151
|
Dialysis as a Novel Adjuvant Treatment for Malignant Cancers. Cancers (Basel) 2022; 14:cancers14205054. [PMID: 36291840 PMCID: PMC9600214 DOI: 10.3390/cancers14205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary There is a clear need for new cancer therapies as many cancers have a very short long-term survival rate. For most advanced cancers, therapy resistance limits the benefit of any single-agent chemotherapy, radiotherapy, or immunotherapy. Cancer cells show a greater dependence on glucose and glutamine as fuel than healthy cells do. In this article, we propose using 4- to 8-h dialysis treatments to change the blood composition, i.e., lowering glucose and glutamine levels, and elevating ketone levels—thereby disrupting major metabolic pathways important for cancer cell survival. The dialysis’ impact on cancer cells include not only metabolic effects, but also redox balance, immunological, and epigenetic effects. These pleiotropic effects could potentially enhance the effectiveness of traditional cancer treatments, such as radiotherapies, chemotherapies, and immunotherapies—resulting in improved outcomes and longer survival rates for cancer patients. Abstract Cancer metabolism is characterized by an increased utilization of fermentable fuels, such as glucose and glutamine, which support cancer cell survival by increasing resistance to both oxidative stress and the inherent immune system in humans. Dialysis has the power to shift the patient from a state dependent on glucose and glutamine to a ketogenic condition (KC) combined with low glutamine levels—thereby forcing ATP production through the Krebs cycle. By the force of dialysis, the cancer cells will be deprived of their preferred fermentable fuels, disrupting major metabolic pathways important for the ability of the cancer cells to survive. Dialysis has the potential to reduce glucose levels below physiological levels, concurrently increase blood ketone body levels and reduce glutamine levels, which may further reinforce the impact of the KC. Importantly, ketones also induce epigenetic changes imposed by histone deacetylates (HDAC) activity (Class I and Class IIa) known to play an important role in cancer metabolism. Thus, dialysis could be an impactful and safe adjuvant treatment, sensitizing cancer cells to traditional cancer treatments (TCTs), potentially making these significantly more efficient.
Collapse
|
152
|
Wei Y, Guo Y, Lv S. Research on the progress of Traditional Chinese medicine components and preparations on histone deacetylase inhibitors - Like effects in the course of disease treatment. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115521. [PMID: 35809757 DOI: 10.1016/j.jep.2022.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE During the treatment of diseases, histone deacetylases (HDAC) may have side effects such as strong immune inhibition and drug resistance, which may lead to damage of heart, liver and kidney. Traditional Chinese medicine (TCM) is a valuable and unique resource in China, which has good efficacy and safety. At present, it has been found that Chinese herbal compounds and active ingredients can effectively inhibit the expression of HDAC. Moreover, pharmacological studies have shown that these TCMs have shown therapeutic effects in the treatment of cancer, cardiovascular and cerebrovascular diseases, orthopedic diseases and skin diseases. AIM OF THE REVIEW This article reviews the mechanism of action of HDAC, and introduces the epigenetic correlation between TCM and HDAC. We expounded the histone deacetylase inhibitor (HDACi)-like inhibitory effect and clinical application of natural drugs, and summarized the research progress of TCM on HDAC in recent years. MATERIALS AND METHODS We collected relevant information published before March 2022 by searching the literature in various online databases such as PubMed, CNKI, Wanfang Database, Elsevier, Web of Science and China Biomedical Database. Search terms include "HDAC" or "HDACi", as well as "herb" or "herbal ingredient". RESULTS A large number of studies have proved that many TCMs and their chemical components have the effect of inhibiting HDAC activity, which is highly selective, acts on different HDAC subtypes, and plays a certain therapeutic effect in cancer, cardiovascular and cerebrovascular diseases, orthopedic diseases, skin diseases and other diseases by inhibiting the process of HDAC. DISCUSSION AND CONCLUSIONS The review of this paper is helpful to understand and excavate the active components of TCM, further explore the role of plant drugs with HDACi-like effect in diseases, and provide ideas for the development of new HDACi.
