151
|
Luxen S, Noack D, Frausto M, Davanture S, Torbett BE, Knaus UG. Heterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells. J Cell Sci 2009; 122:1238-47. [PMID: 19339556 DOI: 10.1242/jcs.044123] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Duox NADPH oxidases generate hydrogen peroxide at the air-liquid interface of the respiratory tract and at apical membranes of thyroid follicular cells. Inactivating mutations of Duox2 have been linked to congenital hypothyroidism, and epigenetic silencing of Duox is frequently observed in lung cancer. To study Duox regulation by maturation factors in detail, its association with these factors, differential use of subunits and localization was analyzed in a lung cancer cell line and undifferentiated or polarized lung epithelial cells. We show here that Duox proteins form functional heterodimers with their respective DuoxA subunits, in close analogy to the phagocyte NADPH oxidase. Characterization of novel DuoxA1 isoforms and mispaired Duox-DuoxA complexes revealed that heterodimerization is a prerequisite for reactive oxygen species production. Functional Duox1 and Duox2 localize to the leading edge of migrating cells, augmenting motility and wound healing. DuoxA subunits are responsible for targeting functional oxidases to distinct cellular compartments in lung epithelial cells, including Duox2 expression in ciliated cells in an ex vivo differentiated lung epithelium. As these locations probably define signaling specificity of Duox1 versus Duox2, these findings will facilitate monitoring Duox isoform expression in lung disease, a first step for early screening procedures and rational drug development.
Collapse
Affiliation(s)
- Sylvia Luxen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
152
|
Fisher AB. Redox signaling across cell membranes. Antioxid Redox Signal 2009; 11:1349-56. [PMID: 19061438 PMCID: PMC2842114 DOI: 10.1089/ars.2008.2378] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/01/2008] [Accepted: 12/06/2008] [Indexed: 12/22/2022]
Abstract
Generation of reactive oxygen species (ROS) by plasma membrane-localized NADPH oxidase (Nox 2) is a major mechanism of cell signaling associated with activation of the enzyme by a variety of agonists. With activation, the integral membrane flavocytochrome of Nox 2 transfers an electron from intracellular NADPH to extracellular O(2), generating superoxide anion (O(2)(*-)). The latter dismutes to H(2)O(2) which can diffuse through aquaporin channels in the plasma membrane to elicit an intracellular signaling response. O(2)(*-) also can initiate intracellular signaling by penetration of the cell membrane through anion channels (Cl(-) channel-3, ClC-3). Endosomes containing Nox2 and ClC-3 (called signaling endosomes) are composed of internalized plasma membrane and generate O(2)(*-) in the endosomal lumen to initiate signaling at intracellular sites. Thus, cellular signaling by Nox2 is dependent on the transmembrane flux of ROS. The role of this pathway has only recently been described and will require additional investigation to appreciate its physiological significance fully.
Collapse
Affiliation(s)
- Aron B Fisher
- University of Pennsylvania, Institute for Environmental Medicine, 1 John Morgan Building, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
153
|
Auten RL, Mason SN, Auten KM, Brahmajothi M. Hyperoxia impairs postnatal alveolar epithelial development via NADPH oxidase in newborn mice. Am J Physiol Lung Cell Mol Physiol 2009; 297:L134-42. [PMID: 19411313 DOI: 10.1152/ajplung.00112.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperoxia disrupts postnatal lung development in part through inducing inflammation. To determine the contribution of leukocyte-derived reactive oxygen species, we exposed newborn wild-type and NADPH oxidase p47(phox) subunit null (p47(phox-/-)) mice to air or acute hyperoxia (95% O(2)) for up to 11 days. Hyperoxia-induced pulmonary neutrophil influx was similar in wild-type and p47(-/-) mice at postnatal days (P) 7 and 11. Macrophages were decreased in wild-type hyperoxia-exposed mice compared with p47(phox-/-) mice at P11. Hyperoxia impaired type II alveolar epithelial cell and bronchiolar epithelial cell proliferation, but depression of type II cell proliferation was significantly less in p47(-/-) mice at P3 and P7, when inflammation was minimal. We found reciprocal results for the expression of the cell cycle inhibitor p21(cip/waf) in type II cells, which was induced in 95% O(2)-exposed wild-type mice, but significantly less in p47(phox-/-) littermates at P7. Despite partial preservation of type II cell proliferation, deletion of p47(phox) did not prevent the major adverse effects of hyperoxia on alveolar development estimated by morphometry at P11, but hyperoxia impairment of elastin deposition at alveolar septal crests was significantly worse in wild-type vs. p47(phox-/-) mice at P11. Since we found that p47(phox) is expressed in a subset of alveolar epithelial cells, its deletion may protect postnatal type II alveolar epithelial proliferation from hyperoxia through effects on epithelial as well as phagocyte-generated superoxide.
