151
|
Mesquita AR, Wegerich Y, Patchev AV, Oliveira M, Leão P, Sousa N, Almeida OFX. Glucocorticoids and neuro- and behavioural development. Semin Fetal Neonatal Med 2009; 14:130-5. [PMID: 19084485 DOI: 10.1016/j.siny.2008.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epidemiological evidence links exposure to stress hormones during fetal or early postnatal development with lifetime prevalence of cardiac, metabolic, auto-immune, neurological and psychiatric disorders. This has led to the concept of 'developmental programming through stress'. Importantly, these effects (specifically, hypertension, hyperglycaemia and neurodevelopmental and behavioural abnormalities) can be reproduced by exposure to high glucocorticoid levels, indicating a crucial role of glucocorticoids in their causation. However, there can be important differences in outcome, depending on the exact time of exposure, as well as duration and receptor selectivity of the glucocorticoid applied. The mechanisms underlying programming by stress are still unclear but it appears that these environmental perturbations exploit epigenetic modifications of DNA and/or histones to induce stable modifications of gene expression. Programming of neuro- and behavioural development by glucocorticoids and stress are important determinants of lifetime health and should be a consideration when choosing treatments in obstetric and neonatal medicine.
Collapse
Affiliation(s)
- Ana Raquel Mesquita
- Life & Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
152
|
King AP, Liberzon I. Assessing the neuroendocrine stress response in the functional neuroimaging context. Neuroimage 2009; 47:1116-24. [PMID: 19481160 DOI: 10.1016/j.neuroimage.2009.05.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/19/2009] [Accepted: 05/21/2009] [Indexed: 02/03/2023] Open
Abstract
Neural regulation of stress responses, and the feedback of stress hormones to the brain, reflect complex brain-body interactions that may underlie the effects of psychological stress on health. Elucidating the brain circuitry involved in the cortical control of limbic-hypothalamic-pituitary-adrenal axis, and the cortical "targets" of cortisol that in turn modulates brain function, requires careful assessment of glucocorticoid hormones, in the context of the neuroimaging paradigms. Here we discuss approaches for assessment of endocrine function in the context of neuroimaging, including methods of blood and saliva specimen collection, and methods for drug/hormone administration. We also briefly discuss important temporal considerations, including appropriate timing of sample collections for hormones with different time-courses of activation (e.g. ACTH vs. cortisol), the pharmacokinetics of both endogenous hormones and administered agents, and circadian considerations. These are crucial to experimental designs of rhythmic hormonal systems and multiple feedback loops. We briefly address psychological/behavioral 'activation' paradigms used for inducing endogenous LHPA axis responses within or in proximity to scanner, as well as strategies for administration of exogenous hormones or secretagogues. Finally, we discuss some of the analytical issues in terms of hormone responses (e.g. response and area under curve, diurnal variability) and strategies for linking measured levels of peripheral humoral factor to brain activity (e.g. hormone responses as between-subject regressors of BOLD activations, hormone levels as within-subject regressors in analyses of covariance of brain activity over time, etc.).
Collapse
Affiliation(s)
- Anthony P King
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
153
|
Stable behavioral inhibition and glucocorticoid production as predictors of longevity. Physiol Behav 2009; 98:205-14. [PMID: 19477191 DOI: 10.1016/j.physbeh.2009.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 11/21/2022]
Abstract
Several personality/temperament traits have been linked to health outcomes in humans and animals but underlying physiological mechanisms for these differential outcomes are minimally understood. In this paper, we compared the strength of a behavioral trait (behavioral inhibition) and an associated physiological trait (glucocorticoid production) in predicting life span. In addition, we examined the relative stability of both the behavioral and physiological traits within individuals over a significant portion of adulthood, and tested the hypothesis that a stable behavioral trait is linked with a stable physiological bias. In a sample of 60 Sprague-Dawley male rats, we found that stable inhibition/neophobia was a stronger predictor of life span than stably elevated glucocorticoid production. In addition, these predictors appeared to have an additive influence on life span in that males with both risk factors (stable inhibition and consistently high glucocorticoid production) had the shortest life spans of all, suggesting both traits are important predictors of life span. Across a 4-month period in young adulthood, inhibition and glucocorticoid reactivity were relatively stable traits, however these two traits were not highly correlated with one another. Interestingly, baseline glucocorticoid production was a better predictor of life span than reactivity levels. The results indicate that glucocorticoid production in young adulthood is an important predictor of life span, although not as strong a predictor as inhibition, and that other physiological processes may further explain the shortened life span in behaviorally-inhibited individuals.