Collapse
Affiliation(s)
- Yuxin Wei
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Yuyan Guo
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Shaowa Lv
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
153
|
Wang W, Shen Y, Zhang P, Liu L, Sha X, Li H, Wang S, Zhang H, Zhou Y, Shi J. Histone acetylation modification regulator-mediated tumor microenvironment infiltration characteristics and prognostic model of lung adenocarcinoma patients. J Thorac Dis 2022; 14:3886-3902. [PMID: 36389327 PMCID: PMC9641363 DOI: 10.21037/jtd-22-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The incidence rate of lung adenocarcinoma (LUAD) is rapidly increasing. Recent studies have reported that histone acetylation modification plays an important role in the occurrence and development of tumors. However, the potential role of modification of histone acetylation modification in the development of tumor immune microenvironment is still unclear. METHODS In this study, we comprehensively evaluated the acetylation modification patterns of LUAD samples obtained from various different databases based on 36 histone modification regulators, and constructed a prognostic model based on The Cancer Genome Atlas (TCGA) LUAD cohort using the Cox regression method. The close relationship between histone acetylation and tumor immune characteristics was further studied, including immune infiltration, immune escape and immunotherapy. Finally, we combined three cohort (GSE30219, GSE72094 and GSE50081) from Gene Expression Omnibus (GEO) database to verify the above results. RESULTS We analyzed the expression, mutation and interaction of 36 histone acetylation regulated genes. After Univariate Cox regression analysis and least absolute shrinkage and selection operator regression (LASSO), 5 genes (KAT2B, SIRT2, HDAC5, KAT8, HDAC2) were screened to establish the prognosis model and calculate the risk score. Then, patients in the TCGA cohort were divided into high- and low-risk groups based on the risk scores. Further analysis indicated that patients in the high-risk group exhibited significantly reduced overall survival (OS) compared with those in the low-risk group. The high- and low-risk groups exhibited significant differences in terms of tumor immune characteristics, such as immune infiltration, immune escape and immunotherapy. The high-risk group had lower immune score, less immune cell infiltration and higher clinical stage. Moreover, multivariate analysis revealed that this prognostic model might be a powerful prognostic predictor for LUAD. In addition, drugs sensitive for this classification were identified. Finally, the efficacy of the prognostic model was validated by cohort (GSE30219, GSE72094 and GSE50081) from GEO database. CONCLUSIONS Our study provided a robust signature for predicting changing prognosis of patients with LUAD. Thus, it appears to be a potentially useful prognostic tool. Moreover, the important relationship between histone acetylation and tumor immune microenvironment was revealed.
Collapse
Affiliation(s)
- Wenmiao Wang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Yao Shen
- School of Medicine, Nantong University, Nantong, China
| | - Peng Zhang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Lei Liu
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Xinyu Sha
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Houqiang Li
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Silin Wang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China;,School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
154
|
Zhang J, Xun M, Li C, Chen Y. The O-GlcNAcylation and its promotion to hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188806. [PMID: 36152903 DOI: 10.1016/j.bbcan.2022.188806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
O-GlcNAcylation is a posttranslational modification that attaches O-linked β-N-acetylglucosamine (O-GlcNAc) to the serine and threonine residues of proteins. Such a glycosylation would alter the activities, stabilities, and interactions of target proteins that are functional in a wide range of biological processes and diseases. Accumulating evidence indicates that O-GlcNAcylation is tightly associated with hepatocellular carcinoma (HCC) in its onset, growth, invasion and metastasis, drug resistance, and stemness. Here we summarize the discoveries of the role of O-GlcNAcylation in HCC and its function mechanism, aiming to deepen our understanding of HCC pathology, generate more biomarkers for its diagnosis and prognosis, and offer novel molecular targets for its treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Min Xun
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Chaojie Li
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China.
| |
Collapse
|
155
|
Bartolucci D, Montemurro L, Raieli S, Lampis S, Pession A, Hrelia P, Tonelli R. MYCN Impact on High-Risk Neuroblastoma: From Diagnosis and Prognosis to Targeted Treatment. Cancers (Basel) 2022; 14:4421. [PMID: 36139583 PMCID: PMC9496712 DOI: 10.3390/cancers14184421] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Among childhood cancers, neuroblastoma is the most diffuse solid tumor and the deadliest in children. While to date, the pathology has become progressively manageable with a significant increase in 5-year survival for its less aggressive form, high-risk neuroblastoma (HR-NB) remains a major issue with poor outcome and little survivability of patients. The staging system has also been improved to better fit patient needs and to administer therapies in a more focused manner in consideration of pathology features. New and improved therapies have been developed; nevertheless, low efficacy and high toxicity remain a staple feature of current high-risk neuroblastoma treatment. For this reason, more specific procedures are required, and new therapeutic targets are also needed for a precise medicine approach. In this scenario, MYCN is certainly one of the most interesting targets. Indeed, MYCN is one of the most relevant hallmarks of HR-NB, and many studies has been carried out in recent years to discover potent and specific inhibitors to block its activities and any related oncogenic function. N-Myc protein has been considered an undruggable target for a long time. Thus, many new indirect and direct approaches have been discovered and preclinically evaluated for the interaction with MYCN and its pathways; a few of the most promising approaches are nearing clinical application for the investigation in HR-NB.