Collapse
Affiliation(s)
- Richard L Auten
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Neonatal-Perinatal Research Institute, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
154
|
Boots AW, Hristova M, Kasahara DI, Haenen GRMM, Bast A, van der Vliet A. ATP-mediated activation of the NADPH oxidase DUOX1 mediates airway epithelial responses to bacterial stimuli. J Biol Chem 2009; 284:17858-67. [PMID: 19386603 DOI: 10.1074/jbc.m809761200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the NADPH oxidase homolog dual oxidase 1 (DUOX1) within the airway epithelium represents a key mechanism of innate airway host defense, through enhanced production of H2O2, which mediates cellular signaling pathways that regulate the production of various inflammatory mediators. Production of the CXC chemokine interleukin (IL)-8/CXCL8 forms a common epithelial response to many diverse stimuli, including bacterial and viral triggers, environmental oxidants, and other biological mediators, suggesting the potential involvement of a common signaling pathway that may involve DUOX1-dependent H2O2 production. Following previous reports showing that DUOX1 is activated by extracellular ATP and purinergic receptor stimulation, this study demonstrates that airway epithelial IL-8 production in response to several bacterial stimuli involves ATP release and DUOX1 activation. ATP-mediated DUOX1 activation resulted in the activation of ERK1/2 and NF-kappaB pathways, which was associated with epidermal growth factor receptor (EGFR) ligand shedding by ADAM17 (a disintegrin and metalloproteinase-17). Although ATP-mediated ADAM17 activation and IL-8 release were not prevented by extracellular H2O2 scavenging by catalase, these responses were attenuated by intracellular scavengers of H2O2 or related oxidants, suggesting an intracellular redox signaling mechanism. Both ADAM17 activation and IL-8 release were suppressed by inhibitors of EGFR/ERK1/2 signaling, which can regulate ADAM17 activity by serine/threonine phosphorylation. Collectively, our results indicate that ATP-mediated DUOX1 activation represents a common response mechanism to several environmental stimuli, involving H2O2-dependent EGFR/ERK activation, ADAM17 activation, and EGFR ligand shedding, leading to amplified epithelial EGFR activation and IL-8 production.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
155
|
Janssen-Heininger YMW, van der Vliet A. Oxidants Are Not All Created Equal. Am J Respir Crit Care Med 2009; 179:627-8. [DOI: 10.1164/rccm.200902-0224ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
156
|
Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal 2009; 11:841-60. [PMID: 18828698 PMCID: PMC2850292 DOI: 10.1089/ars.2008.2231] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47(phox), p67(phox), and Rac1) and membrane-associated components (Noxes and p22(phox)). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase-derived ROS in the pathobiology of lung diseases.
