151
|
Huang Y, Li D, Xu C, Zhu C, Wu L, Shen M, Li Y, Jiang X, Liu W, Zhao Q, Ren T. Discovery of novel and potent tacrine derivatives as CDK2 inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj03591j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
After optimization of the lead compound, ZLHT-7, a compound with 10-fold higher selectivity for CDK2 over CDK9, was discovered.
Collapse
Affiliation(s)
- Yaoguang Huang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110840, People’s Republic of China
| | - Deping Li
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110840, People’s Republic of China
| | - Chang Xu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110840, People’s Republic of China
| | - Chengze Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang, 110016, People's Republic of China
| | - Limeng Wu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110840, People’s Republic of China
| | - Meiling Shen
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yue Li
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, Sichuan, 643000, People's Republic of China
| | - Xiaowen Jiang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110840, People’s Republic of China
| | - Wenwu Liu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110840, People’s Republic of China
| | - Qingchun Zhao
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang 110840, People’s Republic of China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang, 110016, People's Republic of China
| | - Tianshu Ren
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People’s Republic of China
| |
Collapse
|
152
|
Liang Y, Fan Y, Liu Y, Fan H. HNRNPU promotes the progression of hepatocellular carcinoma by enhancing CDK2 transcription. Exp Cell Res 2021; 409:112898. [PMID: 34737140 DOI: 10.1016/j.yexcr.2021.112898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023]
Abstract
The nuclear matrix-associated protein Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU), also known as SAF-A, is known to maintain active chromatin structure in mouse hepatocytes. However, the functional roles and molecular mechanisms of HNRNPU in the development of hepatocellular carcinoma (HCC) remain largely unknown. Herein, we found that HNRNPU was upregulated in HCC, and the proliferation of HCC cells was inhibited in vitro and in vivo upon HNRNPU knockdown. Moreover, the upregulation of HNRNPU was correlated with poor prognosis in HCC. Mechanistically, HNRNPU bound to the CDK2 gene locus, a key factor in cell cycle regulation, where it was enriched with H3K27 acetylation (H3K27ac), H3K9 acetylation (H3K9ac), and H3K4 mono-methylation (H3K4me1). Furthermore, HNRNPU knockdown reduced the levels of H3K27ac and H3K9ac at the binding site, where the levels of H3K27 tri-methylation (H3K27me3) were increased, eventually leading to the downregulation of CDK2. Collectively, our results provide a new mechanism whereby HNRNPU promotes HCC development by enhancing the transcription of CDK2.
Collapse
Affiliation(s)
- Yi Liang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yao Fan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yu Liu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hui Fan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
153
|
Fagundes R, Teixeira LK. Cyclin E/CDK2: DNA Replication, Replication Stress and Genomic Instability. Front Cell Dev Biol 2021; 9:774845. [PMID: 34901021 PMCID: PMC8652076 DOI: 10.3389/fcell.2021.774845] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA replication must be precisely controlled in order to maintain genome stability. Transition through cell cycle phases is regulated by a family of Cyclin-Dependent Kinases (CDKs) in association with respective cyclin regulatory subunits. In normal cell cycles, E-type cyclins (Cyclin E1 and Cyclin E2, CCNE1 and CCNE2 genes) associate with CDK2 to promote G1/S transition. Cyclin E/CDK2 complex mostly controls cell cycle progression and DNA replication through phosphorylation of specific substrates. Oncogenic activation of Cyclin E/CDK2 complex impairs normal DNA replication, causing replication stress and DNA damage. As a consequence, Cyclin E/CDK2-induced replication stress leads to genomic instability and contributes to human carcinogenesis. In this review, we focus on the main functions of Cyclin E/CDK2 complex in normal DNA replication and the molecular mechanisms by which oncogenic activation of Cyclin E/CDK2 causes replication stress and genomic instability in human cancer.
Collapse
Affiliation(s)
| | - Leonardo K. Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
154
|
Xie S, Jiang X, Qin R, Song S, Lu Y, Wang L, Chen Y, Lu D. miR-1307 promotes hepatocarcinogenesis by CALR-OSTC-endoplasmic reticulum protein folding pathway. iScience 2021; 24:103271. [PMID: 34761190 PMCID: PMC8567365 DOI: 10.1016/j.isci.2021.103271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
miR-1307 is highly expressed in liver cancer and inhibits methyltransferase protein8. Thereby, miR-1307 inhibits the expression of KDM3A and KDM3B and increases the methylation modification of histone H3 lysine 9, which enhances the expression of endoplasmic-reticulum-related gene CALR. Of note, miR-1307 weakens the binding ability of OSTC to CDK2, CDK4, CyclinD1, and cyclinE and enhances the binding ability of CALR to CDK2, CDK4, CyclinD1, and cyclinE, decreasing of p21WAF1/CIP1, GADD45, pRB, and p18, and decreasing of ppRB. Furthermore, miR-1307 increases the activity of H-Ras, PKM2, and PLK1. Strikingly, miR-1307 reduces the binding ability of OSTC to ATG4 and enhances the binding ability of CALR to ATG4. Therefore, miR-1307 reduces the occurrence of autophagy based on ATG4-LC3-ATG3-ATG7-ATG5-ATG16L1-ATG12-ATG9- Beclin1. In particular, miR-1307 enhances the expression of PAK2, PLK1, PRKAR2A, MYBL1, and Trim44 and inhibits the expression of Sash1 and Smad5 via autophagy. Our observations suggest that miR-1307 promotes hepatocarcinogenesis by CALR-OSTC-endoplasmic reticulum protein folding pathway.
Collapse
Affiliation(s)
- Sijie Xie
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Xiaoxue Jiang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Rushi Qin
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Shuting Song
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Yanan Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Liyan Wang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Yingjie Chen
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Dongdong Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| |
Collapse
|
155
|
A network pharmacology approach to investigate the anticancer mechanism of cinobufagin against hepatocellular carcinoma via downregulation of EGFR-CDK2 signaling. Toxicol Appl Pharmacol 2021; 431:115739. [PMID: 34619160 DOI: 10.1016/j.taap.2021.115739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers with high mortality and poor prognosis, and the investigation on new approaches and effective drugs for HCC therapy is of great significance. In our study, we demonstrate that treatment with cinobufagin, a natural compound isolated from traditional chinese medicine Chansu, reduces proliferation and the colony formation capacity of the human hepatoma cells in vitro, in addition, cinobufagin induces mitotic arrest in human hepatoma cells. The results of a network pharmacology-based analysis show that EGFR, MAPK1, PTK2, CDK2, MAPK3, ESR1, CDK1, PRKCA, AR, and CSNK2A1 are the key targets involved in the anti-tumor activities of cinobufagin, additionally, several signaling pathways such as proteoglycans in cancer, pathways in cancer, HIF-1 signaling pathway, VEGF signaling pathway, ErbB signaling pathway, and PI3K-AKT signaling pathway are identified as the potential pathways involved in the inhibitory effects of cinobufagin against HCC. Furthermore, at the molecular level, we find that cinobufagin decreases EGFR expression and CDK2 activity in human hepatoma cells. Inhibition of EGFR or CDK2 expression could not only suppress the growth of tumor cells but also enhance the inhibitory effects of cinobufagin on the proliferative potential of human hepatoma cells. We also demonstrate that EGFR positively regulates CDK2 expression. Furthermore, EGFR inhibitor gefitinib or CDK2 inhibitor CVT-313 synergistically enhances anticancer effects of cinobufagin in human hepatoma cells. Taken together, these findings indicate that cinobufagin may exert antitumor effects by suppressing EGFR-CDK2 signaling, and our study suggests that cinobufagin may be a novel, promising anticancer agent for the treatment of HCC.