Collapse
Affiliation(s)
| | - Luca Montemurro
- Pediatric Oncology and Hematology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | | | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
156
|
Novel Regulators of Macropinocytosis-Dependent Growth Revealed by Informer Set Library Screening in Pancreatic Cancer Cells. Metabolites 2022; 12:metabo12090831. [PMID: 36144235 PMCID: PMC9502772 DOI: 10.3390/metabo12090831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer cells utilize multiple nutrient scavenging mechanisms to support growth and survival in nutrient-poor, hypoxic tumor microenvironments. Among these mechanisms, macropinocytosis has emerged as an important pathway of extracellular nutrient acquisition in cancer cells, particularly in tumors with activated RAS signaling, such as pancreatic cancer. However, the absence of a clinically available inhibitor, as well as the gap of knowledge in macropinocytosis regulation, remain a hurdle for its use for cancer therapy. Here, we use the Informer set library to identify novel regulators of macropinocytosis-dependent growth in pancreatic cancer cells. Understanding how these regulators function will allow us to provide novel opportunities for therapeutic intervention.
Collapse
|
157
|
Chen Q, Du X. FGF/FGFR-related lncRNAs based classification predicts prognosis and guides therapy in gastric cancer. Front Genet 2022; 13:948102. [PMID: 36105076 PMCID: PMC9465033 DOI: 10.3389/fgene.2022.948102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor (FGF) and its receptor (FGFR) play crucial roles in gastric cancer (GC). Long non-coding RNAs (lncRNAs) are defined as RNA molecules of around 200 nucleotides or more, which are not translated into proteins. As well-known regulatory factors, lncRNAs are considered as biomarkers for prognosis and treatment response in GC. It is of importance to identify FGF/FGFR-related lncRNAs in GC. Here, some FGF/FGFR-related lncRNAs were identified in GC based on the data from public databases, the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Then a four-lncRNAs (FGF10-AS1, MIR2052HG, POU6F2-AS2, and DIRC1) risk score (RS) model was established for predicting GC’s prognosis by using Cox analysis. According to the median value of RS, GC patients were divided into low and high RS group. Low RS group displayed high tumor mutation burden and infiltration of immune cells, as well as more sensitivity to immunotherapy or chemotherapy. High RS group showed high infiltration of stromal cells and more oncogenic signatures. In addition, a comprehensive analysis was carried out and found that high RS group may exhibit specific sensitivity to Panobinostat (histone deacetylases inhibitor) and Tivantinib (MET inhibitor). In summary, our study not only offers a novel personalized prognostication classification model according to FGF/FGFR-related lncRNAs, but also provides a new strategy for subclass-specific precision treatment in GC.