Collapse
|
157
|
Cohen JC, Killeen E, Chander A, Takemaru KI, Larson JE, Treharne KJ, Mehta A. Small interfering peptide (siP) for in vivo examination of the developing lung interactonome. Dev Dyn 2009; 238:386-93. [PMID: 19161244 PMCID: PMC2808203 DOI: 10.1002/dvdy.21834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To understand the role of reactive oxygen species in mechanosensory control of lung development a new approach to interfere with protein-protein interactions by means of a short interacting peptide was developed. This technology was used in the developing rodent lung to examine the role of NADPH oxidase (NOX), casein kinase 2 (CK2), and the cystic fibrosis transmembrane conductance regulator (CFTR) in stretch-induced differentiation. Interactions between these molecules was targeted in an in utero system with recombinant adeno-associated virus (rAAV) containing inserted DNA sequences that express a control peptide or small interfering peptides (siPs) specific for subunit interaction or phosphorylation predicted to be necessary for multimeric enzyme formation. In all cases only siPs with sequences necessary for a predicted normal function were found to interfere with assembly of the multimeric enzyme. A noninterfering control siP to nonessential regions or reporter genes alone had no effect. Physiologically, it was shown that siPs that interfered with the NOX-CFTR-CK2 complex that we call an "interactonome" affected markers of stretch-induced lung organogenesis including Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- J Craig Cohen
- The Brady Laboratory, Section of Neonatology, Department of Pediatrics, Stony Brook University, School of Medicine, Stony Brook, New York 11794, USA.
| | | | | | | | | | | | | |
Collapse
|
158
|
Westover A, Harrison CB, Selemidis S. Nox2-containing NADPH oxidase and xanthine oxidase are sources of superoxide in mouse trachea. Clin Exp Pharmacol Physiol 2008; 36:331-3. [PMID: 19076165 DOI: 10.1111/j.1440-1681.2008.05126.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Superoxide anion plays an important role in host defence against invading pathogens and in the inflammation that arises in lungs. The aim of the present study was to elucidate whether the two key candidate superoxide-producing enzymes in mammalian cells, namely Nox2-containing NADPH oxidase and xanthine oxidase, are responsible for superoxide production in mouse trachea. 2. Superoxide production by isolated trachea, as measured by L-012-dependent chemiluminescence, was markedly reduced by superoxide dismutase (300 U/mL) and the xanthine oxidase inhibitor allopurinol (100 micromol/L). Tracheas from Nox2(-/-) mice had significantly lower levels (~60%) of superoxide than control mice. 3. These novel findings suggest that superoxide production by mouse trachea is attributed to both Nox2-containing NADPH oxidase and xanthine oxidase.
Collapse
Affiliation(s)
- Alana Westover
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
159
|
Amatore C, Arbault S, Erard M. Triangulation Mapping of Oxidative Bursts Released by Single Fibroblasts by Amperometry at Microelectrodes. Anal Chem 2008; 80:9635-41. [DOI: 10.1021/ac801269e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Christian Amatore
- Laboratoire Pasteur, Ecole Normale Supérieure, CNRS, UPMC Université Paris 06, Département de Chimie, 24 Rue Lhomond, 75005, Paris, France
| | - Stéphane Arbault
- Laboratoire Pasteur, Ecole Normale Supérieure, CNRS, UPMC Université Paris 06, Département de Chimie, 24 Rue Lhomond, 75005, Paris, France
| | - Marie Erard
- Laboratoire Pasteur, Ecole Normale Supérieure, CNRS, UPMC Université Paris 06, Département de Chimie, 24 Rue Lhomond, 75005, Paris, France
| |
Collapse
|
160
|
Bindoli A, Fukuto JM, Forman HJ. Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid Redox Signal 2008; 10:1549-64. [PMID: 18479206 PMCID: PMC2693905 DOI: 10.1089/ars.2008.2063] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The oxidation chemistry of thiols and disulfides of biologic relevance is described. The review focuses on the interaction and kinetics of hydrogen peroxide with low-molecular-weight thiols and protein thiols and, in particular, on sulfenic acid groups, which are recognized as key intermediates in several thiol oxidation processes. In particular, sulfenic and selenenic acids are formed during the catalytic cycle of peroxiredoxins and glutathione peroxidases, respectively. In turn, these enzymes are in close redox communication with the thioredoxin and glutathione systems, which are the major controllers of the thiol redox state. Oxidants formed in the cell originate from several different sources, but the major producers are NADPH oxidases and mitochondria. However, a different role of the oxygen species produced by these sources is apparent as oxidants derived from NADPH oxidase are involved mainly in signaling processes, whereas those produced by mitochondria induce cell death in pathways including also the thioredoxin system, presently considered an important target for cancer chemotherapy.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neurosciences (CNR) c/o Department of Biological Chemistry, University of Padova (Italy).
