151
|
Hu Y, Liu S, Liu W, Zhang Z, Liu Y, Sun D, Zhang M, Fang J. Bioinformatics analysis of genes related to iron death in diabetic nephropathy through network and pathway levels based approaches. PLoS One 2021; 16:e0259436. [PMID: 34735495 PMCID: PMC8568295 DOI: 10.1371/journal.pone.0259436] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy is one of the common microvascular complications of diabetes. Iron death is a recently reported way of cell death. To explore the effects of iron death on diabetic nephropathy, iron death score of diabetic nephropathy was analyzed based on the network and pathway levels. Furthermore, markers related to iron death were screened. Using RNA-seq data of diabetic nephropathy, samples were clustered uniformly and the disease was classified. Differentially expressed gene analysis was conducted on the typed disease samples, and the WGCNA algorithm was used to obtain key modules. String database was used to perform protein interaction analysis on key module genes for the selection of Hub genes. Moreover, principal component analysis method was applied to get transcription factors and non-coding genes, which interact with the Hub gene. All samples can be divided into two categories and principal component analysis shows that the two categories are significantly different. Hub genes (FPR3, C3AR1, CD14, ITGB2, RAC2 and ITGAM) related to iron death in diabetic nephropathy were obtained through gene expression differential analysis between different subtypes. Non-coding genes that interact with Hub genes, including hsa-miR-572, hsa-miR-29a-3p, hsa-miR-29b-3p, hsa-miR-208a-3p, hsa-miR-153-3p and hsa-miR-29c-3p, may be related to diabetic nephropathy. Transcription factors HIF1α, KLF4, KLF5, RUNX1, SP1, VDR and WT1 may be related to diabetic nephropathy. The above factors and Hub genes are collectively involved in the occurrence and development of diabetic nephropathy, which can be further studied in the future. Moreover, these factors and genes may be potential target for therapeutic drugs.
Collapse
Affiliation(s)
- Yaling Hu
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuang Liu
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenyuan Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziyuan Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuxiang Liu
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dalin Sun
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingyu Zhang
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
152
|
Wang WJ, Jiang X, Gao CC, Chen ZW. Salusin‑β participates in high glucose‑induced HK‑2 cell ferroptosis in a Nrf‑2‑dependent manner. Mol Med Rep 2021; 24:674. [PMID: 34296310 PMCID: PMC8335735 DOI: 10.3892/mmr.2021.12313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is critically involved in the pathophysiology of diabetic nephropathy (DN). As a bioactive peptide, salusin‑β is abundantly expressed in the kidneys. However, it is unclear whether salusin‑β participates in the pathologies of diabetic kidney damage by regulating ferroptosis. The present study found that high glucose (HG) treatment upregulated the protein expressions of salusin‑β in a dose‑ and time‑dependent manner. Genetic knockdown of salusin‑β retarded, whereas overexpression of salusin‑β aggravated, HG‑triggered iron overload, antioxidant capability reduction, massive reactive oxygen species production and lipid peroxidation in HK‑2 cells. Mechanistically, salusin‑β inactivated nuclear factor erythroid‑derived 2‑like 2 (Nrf‑2) signaling, thus contributing to HG‑induced ferroptosis‑related changes in HK‑2 cells. Notably, the protein expression of salusin‑β was upregulated by ferroptosis activators, such as erastin, RSL3, FIN56 and buthionine sulfoximine. Pretreatment with ferrostatin‑1 (a ferroptosis inhibitor) prevented the upregulated protein expression of salusin‑β in HK‑2 cells exposed to HG. Taken together, these results suggested that a positive feedback loop between salusin‑β and ferroptosis primes renal tubular cells for injury in diabetes.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Xia Jiang
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Chang-Chun Gao
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Zhi-Wei Chen
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| |
Collapse
|
153
|
Wang Z, Ran X, Qian S, Hou H, Dong M, Wu S, Ding M, Zhang Y, Zhang X, Zhang M, Chen Q. GPNMB promotes the progression of diffuse large B cell lymphoma via YAP1-mediated activation of the Wnt/β-catenin signaling pathway. Arch Biochem Biophys 2021; 710:108998. [PMID: 34280359 DOI: 10.1016/j.abb.2021.108998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) has been confirmed to be related to the pathogenesis of tumors. However, the potential impact of GPNMB on the progression of diffuse large B-cell lymphoma (DLBCL) is unclear. In this study, the expression levels of GPNMB and Yes-associated protein (YAP) were analyzed using qRT-PCT and Western blot assay. Cell counting kit-8, EdU, and flow cytometry assays were used to detect the proliferation and apoptosis of DLBCL cells. A nude mice xenograft model was established for in vivo research. Results showed that GPNMB and YAP1 were upregulated in DLBCL cell lines. Knockdown of GPNMB inhibited cell proliferation and promoted apoptosis in DLBCL cells. Additionally, the expression levels of YAP1 and the downstream effector of Hippo pathway (c-myc) were markedly decreased when GPNMB was knocked down. Moreover, knockdown of GPNMB inhibited the nuclear translocation of β-catenin protein, which could be abolished by YAP1 overexpression. Simultaneously, the anti-proliferative and pro-apoptotic effects of GPNMB knockdown could be reversed by YAP1 overexpression or LiCl (the activator of Wnt/β-catenin pathway). Furthermore, the mice xenograft model confirmed that inhibition of GPNMB restrained the tumorigenesis of DLBCL in vivo. In conclusion, GPNMB could partly activate the Wnt/β-catenin signaling pathway by targeting YAP1, so as to participate in tumorigenesis of DLBCL.