Collapse
|
156
|
Yan Y, Liu C, Zhang J, Li W, Yin X, Dong L, Pang S, Li X. SMC4 knockdown inhibits malignant biological behaviors of endometrial cancer cells by regulation of FoxO1 activity. Arch Biochem Biophys 2021; 712:109026. [PMID: 34506757 DOI: 10.1016/j.abb.2021.109026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 01/16/2023]
Abstract
Structural maintenance of chromosomes 4 (SMC4) has an important role in chromosome condensation and segregation, which is involved in regulating multiple tumor development. However, the role of SMC4 in endometrial cancer is uncertain. The expression and prognostic value of SMC4 were predicted by UALCAN, Gene Expression Omnibus (GEO), The Human Protein Atlas and Kaplan Meier plotter tools. SMC4-related genes were analyzed by LinkedOmics, Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Forkhead box protein O1 (FoxO1) activity was suppressed by AS1842856 (AS). SMC4, Ki67, B-cell lymphoma-2(Bcl-2), Bcl-2 associated X protein (Bax), FoxO1, phosphorylated FoxO1 (p-FoxO1), and p27 protein levels were detected by Western blotting. Cell proliferation was detected using Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) analyses. Cell apoptosis was measured using TUNEL analysis. SMC4 abundance was increased in endometrial cancer, and predicted a worse overall survival. SMC4 knockdown repressed proliferative ability of endometrial cancer cells and promoted cell apoptosis. SMC4 knockdown promoted FoxO1 transactivation by decreasing its phosphorylated level. Addition of AS inhibited FoxO1 activity by increasing the phosphorylated level of FoxO1. The inhibition of FoxO1 activity reversed the effect of SMC4 silencing on cell proliferation and apoptosis. In conclusion, SMC4 silencing restrained cell proliferation and facilitated apoptosis in endometrial cancer via regulating FoxO1 activity.
Collapse
Affiliation(s)
- Yani Yan
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China.
| | - Cong Liu
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China
| | - Jian Zhang
- Clinical Department, Qinhuangdao Mental Health Center, Qinhuangdao, 066000, China
| | - Weiwei Li
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China
| | - Xiurong Yin
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China
| | - Lixia Dong
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China
| | - Shulan Pang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Xuefeng Li
- Department of Ultrasonics, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China
| |
Collapse
|
157
|
Rana S, Mallareddy JR, Singh S, Boghean L, Natarajan A. Inhibitors, PROTACs and Molecular Glues as Diverse Therapeutic Modalities to Target Cyclin-Dependent Kinase. Cancers (Basel) 2021; 13:5506. [PMID: 34771669 PMCID: PMC8583118 DOI: 10.3390/cancers13215506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
The cyclin-dependent kinase (CDK) family of proteins play prominent roles in transcription, mRNA processing, and cell cycle regulation, making them attractive cancer targets. Palbociclib was the first FDA-approved CDK inhibitor that non-selectively targets the ATP binding sites of CDK4 and CDK6. In this review, we will briefly inventory CDK inhibitors that are either part of over 30 active clinical trials or recruiting patients. The lack of selectivity among CDKs and dose-limiting toxicities are major challenges associated with the development of CDK inhibitors. Proteolysis Targeting Chimeras (PROTACs) and Molecular Glues have emerged as alternative therapeutic modalities to target proteins. PROTACs and Molecular glues utilize the cellular protein degradation machinery to destroy the target protein. PROTACs are heterobifunctional molecules that form a ternary complex with the target protein and E3-ligase by making two distinct small molecule-protein interactions. On the other hand, Molecular glues function by converting the target protein into a "neo-substrate" for an E3 ligase. Unlike small molecule inhibitors, preclinical studies with CDK targeted PROTACs have exhibited improved CDK selectivity. Moreover, the efficacy of PROTACs and molecular glues are not tied to the dose of these molecular entities but to the formation of the ternary complex. Here, we provide an overview of PROTACs and molecular glues that modulate CDK function as emerging therapeutic modalities.
Collapse
Affiliation(s)
- Sandeep Rana
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA;
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
| | - Lidia Boghean
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
- Pharmaceutical Sciences and University of Nebraska Medical Center, Omaha, NE 68198, USA
- Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
158
|
Almehmadi SJ, Alsaedi AMR, Harras MF, Farghaly TA. Synthesis of a new series of pyrazolo[1,5-a]pyrimidines as CDK2 inhibitors and anti-leukemia. Bioorg Chem 2021; 117:105431. [PMID: 34688130 DOI: 10.1016/j.bioorg.2021.105431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Based on the structural study of previously known CDK2 inhibitors, a new series of pyrazolo[1,5-a]pyrimidine derivatives was designed and synthesized. The target compounds were biologically assessed as potent CDK2 inhibitors and promising anti-leukemia hits. The 7-(4-Bromo-phenyl)-3-(3-chloro/2-chloro-phenylazo)-pyrazolo[1,5-a]pyrimidin-2-ylamines 5 h and 5i revealed the best CDK2 inhibitory activity with comparable potency (IC50 = 22 and 24 nM, respectively) to that of dinaciclib (IC50 = 18 nM). Additionally, both analogues showed potent activities against CDK1, CDK5 and CDK9 at nanomolar concentrations (IC50 = 28-80 nM). The anti-leukemia screening of the target compounds showed strong to moderate cytotoxicity against the used leukemia cell lines (MOLT-4 and HL-60). Compound 5 h inhibited MOLT-4 and HL-60 by 1.4 and 2.3 folds (IC50 = 0.93 and 0.80 µM), respectively, compared to dinaciclib (IC50 = 1.30 and 1.84 µM). Furthermore, compound 5i was comparable to dinaciclib against MOLT-4 and exhibited twice its activity against HL-60. Besides, the cytotoxicity of the promising analogues on normal human blood cells indicated the safety of 5h and 5i as compared to the reference dinaciclib. The pharmacokinetic properties of 5h and 5i were predicted using ADME calculations revealing good oral bioavailability and high GI absorption. The molecular docking simulations indicated, as expected, that the dinaciclib analogues can well-accommodate the CDK2 binding site, forming a variety of interactions.
Collapse
Affiliation(s)
- Samar J Almehmadi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah 21514, Saudi Arabia
| | - Amani M R Alsaedi
- Department of Chemistry, Collage of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
159
|
Arora C, Kaur D, Raghava GPS. Universal and cross-cancer prognostic biomarkers for predicting survival risk of cancer patients from expression profile of apoptotic pathway genes. Proteomics 2021; 22:e2000311. [PMID: 34637591 DOI: 10.1002/pmic.202000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/25/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Numerous cancer-specific prognostic models have been developed in the past, wherein one model is applicable for only one type of cancer. In this study, an attempt has been made to identify universal or multi-cancer prognostic biomarkers and develop models for predicting survival risk across different types of cancer patients. In order to accomplish this, we gauged the prognostic role of mRNA expression of 165 apoptosis-related genes across 33 cancers in the context of patient survival. Firstly, we identified specific prognostic biomarker genes for 30 cancers. The cancer-specific prognostic models achieved a minimum Hazard Ratio, HRSKCM = 1.99 and maximum HRTHCA = 41.59. Secondly, a comprehensive analysis was performed to identify universal biomarkers across many cancers. Our best prognostic model consisted of 11 genes (TOP2A, ISG20, CD44, LEF1, CASP2, PSEN1, PTK2, SATB1, SLC20A1, EREG, and CD2) and stratified risk groups across 27 cancers (HROV = 1.53-HRUVM = 11.74). The model was validated on eight independent cancer cohorts and exhibited a comparable performance. Further, we clustered cancer-types on the basis of shared survival related apoptosis genes. This approach proved helpful in development of cross-cancer prognostic models. To show its efficacy, a prognostic model consisting of 15 genes was thereby developed for LGG-KIRC pair (HRKIRC = 3.27, HRLGG = 4.23). Additionally, we predicted potential therapeutic candidates for LGG-KIRC high risk patients.
