151
|
|
152
|
Abstract
Introduction Basal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options. Therefore, the discovery of alternative targets to restrain its metastatic potential is urgently needed. In this study, we aimed to identify novel genes that drive metastasis of BLBC and to elucidate the underlying mechanisms of action. Methods An unbiased approach using gene expression profiling of a BLBC progression model and in silico leveraging of pre-existing tumor transcriptomes were used to uncover metastasis-promoting genes. Lentiviral-mediated knockdown of interleukin-13 receptor alpha 2 (IL13Ralpha2) coupled with whole-body in vivo bioluminescence imaging was performed to assess its role in regulating breast cancer tumor growth and lung metastasis. Gene expression microarray analysis was followed by in vitro validation and cell migration assays to elucidate the downstream molecular pathways involved in this process. Results We found that overexpression of the decoy receptor IL13Ralpha2 is significantly enriched in basal compared with luminal primary breast tumors as well as in a subset of metastatic basal-B breast cancer cells. Importantly, breast cancer patients with high-grade tumors and increased IL13Ralpha2 levels had significantly worse prognosis for metastasis-free survival compared with patients with low expression. Depletion of IL13Ralpha2 in metastatic breast cancer cells modestly delayed primary tumor growth but dramatically suppressed lung metastasis in vivo. Furthermore, IL13Ralpha2 silencing was associated with enhanced IL-13-mediated phosphorylation of signal transducer and activator of transcription 6 (STAT6) and impaired migratory ability of metastatic breast cancer cells. Interestingly, genome-wide transcriptional analysis revealed that IL13Ralpha2 knockdown and IL-13 treatment cooperatively upregulated the metastasis suppressor tumor protein 63 (TP63) in a STAT6-dependent manner. These observations are consistent with increased metastasis-free survival of breast cancer patients with high levels of TP63 and STAT6 expression and suggest that the STAT6-TP63 pathway could be involved in impairing metastatic dissemination of breast cancer cells to the lungs. Conclusion Our findings indicate that IL13Ralpha2 could be used as a promising biomarker to predict patient outcome and provide a rationale for assessing the efficacy of anti-IL13Ralpha2 therapies in a subset of highly aggressive basal-like breast tumors as a strategy to prevent metastatic disease. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0607-y) contains supplementary material, which is available to authorized users.
Collapse
|
153
|
Abrial C, Grassin-Delyle S, Salvator H, Brollo M, Naline E, Devillier P. 15-Lipoxygenases regulate the production of chemokines in human lung macrophages. Br J Pharmacol 2015; 172:4319-30. [PMID: 26040494 DOI: 10.1111/bph.13210] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 04/01/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE 15-Lipoxygenase (15-LOX) activity is associated with inflammation and immune regulation. The objectives of the present study were to investigate the expression of 15-LOX-1 and 15-LOX-2 and evaluate the enzymes' roles in the polarization of human lung macrophages (LMs) in response to LPS and Th2 cytokines (IL-4/-13). EXPERIMENTAL APPROACH LMs were isolated from patients undergoing surgery for carcinoma. The cells were cultured with a 15-LOX inhibitor (PD146176 or ML351), a COX inhibitor (indomethacin), a 5-LOX inhibitor (MK886) or vehicle and then stimulated with LPS (10 ng · mL(-1)), IL-4 (10 ng · mL(-1)) or IL-13 (50 ng · mL(-1)) for 24 h. Levels of ALOX15 (15-LOX-1) and ALOX15B (15-LOX-2) transcripts were determined by real-time quantitative PCR. Immunoassays were used to measure levels of LPS-induced cytokines (TNF-α, CCL2, CCL3, CCL4, CXCL1, CXCL8 and CXCL10) and Th2 cytokine-induced chemokines (CCL13, CCL18 and CCL22) in the culture supernatant. KEY RESULTS Stimulation of LMs with LPS was associated with increased expression of ALOX15B, whereas stimulation with IL-4/IL-13 induced the expression of ALOX15. PD146176 and ML351 (10 μM) reduced the release of the chemokines induced by LPS and Th2 cytokines. The effects of these 15-LOX inhibitors were maintained in the presence of indomethacin and MK886. Furthermore, indomethacin revealed the inhibitory effect of PD146176 on TNF-α release. CONCLUSIONS AND IMPLICATIONS Inhibition of the 15-LOX pathways is involved in the down-regulation of the in vitro production of chemokines in LMs. Our results suggest that the 15-LOX pathways have a role in the pathogenesis of inflammatory lung disorders and may thus constitute a potential drug target.
