recent advances in high-throughput sequencing allow researchers to examine the transcriptome in more detail than ever before. Using a method known as high-throughput small RNA-sequencing, we can now profile the expression of small regulatory RNAs such as microRNAs and small interfering RNAs (siRNAs) with a great deal of sensitivity. However, there are many other types of small RNAs (<50nt) present in the cell, including fragments derived from snoRNAs (small nucleolar RNAs), snRNAs (small nuclear RNAs), scRNAs (small cytoplasmic RNAs), tRNAs (transfer RNAs), and transposon-derived RNAs. Here, we present a user's guide for CoRAL (Classification of RNAs by Analysis of Length), a computational method for discriminating between different classes of RNA using high-throughput small RNA-sequencing data. Not only can CoRAL distinguish between RNA classes with high accuracy, but it also uses features that are relevant to small RNA biogenesis pathways. By doing so, CoRAL can give biologists a glimpse into the characteristics of different RNA processing pathways and how these might differ between tissue types, biological conditions, or even different species. CoRAL is available at http://wanglab.pcbi.upenn.edu/coral/.
Collapse
|
177
|
Mathiyalagan P, Keating ST, Du XJ, El-Osta A. Interplay of chromatin modifications and non-coding RNAs in the heart. Epigenetics 2013; 9:101-12. [PMID: 24247090 DOI: 10.4161/epi.26405] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Precisely regulated patterns of gene expression are dependent on the binding of transcription factors and chromatin-associated determinants referred to as co-activators and co-repressors. These regulatory components function with the core transcriptional machinery to serve in critical activities to alter chromatin modification and regulate gene expression. While we are beginning to understand that cell-type specific patterns of gene expression are necessary to achieve selective cardiovascular developmental programs, we still do not know the molecular machineries that localize these determinants in the heart. With clear implications for the epigenetic control of gene expression signatures, the ENCODE (Encyclopedia of DNA Elements) Project Consortium determined that about 90% of the human genome is transcribed while only 1-2% of transcripts encode proteins. Emerging evidence suggests that non-coding RNA (ncRNA) serves as a signal for decoding chromatin modifications and provides a potential molecular basis for cell type-specific and promoter-specific patterns of gene expression. The discovery of the histone methyltransferase enzyme EZH2 in the regulation of gene expression patterns implicated in cardiac hypertrophy suggests a novel role for chromatin-associated ncRNAs and is the focus of this article.
Collapse
Affiliation(s)
- Prabhu Mathiyalagan
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia
| | - Samuel T Keating
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia
| | - Xiao-Jun Du
- Experimental Cardiology Laboratory; Baker IDI Heart and Diabetes Institute; Melbourne, VIC Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia; Epigenomics Profiling Facility; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia; Department of Pathology; The University of Melbourne; Melbourne, VIC Australia; Faculty of Medicine; Monash University; Melbourne, VIC Australia
| |
Collapse
|
178
|
de Vanssay A, Bougé AL, Boivin A, Hermant C, Teysset L, Delmarre V, Antoniewski C, Ronsseray S. piRNAs and epigenetic conversion in Drosophila. Fly (Austin) 2013; 7:237-41. [PMID: 24088599 DOI: 10.4161/fly.26522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transposable element (TE) activity is repressed in the Drosophila germline by Piwi-Interacting RNAs (piRNAs), a class of small non-coding RNAs. These piRNAs are produced by discrete genomic loci containing TE fragments. In a recent publication, we tested for the existence of a strict epigenetic induction of piRNA production capacity by a locus in the D. melanogaster genome. We used 2 lines carrying a transgenic 7-copy tandem cluster (P-lacZ-white) at the same genomic site. This cluster generates in both lines a local heterochromatic sector. One line (T-1) produces high levels of ovarian piRNAs homologous to the P-lacZ-white transgenes and shows a strong capacity to repress homologous sequences in trans, whereas the other line (BX2) is devoid of both of these capacities. The properties of these 2 lines are perfectly stable over generations. We have shown that the maternal transmission of a cytoplasm carrying piRNAs from the first line can confer to the inert transgenic locus of the second, a totally de novo capacity to produce high levels of piRNAs as well as the ability to induce homology-dependent silencing in trans. These new properties are stably inherited over generations (n>50). Furthermore, the converted locus has itself become able to convert an inert transgenic locus via cytoplasmic maternal inheritance. This results in a stable epigenetic conversion process, which can be performed recurrently--a phenomenon termed paramutation and discovered in Maize 60 y ago. Paramutation in Drosophila corresponds to the first stable paramutation in animals and provides a model system to investigate the epigenetically induced emergence of a piRNA-producing locus, a crucial step in epigenome shaping. In this Extra View, we discuss some additional functional aspects and the possible molecular mechanism of this piRNA-linked paramutation.