Collapse
Affiliation(s)
- Chakit Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
160
|
Veit-Acosta M, de Azevedo Junior WF. Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery. Curr Med Chem 2021; 29:2438-2455. [PMID: 34365938 DOI: 10.2174/0929867328666210806105810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND CDK2 participates in the control of eukaryotic cell-cycle progression. Due to the great interest in CDK2 for drug development and the relative easiness in crystallizing this enzyme, we have over 400 structural studies focused on this protein target. This structural data is the basis for the development of computational models to estimate CDK2-ligand binding affinity. OBJECTIVE This work focuses on the recent developments in the application of supervised machine learning modeling to develop scoring functions to predict the binding affinity of CDK2. METHOD We employed the structures available at the protein data bank and the ligand information accessed from the BindingDB, Binding MOAD, and PDBbind to evaluate the predictive performance of machine learning techniques combined with physical modeling used to calculate binding affinity. We compared this hybrid methodology with classical scoring functions available in docking programs. RESULTS Our comparative analysis of previously published models indicated that a model created using a combination of a mass-spring system and cross-validated Elastic Net to predict the binding affinity of CDK2-inhibitor complexes outperformed classical scoring functions available in AutoDock4 and AutoDock Vina. CONCLUSION All studies reviewed here suggest that targeted machine learning models are superior to classical scoring functions to calculate binding affinities. Specifically for CDK2, we see that the combination of physical modeling with supervised machine learning techniques exhibits improved predictive performance to calculate the protein-ligand binding affinity. These results find theoretical support in the application of the concept of scoring function space.
Collapse
Affiliation(s)
- Martina Veit-Acosta
- Western Michigan University, 1903 Western, Michigan Ave, Kalamazoo, MI 49008. United States
| | | |
Collapse
|
161
|
Doan P, Nguyen P, Murugesan A, Subramanian K, Konda Mani S, Kalimuthu V, Abraham BG, Stringer BW, Balamuthu K, Yli-Harja O, Kandhavelu M. Targeting Orphan G Protein-Coupled Receptor 17 with T0 Ligand Impairs Glioblastoma Growth. Cancers (Basel) 2021; 13:cancers13153773. [PMID: 34359676 PMCID: PMC8345100 DOI: 10.3390/cancers13153773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM), or glioblastoma chemotherapy, has one of the poorest improvements across all types of cancers. Despite the different rationales explored in targeted therapy for taming the GBM aggressiveness, its phenotypic plasticity, drug toxicity, and adaptive resistance mechanisms pose many challenges in finding an effective cure. Our manuscript reports the expression and prognostic role of orphan receptor GPR17 in glioma, the molecular mechanism of action of the novel ligand of GPR17, and provides evidence how the T0 agonist promotes glioblastoma cell death through modulation of the MAPK/ERK, PI3K–Akt, STAT, and NF-κB pathways. The highlights are as follows: GPR17 expression is associated with greater survival for both low-grade glioma (LGG) and GBM; GA-T0, a potent GPR17 receptor agonist, causes significant GBM cell death and apoptosis; GPR17 signaling promotes cell cycle arrest at the G1 phase in GBM cells; key genes are modulated in the signaling pathways that inhibit GBM cell proliferation; and GA-T0 crosses the blood–brain barrier and reduces tumor volume. Abstract Glioblastoma, an invasive high-grade brain cancer, exhibits numerous treatment challenges. Amongst the current therapies, targeting functional receptors and active signaling pathways were found to be a potential approach for treating GBM. We exploited the role of endogenous expression of GPR17, a G protein-coupled receptor (GPCR), with agonist GA-T0 in the survival and treatment of GBM. RNA sequencing was performed to understand the association of GPR17 expression with LGG and GBM. RT-PCR and immunoblotting were performed to confirm the endogenous expression of GPR17 mRNA and its encoded protein. Biological functions of GPR17 in the GBM cells was assessed by in vitro analysis. HPLC and histopathology in wild mice and an acute-toxicity analysis in a patient-derived xenograft model were performed to understand the clinical implication of GA-T0 targeting GPR17. We observed the upregulation of GPR17 in association with improved survival of LGG and GBM, confirming it as a predictive biomarker. GA-T0-stimulated GPR17 leads to the inhibition of cyclic AMP and calcium flux. GPR17 signaling activation enhances cytotoxicity against GBM cells and, in patient tissue-derived mesenchymal subtype GBM cells, induces apoptosis and prevents proliferation by stoppage of the cell cycle at the G1 phase. Modulation of the key genes involved in DNA damage, cell cycle arrest, and in several signaling pathways, including MAPK/ERK, PI3K–Akt, STAT, and NF-κB, prevents tumor regression. In vivo activation of GPR17 by GA-T0 reduces the tumor volume, uncovering the potential of GA-T0–GPR17 as a targeted therapy for GBM treatment. Conclusion: Our analysis suggests that GA-T0 targeting the GPR17 receptor presents a novel therapy for treating glioblastoma.
Collapse
Affiliation(s)
- Phuong Doan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; (P.D.); (P.N.); (A.M.); (K.S.)
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | - Phung Nguyen
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; (P.D.); (P.N.); (A.M.); (K.S.)
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; (P.D.); (P.N.); (A.M.); (K.S.)
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Kumar Subramanian
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; (P.D.); (P.N.); (A.M.); (K.S.)
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | | | - Vignesh Kalimuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (V.K.); (K.B.)
| | - Bobin George Abraham
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland;
| | - Brett W. Stringer
- College of Medicine and Public Health, Flinders University, Sturt Rd., Bedford Park, SA 5042, Australia;
| | - Kadalmani Balamuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (V.K.); (K.B.)
| | - Olli Yli-Harja
- Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland;
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; (P.D.); (P.N.); (A.M.); (K.S.)
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
- Correspondence: ; Tel.: +358-504721724
| |
Collapse
|
162
|
Argenziano M, Tortora C, Paola AD, Pota E, Martino MD, Pinto DD, Leva CD, Rossi F. Eltrombopag and its iron chelating properties in pediatric acute myeloid leukemia. Oncotarget 2021; 12:1377-1387. [PMID: 34262648 PMCID: PMC8274721 DOI: 10.18632/oncotarget.28000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents 20% of total childhood leukemia diagnoses and is characterized by poor prognosis with a long-term survival rate around the 50%, when patients are properly treated. The standard treatment for pediatric AML currently consists in a combination of cytarabine (Ara-C) and antracycline. Iron plays an important role in cancer development and progression. Targeting iron and its metabolism mediators could be a novel therapeutic strategy in cancer.Deferasirox (DFX) inhibits cancer cell proliferation and its use as an antiblastic drug could be suggested. Eltrombopag (ELT), a thrombopoietin receptor agonist used in immunethrombocytopenia, shows anticancer properties related to its emerging iron chelating properties. We compare the anticancer effect of classically used cytarabine with DFX and ELT effects in a pediatric AML cell line, THP-1, in order to identify innovative and more effective therapeutic strategies. ELT and DFX reduce intracellular iron concentration by inhibiting its uptake and by promoting its release. In particular, even though further investigations are needed to better understand the extact underlying action mechanisms, we demonstrated that ELT improves cytarabine antineoplastic activity in pediatric AML cell line.