Collapse
Affiliation(s)
- C Abrial
- Laboratoire de Pharmacologie UPRES EA220, Hôpital Foch, Suresnes, France.,UFR Sciences de la santé, Université Versailles Saint Quentin, Saint Quentin en Yvelines, France
| | - S Grassin-Delyle
- Laboratoire de Pharmacologie UPRES EA220, Hôpital Foch, Suresnes, France.,UFR Sciences de la santé, Université Versailles Saint Quentin, Saint Quentin en Yvelines, France
| | - H Salvator
- Laboratoire de Pharmacologie UPRES EA220, Hôpital Foch, Suresnes, France.,UFR Sciences de la santé, Université Versailles Saint Quentin, Saint Quentin en Yvelines, France
| | - M Brollo
- Laboratoire de Pharmacologie UPRES EA220, Hôpital Foch, Suresnes, France
| | - E Naline
- Laboratoire de Pharmacologie UPRES EA220, Hôpital Foch, Suresnes, France.,UFR Sciences de la santé, Université Versailles Saint Quentin, Saint Quentin en Yvelines, France
| | - P Devillier
- Laboratoire de Pharmacologie UPRES EA220, Hôpital Foch, Suresnes, France.,UFR Sciences de la santé, Université Versailles Saint Quentin, Saint Quentin en Yvelines, France
| |
Collapse
|
154
|
IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015; 75:68-78. [PMID: 26070934 DOI: 10.1016/j.cyto.2015.05.014] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/15/2015] [Indexed: 12/12/2022]
Abstract
Aberrant production of the prototypical type 2 cytokines, interleukin (IL)-4 and IL-13 has long been associated with the pathogenesis of allergic disorders. Despite tremendous scientific inquiry, the similarities in their structure, and receptor usage have made it difficult to ascertain the distinct role that these two look-alike cytokines play in the onset and perpetuation of allergic inflammation. However, recent discoveries of differences in receptor distribution, utilization/assembly and affinity between IL-4 and IL-13, along with the discovery of unique innate lymphoid 2 cells (ILC2) which preferentially produce IL-13, not IL-4, are beginning to shed light on these mysteries. The purpose of this chapter is to review our current understanding of the distinct roles that IL-4 and IL-13 play in allergic inflammatory states and the utility of their modulation as potential therapeutic strategies for the treatment of allergic disorders.
Collapse
|
155
|
Borriello F, Longo M, Spinelli R, Pecoraro A, Granata F, Staiano RI, Loffredo S, Spadaro G, Beguinot F, Schroeder J, Marone G. IL-3 synergises with basophil-derived IL-4 and IL-13 to promote the alternative activation of human monocytes. Eur J Immunol 2015; 45:2042-51. [PMID: 25824485 DOI: 10.1002/eji.201445303] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 12/18/2022]
Abstract
Basophil-derived IL-4 is involved in the alternative activation of mouse monocytes, as recently shown in vivo. Whether this applies to human basophils and monocytes has not been established yet. Here, we sought to characterise the interaction between basophils and monocytes and identify the molecular determinants. A basophil-monocyte co-culture model revealed that IL-3 and basophil-derived IL-4 and IL-13 induced monocyte production of CCL17, a marker of alternative activation. Critically, IL-3 and IL-4 acted directly on monocytes to induce CCL17 production through histone H3 acetylation, but did not increase the recruitment of STAT5 or STAT6. Although freshly isolated monocytes did not express the IL-3 receptor α chain (CD123), and did not respond to IL-3 (as assessed by STAT5 phosphorylation), the overnight incubation with IL-4 (especially if associated with IL-3) upregulated CD123 expression. IL-3-activated JAK2-STAT5 pathway inhibitors reduced the CCL17 production in response to IL-3 and IL-4, but not to IL-4 alone. Interestingly, monocytes isolated from allergen-sensitised asthmatic patients exhibited a higher expression of CD123. Taken together, our data show that the JAK2-STAT5 pathway modulates both basophil and monocyte effector responses. The coordinated activation of STAT5 and STAT6 may have a major impact on monocyte alternative activation in vitro and in vivo.