Collapse
Affiliation(s)
- Augustin de Vanssay
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | - Anne-Laure Bougé
- Drosophila Genetics and Epigenetics; CNRS URA2578; Institut Pasteur; Paris, France
| | - Antoine Boivin
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | - Catherine Hermant
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | - Laure Teysset
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | - Valérie Delmarre
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | | | - Stéphane Ronsseray
- Epigenetic Repression and Mobile DNA; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| |
Collapse
|
179
|
Gu T, Elgin SCR. Maternal depletion of Piwi, a component of the RNAi system, impacts heterochromatin formation in Drosophila. PLoS Genet 2013; 9:e1003780. [PMID: 24068954 PMCID: PMC3777992 DOI: 10.1371/journal.pgen.1003780] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 07/25/2013] [Indexed: 02/05/2023] Open
Abstract
A persistent question in epigenetics is how heterochromatin is targeted for assembly at specific domains, and how that chromatin state is faithfully transmitted. Stable heterochromatin is necessary to silence transposable elements (TEs) and maintain genome integrity. Both the RNAi system and heterochromatin components HP1 (Swi6) and H3K9me2/3 are required for initial establishment of heterochromatin structures in S. pombe. Here we utilize both loss of function alleles and the newly developed Drosophila melanogaster transgenic shRNA lines to deplete proteins of interest at specific development stages to dissect their roles in heterochromatin assembly in early zygotes and in maintenance of the silencing chromatin state during development. Using reporters subject to Position Effect Variegation (PEV), we find that depletion of key proteins in the early embryo can lead to loss of silencing assayed at adult stages. The piRNA component Piwi is required in the early embryo for reporter silencing in non-gonadal somatic cells, but knock-down during larval stages has no impact. This implies that Piwi is involved in targeting HP1a when heterochromatin is established at the late blastoderm stage and possibly also during embryogenesis, but that the silent chromatin state created is transmitted through cell division independent of the piRNA system. In contrast, heterochromatin structural protein HP1a is required for both initial heterochromatin assembly and the following mitotic inheritance. HP1a profiles in piwi mutant animals confirm that Piwi depletion leads to decreased HP1a levels in pericentric heterochromatin, particularly in TEs. The results suggest that the major role of the piRNA system in assembly of heterochromatin in non-gonadal somatic cells occurs in the early embryo during heterochromatin formation, and further demonstrate that failure of heterochromatin formation in the early embryo impacts the phenotype of the adult.
Collapse
Affiliation(s)
- Tingting Gu
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
| | | |
Collapse
|
180
|
de Vanssay A, Bougé AL, Boivin A, Hermant C, Teysset L, Delmarre V, Ronsseray S, Antoniewski C. Profiles of piRNA abundances at emerging or established piRNA loci are determined by local DNA sequences. RNA Biol 2013; 10:1233-9. [PMID: 23880829 PMCID: PMC3817142 DOI: 10.4161/rna.25756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Piwi-interacting RNAs (piRNAs) ensure transposable element silencing in Drosophila, thereby preserving genome integrity across generations. Primary piRNAs arise from the processing of long RNA transcripts produced in the germ line by a limited number of telomeric and pericentromeric loci. Primary piRNAs bound to the Argonaute protein Aubergine then drive the production of secondary piRNAs through the "ping-pong" amplification mechanism that involves an interplay with piRNAs bound to the Argonaute protein Argonaute-3. We recently discovered that clusters of P-element-derived transgenes produce piRNAs and mediate silencing of homologous target transgenes in the female germ line. We also demonstrated that some clusters are able to convert other homologous inactive transgene clusters into piRNA-producing loci, which then transmit their acquired silencing capacity over generations. This paramutation phenomenon is mediated by maternal inheritance of piRNAs homologous to the transgenes. Here we further mined our piRNA sequencing data sets generated from various strains carrying transgenes with partial sequence homology at distinct genomic sites. This analysis revealed that same sequences in different genomic contexts generate highly similar profiles of piRNA abundances. The strong tendency of piRNAs for bearing a U at their 5' end has long been recognized. Our observations support the notion that, in addition, the relative frequencies of Drosophila piRNAs are locally determined by the DNA sequence of piRNA loci.
Collapse
Affiliation(s)
- Augustin de Vanssay
- Epigenetic Repression and Transposable Elements; Laboratoire Biologie du Développement; UMR7622; CNRS-Université Pierre et Marie Curie; Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Mani SR, Juliano CE. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 2013; 80:632-64. [PMID: 23712694 DOI: 10.1002/mrd.22195] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function.