Collapse
Affiliation(s)
- Maura Argenziano
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Chiara Tortora
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Alessandra Di Paola
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Elvira Pota
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Daniela Di Pinto
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Caterina Di Leva
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
163
|
Negi M, Chawla P, Faruk A, Chawla V. Role of 4-Thiazolidinone Scaffold in Targeting Variable Biomarkers and Pathways Involving Cancer. Anticancer Agents Med Chem 2021; 22:1458-1477. [PMID: 34229596 DOI: 10.2174/1871520621666210706104227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer can be considered as a genetic as well as a metabolic disorder. Current cancer treatment scenario looks like aggravating tumor cell metabolism, causing the disease to progress even with greater intensity. The cancer therapy is restricted to limitations of poor patient compliance due to toxicities to normal tissues and multi-drug resistance development. There is an emerging need for cancer therapy to be more focused on the better understanding of genetic, epigenetic and transcriptional changes resulting in cancer progression and their relationship with treatment sensitivity. OBJECTIVE The 4-thiazolidinone nucleus possesses marked anticancer potential towards different biotargets, thus targeting different cancer types like breast, prostate, lung, colorectal and colon cancers, renal cell adenocarcinomas and gliomas. Therefore, conjugating the 4-thiazolidinone scaffold with other promising moieties or by directing the therapy towards targeted drug delivery systems like the use of nanocarrier systems, can provide the gateway for optimizing the anticancer efficiency and minimizing the adverse effects and drug resistance development, thus providing stimulus for personalized pharmacotherapy. METHODS An exhaustive literature survey has been carried out to give an insight into the anticancer potential of the 4-thiazolidinone nucleus either alone or in conjugation with other active moieties, with the mechanisms involved in preventing proliferation and metastasis of cancer covering a vast range of publications of repute. CONCLUSION This review aims to summarise the work reported on anticancer activity of 4-thiazolidinone derivatives covering various cancer biomarkers and pathways involved, citing the data from 2005 till now, which may be beneficial to the researchers for future development of more efficient 4-thiazolidinone derivatives.
Collapse
Affiliation(s)
- Meenakshi Negi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, BFUHS University, Faridkot, India
| |
Collapse
|
164
|
Tan SH, Ding HJ, Mei XP, Liu JT, Tang YX, Li Y. Propofol suppressed cell proliferation and enhanced apoptosis of bladder cancer cells by regulating the miR-340/CDK2 signal axis. Acta Histochem 2021; 123:151728. [PMID: 34048990 DOI: 10.1016/j.acthis.2021.151728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND As widely reported, propofol can effectively inhibit tumors development. However, little is known about the molecular mechanisms. Here, we proved that propofol regulated miR-340/CDK2 axis to suppress bladder cancer progression in vitro. METHODS MicroRNA (MiR)-340 expression in 5637 cells was examined using qRT-PCR. Cyclin-dependent kinase2 (CDK2) expression was detected using both qRT-PCR and western blot. The levels of apoptosis-related proteins and cell cycle-related proteins were evaluated using western blot. CCK-8 assay and BrdU assay were conducted to evaluate cell proliferation. Moreover, flow cytometry assay was employed to assess cell cycle and cell apoptosis. Finally, dual luciferase reporter assay was employed to verify the binding relationship between miR-340 and CDK2. RESULTS Here we showed that propofol treatment inhibited cell proliferation of 5637 cells but enhanced cell apoptosis. Propofol upregulated miR-340 in a dose and time dependent manner. MiR-340 inhibitor could reverse the effect of propofol on the proliferation and apoptosis of 5637 cells. Next, dual luciferase reporter assay displayed that miR-340 directly bound to the 3'-UTR of CDK2. Finally, inhibition of CDK2 could partly reversed the effect of miR-340 inhibitor on cell proliferation and cell apoptosis of propofol-treated 5637 cells. CONCLUSION In total, our results proved that targeting miR340/CDK2 axis was novel to enhance the anti-tumor effects of propofol in bladder cancer in vitro, and our study provided alternative therapeutic strategies for clinical treatment of bladder cancer.
Collapse
|
165
|
Hassan A, Moustafa GO, Awad HM, Nossier ES, Mady MF. Design, Synthesis, Anticancer Evaluation, Enzymatic Assays, and a Molecular Modeling Study of Novel Pyrazole-Indole Hybrids. ACS OMEGA 2021; 6:12361-12374. [PMID: 34056388 PMCID: PMC8154124 DOI: 10.1021/acsomega.1c01604] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 05/14/2023]
Abstract
The molecular hybridization concept has recently emerged as a powerful approach in drug discovery. A series of novel indole derivatives linked to the pyrazole moiety were designed and developed via a molecular hybridization protocol as antitumor agents. The target compounds (5a-j and 7a-e) were prepared by the reaction of 5-aminopyrazoles (1a-e) with N-substituted isatin (4a,b) and 1H-indole-3-carbaldehyde (6), respectively. All products were characterized via several analytical and spectroscopic techniques. Compounds (5a-j and 7a-e) were screened for their cytotoxicity activities in vitro against four human cancer types [human colorectal carcinoma (HCT-116), human breast adenocarcinoma (MCF-7), human liver carcinoma (HepG2), and human lung carcinoma (A549)] using the MTT assay. The obtained results showed that the newly synthesized compounds displayed good-to-excellent antitumor activity. For example, 5-((1H-indol-3-yl)methyleneamino)-N-phenyl-3-(phenylamino)-1H-pyrazole-4-carboxamide (7a) and 5-((1H-indol-3-yl)methyleneamino)-3-(phenylamino)-N-(4-methylphenyl)-1H-pyrazole-4-carboxamide (7b) provided excellent anticancer inhibition performance against the HepG2 cancer cell line with IC50 values of 6.1 ± 1.9 and 7.9 ± 1.9 μM, respectively, compared to the standard reference drug, doxorubicin (IC50 = 24.7 ± 3.2 μM). The two powerful anticancer compounds (7a and 7b) were further subjected to cell cycle analysis and apoptosis investigation in HepG2 using flow cytometry. We have also studied the enzymatic assay of these two compounds against some enzymes, namely, caspase-3, Bcl-2, Bax, and CDK-2. Interestingly, the molecular docking study revealed that compounds 7a and 7b could well embed in the active pocket of the CDK-2 enzyme via different interactions. Overall, the prepared pyrazole-indole hybrids (7a and 7b) can be proposed as strong anticancer candidate drugs against various cancer cell lines.
Collapse
Affiliation(s)
- Ashraf
S. Hassan
- Organometallic
and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Gaber O. Moustafa
- Peptide
Chemistry Department, National Research
Centre, Dokki, Cairo 12622, Egypt
| | - Hanem M. Awad
- Department
of Tanning Materials and Leather Technology, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Mohamed F. Mady
- Department
of Chemistry, Bioscience and Environmental Engineering, Faculty of
Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
- Green Chemistry
Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
166
|
Lin YR, Yang WJ, Yang GW. Prognostic and immunological potential of PPM1G in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:12929-12954. [PMID: 33952716 PMCID: PMC8148464 DOI: 10.18632/aging.202964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Liver hepatocellular carcinoma (LIHC) remains one of the most common causes of cancer death. Prior research suggested that the PPM1G gene is involved in LIHC. To explore the role of PPM1G in LIHC, we used several online databases. Expression profiling was performed via the Gene Expression Profiling Interactive Analysis (GEPIA), Hepatocellular Carcinoma Database (HCCDB), Oncomine and Human Protein Atlas (HPA) platforms. Mutation profiles were investigated via cBio Cancer Genomics Portal (cBioPortal). Survival analysis was performed via the Kaplan-Meier (KM) plotter and International Cancer Genome Consortium (ICGC) platforms. The biological function of PPM1G was analyzed via the Enrichr database. The influence of PPM1G expression in the tumor immune microenvironment was assessed via Tumor Immune Estimation Resource (TIMER). PPM1G expression was upregulated in various tumors, including LIHC. Overexpression of PPM1G was associated with poor prognosis in LIHC. PPM1G expression might be regulated by promoter methylation, copy number variations (CNVs) and kinases and correlate with immune infiltration. The gene ontology (GO) terms associated with high PPM1G expression were mRNA splicing and the cell cycle. The results suggest that PPM1G is correlated with the prognosis of LIHC patients and associated with the tumor immune microenvironment in LIHC.