Collapse
|
154
|
de Kloet ER, Fitzsimons CP, Datson NA, Meijer OC, Vreugdenhil E. Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. Brain Res 2009; 1293:129-41. [PMID: 19332027 DOI: 10.1016/j.brainres.2009.03.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/16/2009] [Indexed: 01/04/2023]
Abstract
BACKGROUND Stress is essential for health, but if coping with stress fails, the action of the stress hormones cortisol and corticosterone (CORT) becomes dysregulated, precipitating a condition favorable for increased susceptibility to psychopathology. We focus on the question how the action of CORT can change from protective to harmful. APPROACH CORT targets the limbic brain, where it affects cognitive processes and emotional arousal. The magnitude and duration of the CORT feedback signal depends on bio-availability of the hormone, the activity of the CORT receptor machinery and the stress-induced drive. If CORT action becomes dysregulated, we postulate that this is linked to compromised receptor regulation in the limbic brain's susceptibility pathway. RESULTS CORT action on gene transcription is mediated by high affinity mineralocorticoid (MR) and 10 fold lower affinity glucocorticoid (GR) receptors that also can mediate fast non-genomic actions. MR and GR operate a feedback loop that involves access and binding to the receptors, activation and shuttling of the CORT receptor complexes, which require interaction with coregulators and transcription factors for transcriptional outcome. CORT modulates the expression of gene transcripts encoding specific chaperones, motor proteins and transcription factors as well as its own receptors. The emerging evidence of microRNAs operating translational control points to further fine-tuning in receptor signaling. CONCLUSION Imbalance in MR:GR-mediated actions caused by receptor variants and epigenetic modulations have been proposed as risk factor in stress-related disease. We here provide key regulatory steps in the activation, transport and regulation of CORT receptors that may sensitize susceptibility pathways underlying psychopathology.
Collapse
Affiliation(s)
- E R de Kloet
- Department of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden University, PO Box 9502, 2300 RA Leiden, the Netherlands.
| | | | | | | | | |
Collapse
|
155
|
Droste SK, de Groote L, Lightman SL, Reul JMHM, Linthorst ACE. The ultradian and circadian rhythms of free corticosterone in the brain are not affected by gender: an in vivo microdialysis study in Wistar rats. J Neuroendocrinol 2009; 21:132-40. [PMID: 19076270 DOI: 10.1111/j.1365-2826.2008.01811.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, we described that free corticosterone levels in the brain of male Wistar rats, as assessed by in vivo microdialysis, show an ultradian rhythm with a pulse frequency of 1.2 pulses/h. To establish whether gender influences brain free corticosterone rhythms, we studied free corticosterone levels in the female Wistar rat under baseline and stressful conditions using microdialysis in the hippocampus. Analysis of the data with the PULSAR algorithm revealed that hippocampal free corticosterone levels show a clear ultradian pattern in female rats with a pulse frequency of 1.16+/-0.05 pulses/h between 09.00 h and 21.00 h. Further analysis showed that the pulse amplitude is significantly higher during the late afternoon/early night (15.00-21.00 h) than during the morning/early afternoon (09.00-15.00 h) phase (0.13+/-0.03 versus 0.07+/-0.01 microg/dl, respectively, P < 0.05). Pulse characteristics were extremely reproducible as demonstrated by the almost identical pulse parameters derived from two consecutive 24-h periods [pulse frequency: 1.13+/-0.09 and 1.19+/-0.08 pulses/h; pulse amplitude: 0.11+/-0.05 and 0.10+/-0.02 microg/dl for day 1 and day 2 (09.00-21.00 h) respectively, P > 0.05]. Both exposure to a novel environment and forced swim stress increased hippocampal free corticosterone levels. However, the stress-induced rise reached higher levels and was more prolonged after forced swimming (area under the curve: 46.84+/-9.25 and 12.08+/-1.69 arbitrary units for forced swimming and novelty stress respectively, P = 0.01). Importantly, the ultradian rhythm was rapidly restored after termination of the stress response. This is the first demonstration that the female rat brain is exposed to free corticosterone levels that follow a circadian as well as an ultradian pattern and show almost identical pulse characteristics as recently reported in male animals. These observations are of significance for further investigations into the dynamics of glucocorticoid action in the brain of both genders.