Collapse
Affiliation(s)
- Francesco Borriello
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Michele Longo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Rosa Spinelli
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Rosaria Ilaria Staiano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Baltimore, USA
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
156
|
Huang XL, Wang YJ, Yan JW, Wan YN, Chen B, Li BZ, Yang GJ, Wang J. Role of anti-inflammatory cytokines IL-4 and IL-13 in systemic sclerosis. Inflamm Res 2015; 64:151-9. [PMID: 25725697 DOI: 10.1007/s00011-015-0806-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The aim of this paper is to review the anti-inflammatory cytokines IL-4 and IL-13 and their receptor signals; we discuss new insight into their possible roles in systemic sclerosis (SSc) and their overlapping function in SSc. INTRODUCTION SSc is a connective tissue disease characterized by fibrosis. The exact etiology of SSc is unknown, and no therapy has been proved effective in modifying its course. Recently the roles of IL-4 and IL-13 in the development of SSc have been extensively considered. The possible roles of IL-4 and IL-13, especially their overlapping function, in SSc are not well documented. METHODS A literature survey was performed using a PubMed database search to gather complete information regarding IL-4 and IL-13 and their role in inflammation. RESULTS AND CONCLUSIONS The participation of complex pathways of IL-4 and IL-13 in the process of inflammation and fibrosis action in SSc is still not very clear, and some pathogenesis of regulation found in vitro needs to be further proved. There is still more work which could be done to achieve useful developments with therapeutic benefit in SSc.
Collapse
Affiliation(s)
- Xiao-Lei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, No. 81, Meishan Road, 230032, Hefei, Anhui, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Transgenic increase in n-3/n-6 fatty acid ratio protects against cognitive deficits induced by an immune challenge through decrease of neuroinflammation. Neuropsychopharmacology 2015; 40:525-36. [PMID: 25228141 PMCID: PMC4289942 DOI: 10.1038/npp.2014.196] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 12/19/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) display immunomodulatory properties in the brain, n-3 PUFAs being able to reduce inflammation whereas n-6 PUFAs are more pro-inflammatory. It has been extensively demonstrated that exposure to a peripheral immune challenge leads to the production and release of inflammatory mediators in the brain in association with cognitive deficits. The question arises whether n-3 PUFA supplementation could downregulate the brain inflammatory response and subsequent cognitive alterations. In this study, we used a genetically modified mouse line carrying the fat-1 gene from the roundworm Caenorhabditis elegans, encoding an n-3 PUFA desaturase that catalyzes conversion of n-6 into n-3 PUFA. Consequently, these mice display endogenously elevated n-3 PUFA tissue contents. Fat-1 mice or wild-type (WT) littermates were injected peripherally with lipopolysaccharide (LPS), a bacterial endotoxin, to induce an inflammatory episode. Our results showed that LPS altered differently the phenotype of microglia and the expression of cytokines and chemokines in Fat-1 and WT mice. In Fat-1 mice, pro-inflammatory factors synthesis was lowered compared with WT mice, whereas anti-inflammatory mechanisms were favored 24 h after LPS treatment. Moreover, LPS injection impaired spatial memory in WT mice, whereas interestingly, the Fat-1 mice showed normal cognitive performances. All together, these data suggest that the central n-3 PUFA increase observed in Fat-1 mice modulated the brain innate immune system activity, leading to the protection of animals against LPS-induced pro-inflammatory cytokine production and subsequent spatial memory alteration.