Collapse
Affiliation(s)
- Yi-Ren Lin
- Department of Oncology, Shunyi Hospital of Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Wen-Jing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng, Beijing, China
| | - Guo-Wang Yang
- Department of Oncology, Shunyi Hospital of Beijing Traditional Chinese Medicine Hospital, Beijing, China
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng, Beijing, China
| |
Collapse
|
167
|
Li J, Ye L, Wang Y, Liu Y, Jin X, Li M. 1'-methylspiro[indoline-3,4'-piperidine] Derivatives: Design, Synthesis, Molecular Docking and Anti-tumor Activity Studies. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201117150714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Spirocyclic indoline compounds widely exist in numerous natural products
and synthetic molecules with significant biological activities. In recent years, these kinds of compounds
have attracted extensive attention as potent anti-tumor agents in the fields of pharmacology
and chemistry.
Objective:
In this study, we focused on designing and synthesizing novel 1'-methylspiro[indoline-
3,4'-piperidine] derivatives, which were evaluated by preliminary bioactivity experiment in vitro
and molecular docking.
Methods and Materials:
The key intermediate 1'-methylspiro[indoline-3,4'-piperidine] (B4) reacted
with benzenesulfonyl chloride with different substituents under alkaline condition to obtain its derivatives
(B5-B10). We evaluated their antiproliferative activities against A549, BEL-7402 and HeLa
cell lines by MTT assay. We performed the CDOCKER module in Accelrys Discovery Studio 2.5.5
for molecular docking of compound B5, and investigated the binding modes of compound B5 with
three different target proteins.
Results:
The results indicated that compounds B4-B10 exhibited good antiproliferative activities
against the above three types of cell lines, in which compound B5 with chloride atom as electronwithdrawing
substituent on a phenyl ring showed the highest potency against BEL-7402 cell lines
(IC50=30.03±0.43 μg/mL). The results of molecular docking showed that the binding energies of the
prominent bioactive compound B5 with CDK, c-Met, and EGFR protein crystals are -44.3583
kcal/mol, -38.3292 kcal/mol, -33.3653 kcal/mol, respectively.
Conclusion:
1'-methylspiro[indoline-3,4'-piperidine] and its six derivatives were synthesized and
evaluated against BEL-7402, A 549, and Hela cell lines. Compound B5 showed significant inhibition
on BEL-7402 cell lines. Molecular docking assays revealed that B5 as a ligand showed strong
affinity and appropriate binding pose on the amino acid residues in active sites of the tested targets,
which encourage us to conduct further evaluation such as the kinase experiment.
Collapse
Affiliation(s)
- Junjian Li
- Department of Medicinal Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou,China
| | - Lianbao Ye
- Department of Medicinal Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou,China
| | - Yuanyuan Wang
- Department of Medicinal Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou,China
| | - Ying Liu
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou,China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou,China
| | - Ming Li
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou,China
| |
Collapse
|
168
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
169
|
Jiang D, Ding S, Mao Z, You L, Ruan Y. Integrated analysis of potential pathways by which aloe-emodin induces the apoptosis of colon cancer cells. Cancer Cell Int 2021; 21:238. [PMID: 33902610 PMCID: PMC8077783 DOI: 10.1186/s12935-021-01942-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Background Colon cancer is a malignant gastrointestinal tumour with high incidence, mortality and metastasis rates worldwide. Aloe-emodin is a monomer compound derived from hydroxyanthraquinone. Aloe-emodin produces a wide range of antitumour effects and is produced by rhubarb, aloe and other herbs. However, the mechanism by which aloe-emodin influences colon cancer is still unclear. We hope these findings will lead to the development of a new therapeutic strategy for the treatment of colon cancer in the clinic. Methods We identified the overlapping targets of aloe-emodin and colon cancer and performed protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, we selected apoptosis pathways for experimental verification with cell viability, cell proliferation, caspase-3 activity, DAPI staining, cell cycle and western blotting analyses to evaluate the apoptotic effect of aloe-emodin on colon cancer cells. Results The MTT assay and cell colony formation assay showed that aloe-emodin inhibited cell proliferation. DAPI staining confirmed that aloe-emodin induced apoptosis. Aloe-emodin upregulated the protein level of Bax and decreased the expression of Bcl-2, which activates caspase-3 and caspase-9. Furthermore, the protein expression level of cytochrome C increased in a time-dependent manner in the cytoplasm but decreased in a time-dependent manner in the mitochondria. Conclusion These results indicate that aloe-emodin may induce the apoptosis of human colon cancer cells through mitochondria-related pathways.
Collapse
Affiliation(s)
- Dongxiao Jiang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Shufei Ding
- Shaoxing Hospital Of Traditional Chinese Medicine, Shaoxing, 312000, People's Republic of China
| | - Zhujun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Liyan You
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yeping Ruan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
| |
Collapse
|
170
|
Lai H, Jiang W, Zhao J, Dinglin X, Li Y, Li S, Wang Y, Yao H. Global Trend in Research and Development of CDK4/6 Inhibitors for Clinical Cancer Therapy: A Bibliometric Analysis. J Cancer 2021; 12:3539-3547. [PMID: 33995631 PMCID: PMC8120189 DOI: 10.7150/jca.51609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/25/2021] [Indexed: 02/03/2023] Open
Abstract
Background: Cyclin-dependent kinase (CDK) 4/6 inhibitors are frequently used anti-cancer agents in hormone receptor-positive breast cancers. This study assessed the course of research and development (R&D) for CDK4/6 inhibitors in terms of publications over the past two decades. Methods: The Web of Science (WOS) and PubMed databases were searched to identify publications related to research on CDK4/6 inhibitors since 2001. The VOS Viewer software was used to analyze co-occurring keywords to stratify the publication data and collaborations in research. Results: There were 1395 publications related to research on CDK4/6 inhibitors since 2001. Eight of the top 10 institutions originated from the USA and the other two were a Swiss Pharmaceutical Company and French Research Institute. Bardia A, the first author for some of the articles published in the USA, was the most prolific with 25 publications. The journal with the most publications was Cancer Res with 162 publications. Basic research comprised six of the 10 most frequently cited publications and the rest consisted of three reviews and a clinical trial. The most common keywords for publications since 2011 were “palbociclib”, “abemaciclib”, “ribociclib” and “double blind”, indicating the successful development of CDK4/6 inhibitors as anticancer drugs. Conclusions: This study provides a comprehensive review of the CDK4/6 inhibitors R&D history. The data imply that drug development in this field is a decade-long process and clinical trials have been performed before clinical applications. Thereafter, research was conducted on the adverse effects and drug resistance associated with the inhibitors.