Collapse
Affiliation(s)
- Sneha Ramesh Mani
- Yale Stem Cell Center, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
182
|
Luteijn MJ, Ketting RF. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 2013; 14:523-34. [PMID: 23797853 DOI: 10.1038/nrg3495] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-RNA-guided gene regulation is a recurring theme in biology. Animal germ cells are characterized by an intriguing small-RNA-mediated gene-silencing mechanism known as the PIWI pathway. For a long time, both the biogenesis of PIWI-interacting RNAs (piRNAs) as well as their mode of gene silencing has remained elusive. A recent body of work is shedding more light on both aspects and implicates PIWI in the establishment of transgenerational epigenetic states. In fact, the epigenetic states imposed by PIWI on targets may actually drive piRNA production itself. These findings start to couple small RNA biogenesis with small-RNA-mediated epigenetics.
Collapse
Affiliation(s)
- Maartje J Luteijn
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
183
|
Saxe JP, Chen M, Zhao H, Lin H. Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J 2013; 32:1869-85. [PMID: 23714778 DOI: 10.1038/emboj.2013.121] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 04/08/2013] [Indexed: 02/08/2023] Open
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposition, regulate translation, and guide epigenetic programming in the germline. Here, we show that an evolutionarily conserved Tudor and KH domain-containing protein, Tdrkh (a.k.a. Tdrd2), is required for spermatogenesis and involved in piRNA biogenesis. Tdrkh partners with Miwi and Miwi2 via symmetrically dimethylated arginine residues in Miwi and Miwi2. Tdrkh is a mitochondrial protein often juxtaposed to pi-bodies and piP-bodies and is required for Tdrd1 cytoplasmic localization and Miwi2 nuclear localization. Tdrkh mutants display meiotic arrest at the zygotene stage, attenuate methylation of Line1 DNA, and upregulate Line1 RNA and protein, without inducing apoptosis. Furthermore, Tdrkh mutants have severely reduced levels of mature piRNAs but accumulate a distinct population of 1'U-containing, 2'O-methylated 31-37 nt RNAs that largely complement the missing mature piRNAs. Our results demonstrate that the primary piRNA biogenesis pathway involves 3'→5' processing of 31-37 nt intermediates and that Tdrkh promotes this final step of piRNA biogenesis but not the ping-pong cycle. These results shed light on mechanisms underlying primary piRNA biogenesis, an area in which information is conspicuously absent.
Collapse
Affiliation(s)
- Jonathan P Saxe
- Yale Stem Cell Center, Yale University, New Haven, CT 06519, USA
| | | | | | | |
Collapse
|
184
|
Muerdter F, Guzzardo PM, Gillis J, Luo Y, Yu Y, Chen C, Fekete R, Hannon GJ. A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol Cell 2013; 50:736-48. [PMID: 23665228 DOI: 10.1016/j.molcel.2013.04.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 01/19/2023]
Abstract
A large fraction of our genome consists of mobile genetic elements. Governing transposons in germ cells is critically important, and failure to do so compromises genome integrity, leading to sterility. In animals, the piRNA pathway is the key to transposon constraint, yet the precise molecular details of how piRNAs are formed and how the pathway represses mobile elements remain poorly understood. In an effort to identify general requirements for transposon control and components of the piRNA pathway, we carried out a genome-wide RNAi screen in Drosophila ovarian somatic sheet cells. We identified and validated 87 genes necessary for transposon silencing. Among these were several piRNA biogenesis factors. We also found CG3893 (asterix) to be essential for transposon silencing, most likely by contributing to the effector step of transcriptional repression. Asterix loss leads to decreases in H3K9me3 marks on certain transposons but has no effect on piRNA levels.
Collapse
Affiliation(s)
- Felix Muerdter
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Mei Y, Clark D, Mao L. Novel dimensions of piRNAs in cancer. Cancer Lett 2013; 336:46-52. [PMID: 23603435 DOI: 10.1016/j.canlet.2013.04.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/04/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Piwi-interacting RNAs (piRNAs), a newly identified class of small non-coding RNAs, direct the Piwi-dependent transposon silencing, heterochromatin modification and germ cell maintenance. Owing to our limited knowledge regarding their biogenesis, piRNAs are considered as the most mysterious class of small regulatory RNAs, particularly in pathogenesis such as tumorigenesis. Recently, several lines of evidence have emerged to suggest that piRNAs may be dis-regulated and play crucial roles in tumorigenesis in previously unsuspected ways. In this prospective piece, we will discuss the emerging insights into the potential novel roles of piRNAs in carcinogenesis and highlight their potential implications in cancer detection, classification and therapy.
Collapse
Affiliation(s)
- Yuping Mei
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | | | | |
Collapse
|