Collapse
|
158
|
O'Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, Gannon JB, Boyer LA, Lee RT. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res 2014; 116:804-15. [PMID: 25477501 DOI: 10.1161/circresaha.116.304269] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. OBJECTIVE The objectives of our study were to determine whether myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. METHODS AND RESULTS We derived a core transcriptional signature of injury-induced cardiac myocyte (CM) regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo CM differentiation, in vitro CM explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of CM differentiation processes, including reactivation of latent developmental programs similar to those observed during destabilization of a mature CM phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13, which induced CM cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of interleukin 13 signaling in CMs. These downstream signaling molecules are also modulated in the regenerating mouse heart. CONCLUSIONS Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration.
Collapse
Affiliation(s)
- Caitlin C O'Meara
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Joseph A Wamstad
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Rachel A Gladstone
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Gregory M Fomovsky
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Vincent L Butty
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Avanti Shrikumar
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Joseph B Gannon
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Laurie A Boyer
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.).
| | - Richard T Lee
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.).
| |
Collapse
|
159
|
Partial suppression of M1 microglia by Janus kinase 2 inhibitor does not protect against neurodegeneration in animal models of amyotrophic lateral sclerosis. J Neuroinflammation 2014; 11:179. [PMID: 25326688 PMCID: PMC4213500 DOI: 10.1186/s12974-014-0179-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Background Accumulating evidence has shown that the inflammatory process participates in the pathogenesis of amyotrophic lateral sclerosis (ALS), suggesting a therapeutic potential of anti-inflammatory agents. Janus kinase 2 (JAK2), one of the key molecules in inflammation, transduces signals downstream of various inflammatory cytokines, and some Janus kinase inhibitors have already been clinically applied to the treatment of inflammatory diseases. However, the efficacy of JAK2 inhibitors in treatment of ALS remains to be demonstrated. In this study, we examined the role of JAK2 in ALS by administering a selective JAK2 inhibitor, R723, to an animal model of ALS (mSOD1G93A mice). Findings Orally administered R723 had sufficient access to spinal cord tissue of mSOD1G93A mice and significantly reduced the number of Ly6c positive blood monocytes, as well as the expression levels of IFN-γ and nitric oxide synthase 2, inducible (iNOS) in the spinal cord tissue. R723 treatment did not alter the expression levels of Il-1β, Il-6, TNF, and NADPH oxidase 2 (NOX2), and suppressed the expression of Retnla, which is one of the markers of neuroprotective M2 microglia. As a result, R723 did not alter disease progression or survival of mSOD1G93A mice. Conclusions JAK2 inhibitor was not effective against ALS symptoms in mSOD1G93A mice, irrespective of suppression in several inflammatory molecules. Simultaneous suppression of anti-inflammatory microglia with a failure to inhibit critical other inflammatory molecules might explain this result. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0179-2) contains supplementary material, which is available to authorized users.
Collapse
|
160
|
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2014; 4:2834. [PMID: 24280772 PMCID: PMC3876736 DOI: 10.1038/ncomms3834] [Citation(s) in RCA: 455] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022] Open
Abstract
Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (Mechanistic Target of Rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mouse model in which myeloid lineage specific deletion of Tsc1 (Tsc1Δ/Δ) leads to constitutive mTOR Complex 1 (mTORC1) activation, we find that Tsc1Δ/Δ macrophages are refractory to IL-4 induced M2 polarization, but produce increased inflammatory responses to proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signaling critically contributes to defective polarization. These findings highlight a key role for the mTOR pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic status could be “hard-wired” to control of macrophage function, with broad implications for regulation of Type 2 immunity, inflammation, and allergy.
Collapse
Affiliation(s)
- Vanessa Byles
- 1] Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA [2]
| | | | | | | | | | | | | |
Collapse
|
161
|
Cathcart MK, Bhattacharjee A. Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages. INFLAMMATION AND CELL SIGNALING 2014; 1. [PMID: 26052543 DOI: 10.14800/ics.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response.
Collapse
Affiliation(s)
- Martha K Cathcart
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur-713209, West Bengal, India
| |
Collapse
|
162
|
The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014; 2014:561459. [PMID: 24876674 PMCID: PMC4021678 DOI: 10.1155/2014/561459] [Citation(s) in RCA: 1087] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/12/2014] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1β, TNFα, IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed.