Collapse
Affiliation(s)
- Hongna Lai
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou 510120, China.,Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Jiang
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jianli Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou 510120, China.,Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaoxiao Dinglin
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou 510120, China.,Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yudong Li
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou 510120, China.,Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shunying Li
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou 510120, China.,Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou 510120, China.,Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou 510120, China.,Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
171
|
Joshi A, Bhojwani H, Wagal O, Begwani K, Joshi U, Sathaye S, Kanchan D. Evaluation of Benzamide-chalcone Derivatives as EGFR/CDK2 inhibitor: Synthesis, in-vitro Inhibition, and Molecular Modeling Studies. Anticancer Agents Med Chem 2021; 22:328-343. [PMID: 33858315 DOI: 10.2174/1871520621666210415091359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND EGFR (Epidermal Growth Factor Receptor) and CDK2 (Cyclin Dependent Kinase 2) are important targets in the treatment of many solid tumors and different ligands of these receptors share many common structural features. OBJECTIVE The study involved synthesis of benzamide-substituted chalcones and determination of their antiproliferative activity as well as preliminary evaluation of EGFR and CDK2 inhibitory potential using both receptor binding and computational methods. METHODS We synthesized 13 benzamide-substituted chalcone derivatives and tested their antiproliferative activity against MCF-7, HT-29 and U373MG cell-lines using Sulforhodamine B Assay. Four compounds were examined for activity against EGFR and CDK2 kinase. The compounds were docked into both EGFR and CDK2 using Glide software. The stability of the interactions for most active compound was evaluated by Molecular Dynamics Simulation using Desmond software. Molecular Docking studies on mutant EGFR (T790M, T790M/L858R, and T790M/C797S) were also carried out. RESULTS From the SRB assay, we concluded that compounds 1g, and 1k were effective in inhibiting the growth of MCF-7 cell line whereas the other compounds were moderately active. Most compounds were either moderately active or inactive on U373 MG and HT-29 cell line. Compounds 1g and 1k showed good inhibitory activity against CDK2 kinase while 1d and 1f were moderately active. Compounds 1d, 1f, 1g, and 1k were moderately active against EGFR kinase. Molecular docking reveals involvement of one hydrogen bond with Met793 in binding with EGFR however; it was not stable during simulation and these compounds bind to the receptor mainly via hydrophobic contacts. This fact also points towards a different orientation of the inhibitor within the active site of EGFR kinase. Binding mode analysis for CDK2 inhibition studies indicate that hydrogen bonding interaction with Lys 33 and Leu83 are important for the activity. These interactions were found to be stable throughout the simulation. Considering the results for wild-type EGFR inhibition, the docking studies on mutants were performed and which indicate that the compounds bind to the mutant EGFR but the amino acid residues involved are similar to the wild-type EGFR and therefore, the selectivity seems to be limited. CONCLUSION These benzamide-substituted chalcone derivatives will be useful as lead molecules for the further development of newer inhibitors of EGFR and/or CDK2 kinases.
Collapse
Affiliation(s)
- Akshada Joshi
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Heena Bhojwani
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Ojas Wagal
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Khushboo Begwani
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Urmila Joshi
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Sadhana Sathaye
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai 400019. India
| | - Divya Kanchan
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| |
Collapse
|
172
|
Shen J, Hu J, Wu J, Luo X, Li Y, Li J. Molecular characterization of long-term survivors of hepatocellular carcinoma. Aging (Albany NY) 2021; 13:7517-7537. [PMID: 33686022 PMCID: PMC7993728 DOI: 10.18632/aging.202615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/23/2020] [Indexed: 04/09/2023]
Abstract
Hepatocellular carcinoma is one of the most fatal cancers, and the majority of patients die within three years. However, a small proportion of patients overcome this fatal disease and survive for more than five years. To determine the molecular characteristics of long-term survivors (survival ≥ 5 years), we analyzed the genomic and clinical data of hepatocellular carcinoma patients from The Cancer Genome Atlas and the International Cancer Genome Consortium databases, and identified molecular features that were strongly associated with the patients' prognosis. Genes involved in the cell cycle were expressed at lower levels in tumor tissues from long-term survivors than those from short-term survivors (survival ≤ 1 years). High levels of positive regulators of the G1/S cell cycle transition (cyclin-dependent kinase 2 [CDK2], CDK4, Cyclin E2 [CCNE2], E2F1, E2F2) were potential markers of poor prognosis. Hepatocellular carcinoma patients with TP53 mutations were mainly belonged to the short-term survivor group. Abemaciclib, an FDA-approved selective inhibitor of CDK4/6, inhibited the cell proliferation and tumor growth of hepatocellular carcinoma cells in vitro and in vivo. Thus, high G1/S transition-related gene levels and TP53 mutations are promising diagnostic biomarkers for short-term survivals, and abemaciclib may be a potential targeted drug for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Junwei Shen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200124, China
| | - Jing Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jiawen Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200124, China
| | - Xiaoli Luo
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200124, China
| | - Yanfei Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jue Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200124, China
| |
Collapse
|
173
|
Drug-Target Interaction Prediction Based on Adversarial Bayesian Personalized Ranking. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6690154. [PMID: 33628808 PMCID: PMC7889346 DOI: 10.1155/2021/6690154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
The prediction of drug-target interaction (DTI) is a key step in drug repositioning. In recent years, many studies have tried to use matrix factorization to predict DTI, but they only use known DTIs and ignore the features of drug and target expression profiles, resulting in limited prediction performance. In this study, we propose a new DTI prediction model named AdvB-DTI. Within this model, the features of drug and target expression profiles are associated with Adversarial Bayesian Personalized Ranking through matrix factorization. Firstly, according to the known drug-target relationships, a set of ternary partial order relationships is generated. Next, these partial order relationships are used to train the latent factor matrix of drugs and targets using the Adversarial Bayesian Personalized Ranking method, and the matrix factorization is improved by the features of drug and target expression profiles. Finally, the scores of drug-target pairs are achieved by the inner product of latent factors, and the DTI prediction is performed based on the score ranking. The proposed model effectively takes advantage of the idea of learning to rank to overcome the problem of data sparsity, and perturbation factors are introduced to make the model more robust. Experimental results show that our model could achieve a better DTI prediction performance.
Collapse
|
174
|
Al-Sanea MM, Obaidullah AJ, Shaker ME, Chilingaryan G, Alanazi MM, Alsaif NA, Alkahtani HM, Alsubaie SA, Abdelgawad MA. A New CDK2 Inhibitor with 3-Hydrazonoindolin-2-One Scaffold Endowed with Anti-Breast Cancer Activity: Design, Synthesis, Biological Evaluation, and In Silico Insights. Molecules 2021; 26:molecules26020412. [PMID: 33466812 PMCID: PMC7830330 DOI: 10.3390/molecules26020412] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Cyclin-dependent kinases (CDKs) regulate mammalian cell cycle progression and RNA transcription. Based on the structural analysis of previously reported CDK2 inhibitors, a new compound with 3-hydrazonoindolin-2-one scaffold (HI 5) was well designed, synthesized, and biologically evaluated as a promising anti-breast cancer hit compound. Methods: The potential anti-cancerous effect of HI 5 was evaluated using cytotoxicity assay, flow cytometric analysis of apoptosis and cell cycle distribution, ELISA immunoassay, in vitro CDK2/cyclin A2 activity, and molecular operating environment (MOE) virtual docking studies. Results: The results revealed that HI 5 exhibits pronounced CDK2 inhibitory activity and cytotoxicity in human breast cancer MCF-7 cell line. The cytotoxicity of HI 5 was found to be intrinsically mediated apoptosis, which in turn, is associated with low Bcl-2 expression and high activation of caspase 3 and p53. Besides, HI 5 blocked the proliferation of the MCF-7 cell line and arrested the cell cycle at the G2/M phase. The docking studies did not confirm which one of geometric isomers (syn and anti) is responsible for binding affinity and intrinsic activity of HI 5. However, the molecular dynamic studies have confirmed that the syn-isomer has more favorable binding interaction and thus is responsible for CDK2 inhibitory activity. Discussion: These findings displayed a substantial basis of synthesizing further derivatives based on the 3-hydrazonoindolin-2-one scaffold for favorable targeting of breast cancer.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia;
- Correspondence: (M.M.A.-S.); (A.J.O.); Tel.: +966-594076460 (M.M.A.-S.)