| | | | | |
Collapse
|
161
|
Schäppi MG, Jaquet V, Belli DC, Krause KH. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol 2008; 30:255-71. [PMID: 18509648 DOI: 10.1007/s00281-008-0119-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency caused by the lack of the superoxide-producing phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. However, CGD patients not only suffer from recurrent infections, but also present with inflammatory, non-infectious conditions. Among the latter, granulomas figure prominently, which gave the name to the disease, and colitis, which is frequent and leads to a substantial morbidity. In this paper, we systematically review the inflammatory lesions in different organs of CGD patients and compare them to observations in CGD mouse models. In addition to the more classical inflammatory lesions, CGD patients and their relatives have increased frequency of autoimmune diseases, and CGD mice are arthritis-prone. Possible mechanisms involved in CGD hyperinflammation include decreased degradation of phagocytosed material, redox-dependent termination of proinflammatory mediators and/or signaling, as well as redox-dependent cross-talk between phagocytes and lymphocytes (e.g. defective tryptophan catabolism). As a conclusion from this review, we propose the existence of ROS high and ROS low inflammatory responses, which are triggered as a function of the level of reactive oxygen species and have specific characteristics in terms of physiology and pathophysiology.
Collapse
Affiliation(s)
- Michela G Schäppi
- Gastroenterology and Hepatology Unit, Department of Paediatrics, University Hospitals of Geneva, Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
162
|
Lambeth JD, Krause KH, Clark RA. NOX enzymes as novel targets for drug development. Semin Immunopathol 2008; 30:339-63. [PMID: 18509646 DOI: 10.1007/s00281-008-0123-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/25/2008] [Indexed: 02/07/2023]
Abstract
The members of the NOX/DUOX family of NADPH oxidases mediate such physiologic functions as host defense, cell signaling, and thyroid hormone biosynthesis through the generation of reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide. Moreover, ROS are involved in a broad range of fundamental biochemical and cellular processes, and data accumulated in recent years indicate that the NOX enzymes comprise one of the most important biological sources of ROS. Given the high biochemical reactivity of ROS, it is not surprising that they have been implicated in a wide variety of pathologies and diseases. Prominent among the settings that feature ROS-mediated tissue injury are disorders associated with inflammation, aging, and progressive degenerative changes in cells and organ systems, and it appears that essentially no organ system is exempt. Among the disorders currently believed to be mediated at least in part by NOX-derived ROS are hypertension, aortic aneurysm, myocardial infarction (and other ischemia-reperfusion disorders), pulmonary fibrosis and hypertension, amyotropic lateral sclerosis, Alzheimer's disease, Parkinson's disease, ischemic stroke, diabetic nephropathy, and renal cell carcinoma. Several small-molecule and peptide inhibitors of the NOX enzymes have been useful in experimental studies, but issues of specificity, potency, and toxicity militate against any of the existing published compounds as candidates for drug development. Given the broad array of disease targets documented in recent work, the time is here for vigorous efforts to develop clinically useful inhibitors of the NOX enzymes. As most (though not all) NOX-related diseases appear to be mediated by a single member of the NOX family, agents with isoform specificity will be preferred, although broadly active NOX inhibitors may prove to be useful in some settings.
Collapse
|
163
|
Nauseef WM. Nox enzymes in immune cells. Semin Immunopathol 2008; 30:195-208. [DOI: 10.1007/s00281-008-0117-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 04/02/2008] [Indexed: 01/08/2023]
|