Collapse
|
163
|
Liang Y, Zhu Y, Xia Y, Peng H, Yang XK, Liu YY, Xu WD, Pan HF, Ye DQ. Therapeutic potential of tyrosine kinase 2 in autoimmunity. Expert Opin Ther Targets 2014; 18:571-80. [PMID: 24654603 DOI: 10.1517/14728222.2014.892925] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Tyrosine kinase 2 (Tyk2) is a Janus kinase family member that is crucial for signaling transduction in response to a wide variety of cytokines, including type I IFNs, IL-6, IL-10, IL-12 and IL-23. An appropriate expression of Tyk2-mediated signaling might be essential for maintaining normal immune responses. AREAS COVERED This review summarizes that Tyk2 is essential for the differentiation and function of a wide variety of immune cells, including natural killer cells, B cells, as well as T helper cells. In addition, Tyk2-mediated signaling promoted the production of autoimmune-associated components, which is implicated in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis. Aberrant expression of Tyk2 was observed in many autoimmune conditions. EXPERT OPINION Until recently, no patent filings had claimed selective inhibitors of Tyk2. Both CP-690,500 and CMP6 failed to be used in clinical treatment due to the difficulties of finding suitable selective leads or due to detrimental toxicities. Although the result of Cmpd1 is promising, it remains to be seen how specific the Tyk2 inhibitor is and how they are working. Currently, structure-based drug design (SBDD) technology has provided us with a quite useful window for SBDD of Tyk2 inhibitors.
Collapse
Affiliation(s)
- Yan Liang
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , 81 Meishan Road, Hefei, Anhui, 230032 , PR China +86 551 65167726 ; +86 551 65161171 ;
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Novak ML, Weinheimer-Haus EM, Koh TJ. Macrophage activation and skeletal muscle healing following traumatic injury. J Pathol 2014; 232:344-55. [PMID: 24255005 DOI: 10.1002/path.4301] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/29/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022]
Abstract
Following injury to different tissues, macrophages can contribute to both regenerative and fibrotic healing. These seemingly contradictory roles of macrophages may be related to the markedly different phenotypes that macrophages can assume upon exposure to different stimuli. We hypothesized that fibrotic healing after traumatic muscle injury would be dominated by a pro-fibrotic M2a macrophage phenotype, with M1 activation limited to the very early stages of repair. We found that macrophages accumulated in lacerated mouse muscle for at least 21 days, accompanied by limited myofibre regeneration and persistent collagen deposition. However, muscle macrophages did not exhibit either of the canonical M1 or M2a phenotypes, but instead up-regulated both M1- and M2a-associated genes early after injury, followed by down-regulation of most markers examined. Particularly, IL-10 mRNA and protein were markedly elevated in macrophages from 3-day injured muscle. Additionally, though flow cytometry identified distinct subpopulations of macrophages based on high or low expression of TNFα, these subpopulations did not clearly correspond to M1 or M2a phenotypes. Importantly, cell therapy with exogenous M1 macrophages but not non-activated macrophages reduced fibrosis and enhanced muscle fibre regeneration in lacerated muscles. These data indicate that manipulation of macrophage function has potential to improve healing following traumatic injury.