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
- Correspondence: (M.M.A.-S.); (A.J.O.); Tel.: +966-594076460 (M.M.A.-S.)
| | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Garri Chilingaryan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia;
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Sultan A. Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia;
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
175
|
Synthesis, characterization and in-silico assessment of novel thiazolidinone derivatives for cyclin-dependent kinases-2 inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
176
|
Bazzar W, Bocci M, Hejll E, Högqvist Tabor V, Hydbring P, Grandien A, Alzrigat M, Larsson LG. Pharmacological inactivation of CDK2 inhibits MYC/BCL-XL-driven leukemia in vivo through induction of cellular senescence. Cell Cycle 2020; 20:23-38. [PMID: 33356836 PMCID: PMC7849765 DOI: 10.1080/15384101.2020.1855740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Deregulated expression of the MYC oncogene is a frequent event during tumorigenesis and generally correlates with aggressive disease and poor prognosis. While MYC is a potent inducer of apoptosis, it often suppresses cellular senescence, which together with apoptosis is an important barrier against tumor development. For this latter function, MYC is dependent on cyclin-dependent kinase 2 (CDK2). Here, we utilized a MYC/BCL-XL-driven mouse model of acute myeloblastic leukemia (AML) to investigate whether pharmacological inhibition of CDK2 can inhibit MYC-driven tumorigenesis through induction of senescence. Purified mouse hematopoietic stem cells transduced with MYC and BCL-XL were transplanted into lethally irradiated mice, leading to the development of massive leukemia and subsequent death 15–17 days after transplantation. Upon disease onset, mice were treated with the selective CDK2 inhibitor CVT2584 or vehicle either by daily intraperitoneal injections or continuous delivery via mini-pumps. CVT2584 treatment delayed disease onset and moderately but significantly improved survival of mice. Flow cytometry revealed a significant decrease in tumor load in the spleen, liver and bone marrow of CVT2584-treated compared to vehicle-treated mice. This was correlated with induced senescence evidenced by reduced cell proliferation, increased senescence-associated β-galactosidase activity and heterochromatin foci, expression of p19ARF and p21CIP1, and reduced phosphorylation (activation) of pRb, while very few apoptotic cells were observed. In addition, phosphorylation of MYC at Ser-62 was decreased. In summary, inhibition of CDK2 delayed MYC/BCL-XL-driven AML linked to senescence induction. Our results suggest that CDK2 is a promising target for pro-senescence cancer therapy, in particular for MYC-driven tumors, including leukemia.
Collapse
Affiliation(s)
- Wesam Bazzar
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Matteo Bocci
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Eduar Hejll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Vedrana Högqvist Tabor
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Per Hydbring
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Alf Grandien
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital- Huddinge , Stockholm, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
177
|
Hu HT, Wang Z, Kim MJ, Jiang LS, Xu SJ, Jung J, Lee E, Park JH, Bakheet N, Yoon SH, Kim KY, Song HY, Chang S. The Establishment of a Fast and Safe Orthotopic Colon Cancer Model Using a Tissue Adhesive Technique. Cancer Res Treat 2020; 53:733-743. [PMID: 33321564 PMCID: PMC8291175 DOI: 10.4143/crt.2020.494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose We aimed to develop a novel method for orthotopic colon cancer model, using tissue adhesive in place of conventional surgical method. Materials and Methods RFP HCT 116 cell line were used to establish the colon cancer model. Fresh tumor tissue harvested from a subcutaneous injection was grafted into twenty nude mice, divided into group A (suture method) and group B (tissue adhesive method). For the group A, we fixed the tissue on the serosa layer of proximal colon by 8-0 surgical suture. For the group B, tissue adhesive (10 μL) was used to fix the tumor. The mortality, tumor implantation success, tumor metastasis, primary tumor size, and operation time were compared between the two groups. Dissected tumor tissue was analyzed for the histology and immunohistochemistry. Also, we performed tumor marker analysis. Results We observed 30% increase in graft success and 20% decrease in mortality, by using tissue adhesive method, respectively. The median colon tumor size was significantly increased by 4 mm and operation time was shortened by 6.5 minutes. The H&E showed similar tumor structure between the two groups. The immunohistochemistry staining for cancer antigen 19-9, carcinoembryonic antigen, cytokeratin 20, and Ki-67 showed comparable intensities in both groups. Real-time quantitative reverse transcription analysis showed eight out of nine tumor markers are unchanged in the tissue adhesive group. Western blot indicated the tissue adhesive group expressed less p-JNK (apototic marker) and more p-MEK/p-p38 (proliferation marker) levels. Conclusion We concluded the tissue adhesive method is a quick and safe way to generate orthotopic, colon cancer model.
Collapse
Affiliation(s)
- Hong-Tao Hu
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Wang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Myung Ji Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Lu-Shang Jiang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shi-Jun Xu
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jaeyun Jung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunji Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Hoon Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nader Bakheet
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Gastrointestinal Endoscopy and Liver Unit, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sung Hwan Yoon
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kun Yung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University Hospital, Jeonju, Korea
| | - Ho-Young Song
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
178
|
Sabnis RW. Novel CDK2 Inhibitors for Treating Cancer. ACS Med Chem Lett 2020; 11:2346-2347. [PMID: 33335646 DOI: 10.1021/acsmedchemlett.0c00500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
179
|
Bian J, Wang K, Wang Q, Wang P, Wang T, Shi W, Ruan Q. Dracocephalum heterophyllum (DH) Exhibits Potent Anti-Proliferative Effects on Autoreactive CD4 + T Cells and Ameliorates the Development of Experimental Autoimmune Uveitis. Front Immunol 2020; 11:575669. [PMID: 33117376 PMCID: PMC7578250 DOI: 10.3389/fimmu.2020.575669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 02/04/2023] Open
Abstract
Experimental autoimmune uveitis (EAU) is a CD4+ T cell–mediated organ-specific autoimmune disease and has been considered as a model of human autoimmune uveitis. Dracocephalum heterophyllum (DH) is a Chinese herbal medicine used in treating hepatitis. DH suppressed the production of inflammatory cytokines through the recruitment of myeloid-derived suppressor cells (MDSCs) to the liver. However, it remains elusive whether DH can directly regulate CD4+ T cell biology and hence ameliorates the development of CD4+ T cell–mediated autoimmune disease. In the current study, we found that DH extract significantly suppressed the production of pro-inflammatory cytokines by CD4+ T cells. Further study showed that DH didn’t affect the activation, differentiation, and apoptosis of CD4+ T cells. Instead, it significantly suppressed the proliferation of conventional CD4+ T cells both in vitro and in vivo. Mechanistic study showed that DH-treated CD4+ T cells were partially arrested at the G2/M phase of the cell cycle because of the enhanced inhibitory phosphorylation of Cdc2 (Tyr15). In addition, we demonstrated that treatment with DH significantly ameliorated EAU in mice through suppressing the proliferation of autoreactive antigen specific CD4+ T cells. Taken together, the current study indicates that DH-mediated suppression of CD4+ T cell proliferation may provide a promising therapeutic strategy for treating CD4+ T cell–mediated diseases.
Collapse
Affiliation(s)
- Jiang Bian
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ke Wang
- Department of Ophthalmology, Qingdao University Medical College, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qilan Wang
- Northwest Plateau Institutes of Biology, Chinese Academy of Sciences, Xining, China
| | - Pu Wang
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingguo Ruan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
180
|
Poursheikhani A, Abbaszadegan MR, Kerachian MA. Mechanisms of long non-coding RNA function in colorectal cancer tumorigenesis. Asia Pac J Clin Oncol 2020; 17:7-23. [PMID: 32970938 DOI: 10.1111/ajco.13452] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally. Although a variety of CRC screening methods have been developed, many patients are diagnosed at advanced stages of CRC with tumor invasion and distance metastasis. Several studies have suggested the long noncoding RNAs (lncRNAs) as one of the main contributors in CRC tumorigenesis, although the exact underlying mechanism of lncRNAs in CRC is still unknown. Numerous studies have indicated aberrant expression of lncRNAs in CRC through different modes of action such as cell proliferation, apoptosis, cell cycle, DNA repair response, drug-resistance, migration, and metastasis. Furthermore, lncRNA polymorphisms can influence the risk of CRC development. Accordingly, lncRNAs can be served as promising diagnostic or prognostic biomarkers and also desired therapeutic targets affecting the outcome of patients with CRC. In this review, we summarized the updated and novel evidence that identifies different roles of lncRNAs in the tumorigenesis of CRC.