Collapse
Affiliation(s)
- Zeyuan Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Xianting Ran
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, China
| | - Siyu Qian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Huting Hou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Shaoxuan Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mengjie Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Qingjiang Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
154
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021; 9:701788. [PMID: 34307381 PMCID: PMC8299754 DOI: 10.3389/fcell.2021.701788] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is classified as an iron-dependent form of regulated cell death (RCD) attributed to the accumulation of lipid hydroperoxides and redox imbalance. In recent years, accumulating researches have suggested that ferroptosis may play a vital role in the development of diverse metabolic diseases, for example, diabetes and its complications (e.g., diabetic nephropathy, diabetic cardiomyopathy, diabetic myocardial ischemia/reperfusion injury and atherosclerosis [AS]), metabolic bone disease and adrenal injury. However, the specific physiopathological mechanism and precise therapeutic effect is still not clear. In this review, we summarized recent advances about the development of ferroptosis, focused on its potential character as the therapeutic target in metabolic diseases, and put forward our insights on this topic, largely to offer some help to forecast further directions.
Collapse
Affiliation(s)
- Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
155
|
The Cross-Link between Ferroptosis and Kidney Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6654887. [PMID: 34007403 PMCID: PMC8110383 DOI: 10.1155/2021/6654887] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Acute and chronic kidney injuries result from structural dysfunction and metabolic disorders of the kidney in various etiologies, which significantly affect human survival and social wealth. Nephropathies are often accompanied by various forms of cell death and complex microenvironments. In recent decades, the study of kidney diseases and the traditional forms of cell death have improved. Nontraditional forms of cell death, represented by ferroptosis and necroptosis, have been discovered in the field of kidney diseases, which have reshuffled the role of traditional cell death in nephropathies. Although interactions between ferroptosis and acute kidney injury (AKI) have been continuously explored, studies on ferroptosis and chronic kidney disease (CKD) remain limited. Here, we have reviewed the therapeutic significance of ferroptosis in AKI and anticipated the curative potential of ferroptosis for CKD in the hope of providing insights into ferroptosis and CKD.
Collapse
|
156
|
Zhang Q, Hu Y, Hu JE, Ding Y, Shen Y, Xu H, Chen H, Wu N. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. Life Sci 2021; 278:119529. [PMID: 33894270 DOI: 10.1016/j.lfs.2021.119529] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023]
Abstract
Glomerular podocyte damage is considered to be one of the main mechanisms leading to Diabetic nephropathy (DN). However, the relevant mechanism of podocyte injury is not yet clear. This study aimed to investigate the effect of peroxiredoxin 6 (Prdx6) on the pathogenesis of podocyte injury induced by high glucose (HG). The mouse glomerular podocyte MPC5 was stimulated with 30 nM glucose, and the Prdx6 overexpression vector or specificity protein 1 (Sp1) overexpression vector was transfected into MPC5 cells before the high glucose stimulation. As results, HG treatment significantly reduced the expression of Prdx6 and Sp1 in MPC5 cells. Prdx6 overexpression increased cell viability, while inhibited podocyte death, inflammation and podocyte destruction in HG-induced MPC5 cells. Prdx6 overexpression inhibited HG-induced ROS and MDA production, while restored SOD and GSH activity in MPC5 cells. Prdx6 overexpression also eliminated ferroptosis caused by HG, which was reflected in the suppression of iron accumulation and the increase in SLC7A11 and GPX4 expression. The improvement effect of Prdx6 on HG-induced podocyte damage could be eliminated by erastin. Moreover, Sp1 could bind to the three Sp1 response elements in the Prdx6 promoter, thereby directly regulating the transcriptional activation of Prdx6 in podocytes. Silencing Sp1 could eliminate the effect of Prdx6 on HG-induced podocyte damage. Further, Prdx6 overexpression attenuated renal injuries in streptozotocin-induced DN mice. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis, which may provide new insights for the study of the mechanism of DN.