Collapse
Affiliation(s)
- S K Droste
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
156
|
Vajda EG, López FJ, Rix P, Hill R, Chen Y, Lee KJ, O'Brien Z, Chang WY, Meglasson MD, Lee YH. Pharmacokinetics and pharmacodynamics of LGD-3303 [9-chloro-2-ethyl-1-methyl-3-(2,2,2-trifluoroethyl)-3H-pyrrolo-[3,2-f]quinolin-7(6H)-one], an orally available nonsteroidal-selective androgen receptor modulator. J Pharmacol Exp Ther 2009; 328:663-70. [PMID: 19017848 DOI: 10.1124/jpet.108.146811] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selective androgen receptor modulators (SARMs) are a new class of molecules in development to treat a variety of diseases. SARMs maintain the beneficial effects of androgens, including increased muscle mass and bone density, while having reduced activity on unwanted side effects. The mechanisms responsible for the tissue-selective activity of SARMs are not fully understood, and the pharmacokinetic (PK)/pharmacodynamic (PD) relationships are poorly described. Tissue-specific compound distribution potentially could be a mechanism responsible for apparent tissue selectivity. We examined the PK/PD relationship of a novel SARM, LGD-3303 [9-chloro-2-ethyl-1-methyl-3-(2,2,2-trifluoroethyl)-3H-pyrrolo[3,2-f]quinolin-7(6H)-one], in a castrated rat model of androgen deficiency. LGD-3303 has potent activity on levator ani muscle but is a partial agonist on the preputial gland and ventral prostate. LGD-3303 never stimulated ventral prostate above intact levels despite increasing plasma concentrations of compound. Tissue-selective activity was maintained when LGD-3303 was dosed orally or by continuous infusion, two routes of administration with markedly different time versus exposure profiles. Despite the greater muscle activity relative to prostate activity, local tissue concentrations of LGD-3303 were higher in the prostate than in the levator ani muscle. LGD-3303 has SARM properties that are independent of its pharmacokinetic profile, suggesting that the principle mechanism for tissue-selective activity is the result of altered molecular interactions at the level of the androgen receptor.
Collapse
Affiliation(s)
- Eric G Vajda
- Discovery Research, Ligand Pharmaceuticals, Inc., San Diego, California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Lukkes JL, Mokin MV, Scholl JL, Forster GL. Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm Behav 2009; 55:248-56. [PMID: 19027017 DOI: 10.1016/j.yhbeh.2008.10.014] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
Social isolation of rodents during development is thought to be a relevant model of early-life chronic stress. We investigated the effects of early-life social isolation on later adult fear and anxiety behavior, and on corticosterone stress responses, in male rats. On postnatal day 21, male rats were either housed in isolation or in groups of 3 for a 3 week period, after which, all rats were group-reared for an additional 2 weeks. After the 5-week treatment, adult rats were examined for conditioned fear, open field anxiety-like behavior, social interaction behavior and corticosterone responses to restraint stress. Isolates exhibited increased anxiety-like behaviors in a brightly-lit open field during the first 10 min of the test period compared to group-reared rats. Isolation-reared rats also showed increased fear behavior and reduced social contact in a social interaction test, and a transient increase in fear behavior to a conditioned stimulus that predicted foot-shock. Isolation-reared rats showed similar restraint-induced increases in plasma corticosterone as group-reared controls, but plasma corticosterone levels 2 h after restraint were significantly lower than pre-stress levels in isolates. Overall, this study shows that isolation restricted to an early part of development increases anxiety-like and fear behaviors in adulthood, and also results in depressed levels of plasma corticosterone following restraint stress.
Collapse
Affiliation(s)
- Jodi L Lukkes
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069-2390, USA
| | | | | | | |
Collapse
|
158
|
Abstract
Glucocorticoids, hormones produced by the adrenal gland cortex, perform numerous functions in body homeostasis and the response of the organism to external stressors. One striking feature of their regulation is a diurnal release pattern, with peak levels linked to the start of the activity phase. This release is under control of the circadian clock, an endogenous biological timekeeper that acts to prepare the organism for daily changes in its environment. Circadian control of glucocorticoid production and secretion involves a central pacemaker in the hypothalamus, the suprachiasmatic nucleus, as well as a circadian clock in the adrenal gland itself. Central circadian regulation is mediated via the hypothalamic-pituitary-adrenal axis and the autonomic nervous system, while the adrenal gland clock appears to control sensitivity of the gland to the adrenocorticopic hormone (ACTH). The rhythmically released glucocorticoids in turn might contribute to synchronisation of the cell-autonomous clocks in the body and interact with them to time physiological dynamics in their target tissues around the day.
Collapse
Affiliation(s)
- Thomas Dickmeis
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
159
|
Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci 2008; 31:464-8. [PMID: 18675469 DOI: 10.1016/j.tins.2008.06.006] [Citation(s) in RCA: 1338] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 02/06/2023]
Abstract
Studies over the last 40 years have demonstrated that hyperactivity of the hypothalamic-pituitary-adrenal axis is one of the most consistent biological findings in major depression psychiatry, but the mechanisms underlying this abnormality are still unclear.
Collapse
Affiliation(s)
- Carmine M Pariante
- Institute of Psychiatry, King's College London, Division of Psychological Medicine and Psychiatry, Centre for the Cellular Basis of Behaviour, London, UK
| | | |
Collapse
|
160
|
Affiliation(s)
- E Ronald de Kloet
- Department of Neuropharmacology/Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|