Collapse
Affiliation(s)
- Arash Poursheikhani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Genetics Research Unit, Reza Radiotherapy, and Oncology Center, Mashhad, Iran
| |
Collapse
|
181
|
Ikwu FA, Isyaku Y, Obadawo BS, Lawal HA, Ajibowu SA. In silico design and molecular docking study of CDK2 inhibitors with potent cytotoxic activity against HCT116 colorectal cancer cell line. J Genet Eng Biotechnol 2020; 18:51. [PMID: 32930901 PMCID: PMC7492310 DOI: 10.1186/s43141-020-00066-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Colorectal cancer is common to both sexes; third in terms of morbidity and second in terms of mortality, accounting for 10% and 9.2% of cancer cases in men and women globally. Although drugs such as bevacizumab, Camptosar, and cetuximab are being used to manage colorectal cancer, the efficacy of the drugs has been reported to vary from patient to patient. These drugs have also been reported to have varying degrees of side effects; thus, the need for novel drug therapies with better efficacy and lesser side effects. In silico drugs design methods provide a faster and cost-effect method for lead identification and optimization. The aim of this study, therefore, was to design novel imidazol-5-ones via in silico design methods. RESULTS A QSAR model was built using the genetic function algorithm method to model the cytotoxicity of the compounds against the HCT116 colorectal cancer cell line. The built model had statistical parameters; R2 = 0.7397, R2adj = 0.6712, Q2cv = 0.5547, and R2ext. = 0.7202 and revealed the cytotoxic activity of the compounds to be dependent on the molecular descriptors nS, GATS5s, VR1_Dze, ETA_dBetaP, and L3i. These molecular descriptors were poorly correlated (VIF < 4.0) and made unique contributions to the built model. The model was used to design a novel set of derivatives via the ligand-based drug design approach. Compounds e, h, j, and l showed significantly better cytotoxicity (IC50 < 5.0 μM) compared to the template. The interaction of the compounds with the CDK2 enzyme (PDB ID: 6GUE) was investigated via molecular docking study. The compounds were potent inhibitors of the enzyme having binding affinity of range -10.8 to -11.0 kcal/mol and primarily formed hydrogen bond interaction with lysine, aspartic acid, leucine, and histidine amino acid residues of the enzyme. CONCLUSION The QSAR model built was stable, robust, and had a good predicting ability. Thus, predictions made by the model were reliably employed in further in silico studies. The compounds designed were more active than the template and showed better inhibition of the CDK2 enzyme compared to the standard drugs sorafenib and kenpaullone.
Collapse
Affiliation(s)
- Fabian Adakole Ikwu
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yusuf Isyaku
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | | | - Samuel Akolade Ajibowu
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
182
|
Bhowmick S, AlFaris NA, ALTamimi JZ, ALOthman ZA, Aldayel TS, Wabaidur SM, Islam MA. Screening and analysis of bioactive food compounds for modulating the CDK2 protein for cell cycle arrest: Multi-cheminformatics approaches for anticancer therapeutics. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
183
|
Teng M, Jiang J, He Z, Kwiatkowski NP, Donovan KA, Mills CE, Victor C, Hatcher JM, Fischer ES, Sorger PK, Zhang T, Gray NS. Development of CDK2 and CDK5 Dual Degrader TMX‐2172. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Jie Jiang
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Zhixiang He
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Nicholas P. Kwiatkowski
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Katherine A. Donovan
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Caitlin E. Mills
- Laboratory of Systems Pharmacology Department of Systems Biology Harvard Medical School Boston MA USA
| | - Chiara Victor
- Laboratory of Systems Pharmacology Department of Systems Biology Harvard Medical School Boston MA USA
| | - John M. Hatcher
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Eric S. Fischer
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Peter K. Sorger
- Laboratory of Systems Pharmacology Department of Systems Biology Harvard Medical School Boston MA USA
| | - Tinghu Zhang
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Nathanael S. Gray
- Department of Cancer Biology Dana-Farber Cancer Institute Harvard Medical School Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| |
Collapse
|
184
|
Xu T, Wang Q, Liu M. A Network Pharmacology Approach to Explore the Potential Mechanisms of Huangqin-Baishao Herb Pair in Treatment of Cancer. Med Sci Monit 2020; 26:e923199. [PMID: 32609659 PMCID: PMC7346753 DOI: 10.12659/msm.923199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of this study was to identify the bioactive ingredients of Huangqin-Baishao herb pair and to reveal its anti-cancer mechanisms through a pharmacology approach. MATERIAL AND METHODS Detailed information on compounds in the HQ-BS herb pair was obtained from the Traditional Chinese medicine systems pharmacology (TCMSP) and screened by the criteria of OB ≥30% and DL ≥0.18. A systematic drug targeting model (SysDT) was used for compound targets prediction, and then the targets were analyzed for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The protein-protein interaction (PPI) network of HQ-BS targets was constructed, after identifying core networks through Cytoscape plugins. RESULTS We found 47 bioactive compounds of HQ-BS and 107 human-derived targets. A compound target network and a target signal pathway network were constructed and used for topological analysis. Kaempferol, beta-sitosterol, stigmasterol, wogonin, and oroxylin-a were identified as core compounds and pathways in cancer. The calcium signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, chemical carcinogenesis, estrogen signaling pathway, proteoglycans in cancer, HIF-1 signaling pathway, thyroid hormone signaling pathway, VEGF signaling pathway, small cell lung cancer, prostate cancer, colorectal cancer, NOD-like receptor signaling pathway, and T cell receptor signaling pathway were found to be potential signals of HQ-BS in treating cancer. Through PPI network analysis, TNF signaling pathway, tryptophan metabolism, proteoglycans in cancer, cell cycle, and chemical carcinogenesis sub-networks were obtained. CONCLUSIONS HQ-BS contains various bioactive compounds, including flavonoids, phytosterols, and other compounds, and these compounds can inhibit or activate multiple targets and pathways against cancer.
Collapse
Affiliation(s)
- Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Min Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
185
|
Teng M, Jiang J, He Z, Kwiatkowski NP, Donovan KA, Mills CE, Victor C, Hatcher JM, Fischer ES, Sorger PK, Zhang T, Gray NS. Development of CDK2 and CDK5 Dual Degrader TMX-2172. Angew Chem Int Ed Engl 2020; 59:13865-13870. [PMID: 32415712 DOI: 10.1002/anie.202004087] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinase 2 (CDK2) is a potential therapeutic target for the treatment of cancer. Development of CDK2 inhibitors has been extremely challenging as its ATP-binding site shares high similarity with CDK1, a related kinase whose inhibition causes toxic effects. Here, we report the development of TMX-2172, a heterobifunctional CDK2 degrader with degradation selectivity for CDK2 and CDK5 over not only CDK1, but transcriptional CDKs (CDK7 and CDK9) and cell cycle CDKs (CDK4 and CDK6) as well. In addition, we demonstrate that antiproliferative activity in ovarian cancer cells (OVCAR8) depends on CDK2 degradation and correlates with high expression of cyclin E1 (CCNE1), which functions as a regulatory subunit of CDK2. Collectively, our work provides evidence that TMX-2172 represents a lead for further development and that CDK2 degradation is a potentially valuable therapeutic strategy in ovarian and other cancers that overexpress CCNE1.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Chiara Victor
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - John M Hatcher
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|