Collapse
Affiliation(s)
- Qianjin Zhang
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China.
| | - Yichuan Hu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Jin-E Hu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Ying Ding
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Yanqiu Shen
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Hong Xu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Huiqin Chen
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Ning Wu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| |
Collapse
|
157
|
Hong YA, Park CW. Catalytic Antioxidants in the Kidney. Antioxidants (Basel) 2021; 10:antiox10010130. [PMID: 33477607 PMCID: PMC7831323 DOI: 10.3390/antiox10010130] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species and reactive nitrogen species are highly implicated in kidney injuries that include acute kidney injury, chronic kidney disease, hypertensive nephropathy, and diabetic nephropathy. Therefore, antioxidant agents are promising therapeutic strategies for kidney diseases. Catalytic antioxidants are defined as small molecular mimics of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and some of them function as potent detoxifiers of lipid peroxides and peroxynitrite. Several catalytic antioxidants have been demonstrated to be effective in a variety of in vitro and in vivo disease models that are associated with oxidative stress, including kidney diseases. This review summarizes the evidence for the role of antioxidant enzymes in kidney diseases, the classifications of catalytic antioxidants, and their current applications to kidney diseases.
Collapse
Affiliation(s)
- Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6038
| |
Collapse
|
158
|
Feng X, Wang S, Sun Z, Dong H, Yu H, Huang M, Gao X. Ferroptosis Enhanced Diabetic Renal Tubular Injury via HIF-1α/HO-1 Pathway in db/db Mice. Front Endocrinol (Lausanne) 2021; 12:626390. [PMID: 33679620 PMCID: PMC7930496 DOI: 10.3389/fendo.2021.626390] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ferroptosis is a recently identified iron-dependent form of cell death as a result of increased reactive oxygen species (ROS) and lipid peroxidation. In this study, we investigated whether ferroptosis aggravated diabetic nephropathy (DN) and damaged renal tubules through hypoxia-inducible factor (HIF)-1α/heme oxygenase (HO)-1 pathway in db/db mice. METHODS Db/db mice were administered with or without ferroptosis inhibitor Ferrostatin-1 treatment, and were compared with db/m mice. RESULTS Db/db mice showed higher urinary albumin-to-creatinine ratio (UACR) than db/m mice, and Ferrostatin-1 reduced UACR in db/db mice. Db/db mice presented higher kidney injury molecular-1 and neutrophil gelatinase-associated lipocalin in kidneys and urine compared to db/m mice, with renal tubular basement membranes folding and faulting. However, these changes were ameliorated in db/db mice after Ferrostatin-1 treatment. Fibrosis area and collagen I were promoted in db/db mouse kidneys as compared to db/m mouse kidneys, which was alleviated by Ferrostatin-1 in db/db mouse kidneys. HIF-1α and HO-1 were increased in db/db mouse kidneys compared with db/m mouse kidneys, and Ferrostatin-1 decreased HIF-1α and HO-1 in db/db mouse kidneys. Iron content was elevated in db/db mouse renal tubules compared with db/m mouse renal tubules, and was relieved in renal tubules of db/db mice after Ferrostatin-1 treatment. Ferritin was increased in db/db mouse kidneys compared with db/m mouse kidneys, but Ferrostatin-1 reduced ferritin in kidneys of db/db mice. Diabetes accelerated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived ROS formation in mouse kidneys, but Ferrostatin-1 prevented ROS formation derived by NADPH oxidases in db/db mouse kidneys. The increased malondialdehyde (MDA) and the decreased superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GSH-Px) were detected in db/db mouse kidneys compared to db/m mouse kidneys, whereas Ferrostatin-1 suppressed MDA and elevated SOD, CAT, and GSH-Px in db/db mouse kidneys. Glutathione peroxidase 4 was lower in db/db mouse kidneys than db/m mouse kidneys, and was exacerbated by Ferrostatin-1 in kidneys of db/db mice. CONCLUSIONS Our study indicated that ferroptosis might enhance DN and damage renal tubules in diabetic models through HIF-1α/HO-1 pathway.
Collapse
Affiliation(s)
- Xiaomeng Feng
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiaomeng Feng, ; Xia Gao,
| | - Shuo Wang
- Department of Infectious Diseases, Beijing Traditional Chinese Medical Hospital, Capital Medical University, Beijing, China
| | - Zhencheng Sun
- Department of Osteology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hengbei Dong
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Haitian Yu
- Education Division, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Mengxiu Huang
- Department of Hepatobiliary, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xia Gao
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiaomeng Feng, ; Xia Gao,
| |
Collapse
|