Collapse
Affiliation(s)
- Margaret L Novak
- Department of Kinesiology and Nutrition, University of Illinois at Chicago
| | | | | |
Collapse
|
165
|
Rothe M, Quarcoo D, Chashchina AA, Bozrova SV, Qin Z, Nedospasov SA, Blankenstein T, Kammertoens T, Drutskaya MS. IL-13 but not IL-4 signaling via IL-4Rα protects mice from papilloma formation during DMBA/TPA two-step skin carcinogenesis. Cancer Med 2013; 2:815-25. [PMID: 24403255 PMCID: PMC3892386 DOI: 10.1002/cam4.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 02/03/2023] Open
Abstract
Interleukin 4 (IL-4) was shown to be tumor-promoting in full carcinogenesis studies using 3-methylcholanthrene (MCA). Because heretofore the role of IL-4 in DMBA/TPA (9,10-dimethyl-1,2-benz-anthracene/12-O-tetradecanoylphorbol-13-acetate) two-stage carcinogenesis was not studied, we performed such experiments using either IL-4(-/-) or IL-4Rα(-/-) mice. We found that IL-4Rα(-/-) but not IL-4(-/-) mice have enhanced papilloma formation, suggesting that IL-13 may be involved. Indeed, IL-13(-/-) mice developed more papillomas after exposure to DMBA/TPA than their heterozygous IL-13-competent littermate controls. However, when tested in a full carcinogenesis experiment, exposure of mice to 25 μg of MCA, both IL-13(-/-) and IL-13(+/-) mice led to the same incidence of tumors. While IL-4 enhances MCA carcinogenesis, it does not play a measurable role in our DMBA/TPA carcinogenesis experiments. Conversely, IL-13 does not affect MCA carcinogenesis but protects mice from DMBA/TPA carcinogenesis. One possible explanation is that IL-4 and IL-13, although they share a common IL-4Rα chain, regulate signaling in target cells differently by employing distinct JAK/STAT-mediated signaling pathways downstream of IL-13 or IL-4 receptor complexes, resulting in different inflammatory transcriptional programs. Taken together, our results indicate that the course of DMBA/TPA- and MCA-induced carcinogenesis is affected differently by IL-4 versus IL-13-mediated inflammatory cascades.
Collapse
Affiliation(s)
- Michael Rothe
- Institute of Immunology, Charité Campus Buch13125, Berlin, Germany
| | - David Quarcoo
- Institute of Occupational Medicine, Charité Campus Benjamin FranklinThielallee 69-73, 14195, Berlin, Germany
| | - Anna A Chashchina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences32 Vavilov Str., 119991, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University119991, Moscow, Russia
| | - Svetlana V Bozrova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences32 Vavilov Str., 119991, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University119991, Moscow, Russia
| | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences15 Datun Road, Beijing, 100101, China
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences32 Vavilov Str., 119991, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University119991, Moscow, Russia
| | - Thomas Blankenstein
- Institute of Immunology, Charité Campus Buch13125, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine13125, Berlin, Germany
| | | | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences32 Vavilov Str., 119991, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University119991, Moscow, Russia
| |
Collapse
|
166
|
Romeo MJ, Agrawal R, Pomés A, Woodfolk JA. A molecular perspective on TH2-promoting cytokine receptors in patients with allergic disease. J Allergy Clin Immunol 2013; 133:952-60. [PMID: 24084078 DOI: 10.1016/j.jaci.2013.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
The cytokines IL-4, IL-13, and thymic stromal lymphopoietin play a key role in allergic disease by virtue of their ability to initiate, maintain, and augment TH2 responses. These molecules mediate their effects through type 1 cytokine receptors, which bind cytokines with a characteristic structure. Receptors are expressed on a broad array of immune cell types and are integral to complex cytokine networks operating in health and disease. TH2-promoting cytokines bind different configurations of receptors. Receptor subunits can exist in surface-bound or soluble forms, as well as in isolation or in partnership with other subunits. Sharing of receptor subunits among different cytokine receptor complexes adds to the intricate landscape. This article describes the characteristics of receptors for IL-4, IL-13, and thymic stromal lymphopoietin and their respective ligands from a structure-function perspective. We detail the mechanisms of receptor complex assembly, the interrelated nature of these receptors, and the effect on allergic inflammation. The ability for novel and atypical types of receptors to modulate inflammatory processes is also discussed. We highlight current and emerging treatments that target TH2-promoting receptor complexes. Understanding the molecular features of these receptors provides insight into different disease phenotypes and the variable clinical outcomes arising from targeted therapies. These considerations can be used to inform future directions for research and creative strategies for treating individual patients.
Collapse
Affiliation(s)
- Martin J Romeo
- Asthma and Allergic Diseases Center, University of Virginia, Charlottesville, Va
| | - Rachana Agrawal
- Asthma and Allergic Diseases Center, University of Virginia, Charlottesville, Va
| | - Anna Pomés
- Indoor Biotechnologies Inc, Charlottesville, Va
| | - Judith A Woodfolk
- Asthma and Allergic Diseases Center, University of Virginia, Charlottesville, Va.
| |
Collapse
|