Collapse
Affiliation(s)
- Qiuxiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaojing Du
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiaojing Du,
| |
Collapse
|
158
|
Jian Z, Han Y, Zhang W, Li C, Guo W, Feng X, Li B, Li H. Anti-tumor effects of dual PI3K-HDAC inhibitor CUDC-907 on activation of ROS-IRE1α-JNK-mediated cytotoxic autophagy in esophageal cancer. Cell Biosci 2022; 12:135. [PMID: 35989326 PMCID: PMC9394063 DOI: 10.1186/s13578-022-00855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background PI3K-Akt pathway activation and the expression of histone deacetylases (HDACs) are highly increased in esophageal cancer, suggesting that inhibition of such targets may be a viable therapeutic strategy. Herein, we aimed to evaluate the anti-tumor effect of CUDC-907, a dual PI3K-HDAC inhibitor, in esophageal squamous cell carcinoma (ESCC). Methods The anti-tumor effects of CUDC-907 in ESCC were evaluated using cell counting kit-8, flow cytometry, and western blot. mRNA-sequencing was used to explore the mechanism underlying CUDC-907 anti-tumor effects. The relations of reactive oxygen species (ROS), lipocalin 2 (LCN2), and CUDC-907 were determined by flow cytometry, rescue experiments, and western blot. The activation of the IRE1α-JNK-CHOP signal cascade was confirmed by western blot. The in vivo inhibitory effects of CUDC-907 were examined by a subcutaneous xenograft model in nude mice. Results CUDC-907 displayed effective inhibition in the proliferation, migration, and invasion of ESCC cells. Through an mRNA-sequencing and functional enrichment analysis, autophagy was found to be associated with cancer cells death. CUDC-907 not only inhibited the PI3K-Akt-mTOR pathways to result in autophagy, but also induced ROS accumulation to activate IRE1α-JNK-CHOP-mediated cytotoxic autophagy by downregulating LCN2 expression. Consistently, the in vivo anti-tumor effects of CUDC-907 accompanied by the downregulated expression of p-mTOR and LCN2 and upregulated expression of p-IRE1α and LC3B-II were evaluated in a xenograft mouse model. Conclusion Our findings suggested the clinical development and administration of CUDC-907 might act as a novel treatment strategy for ESCC. A more in-depth understanding of the anti-tumor effect of CUDC-907 in ESCC will benefit the clinically targeted treatment of ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00855-x.
Collapse
|
159
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 414] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
160
|
Ashok A, Pooranawattanakul S, Tai WL, Cho KS, Utheim TP, Cestari DM, Chen DF. Epigenetic Regulation of Optic Nerve Development, Protection, and Repair. Int J Mol Sci 2022; 23:8927. [PMID: 36012190 PMCID: PMC9408916 DOI: 10.3390/ijms23168927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic factors are known to influence tissue development, functionality, and their response to pathophysiology. This review will focus on different types of epigenetic regulators and their associated molecular apparatus that affect the optic nerve. A comprehensive understanding of epigenetic regulation in optic nerve development and homeostasis will help us unravel novel molecular pathways and pave the way to design blueprints for effective therapeutics to address optic nerve protection, repair, and regeneration.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sarita Pooranawattanakul
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Wai Lydia Tai
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tor P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, 0372 Oslo, Norway
| | - Dean M. Cestari
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
161
|
Valproate Targets Mammalian Gastrulation Impairing Neural Tissue Differentiation and Development of the Placental Source In Vitro. Int J Mol Sci 2022; 23:ijms23168861. [PMID: 36012122 PMCID: PMC9408494 DOI: 10.3390/ijms23168861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
The teratogenic activity of valproate (VPA), an antiepileptic and an inhibitor of histone deacetylase (HDACi), is dose-dependent in humans. Previous results showed that VPA impairs in vitro development and neural differentiation of the gastrulating embryo proper. We aimed to investigate the impact of a lower VPA dose in vitro and whether this effect is retained in transplants in vivo. Rat embryos proper (E9.5) and ectoplacental cones were separately cultivated at the air-liquid interface with or without 1 mM VPA. Embryos were additionally cultivated with HDACi Trichostatin A (TSA), while some cultures were syngeneically transplanted under the kidney capsule for 14 days. Embryos were subjected to routine histology, immunohistochemistry, Western blotting and pyrosequencing. The overall growth of VPA-treated embryos in vitro was significantly impaired. However, no differences in the apoptosis or proliferation index were found. Incidence of the neural tissue was lower in VPA-treated embryos than in controls. TSA also impaired growth and neural differentiation in vitro. VPA-treated embryos and their subsequent transplants expressed a marker of undifferentiated neural cells compared to controls where neural differentiation markers were expressed. VPA increased the acetylation of histones. Our results point to gastrulation as a sensitive period for neurodevelopmental impairment caused by VPA.
Collapse
|
162
|
Zhu H, Tan Y, He C, Liu Y, Duan Y, Zhu W, Zheng T, Li D, Xu J, Yang DH, Chen ZS, Xu S. Discovery of a Novel Vascular Disrupting Agent Inhibiting Tubulin Polymerization and HDACs with Potent Antitumor Effects. J Med Chem 2022; 65:11187-11213. [PMID: 35926141 DOI: 10.1021/acs.jmedchem.2c00681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most vascular disrupting agents (VDAs) fail to prevent the regrowth of blood vessels at the edge of tumors, causing tumor rebound and relapse. Herein, a series of novel multifunctional vascular disrupting agents (VDAs) capable of inhibiting microtubule polymerization and histone deacetylases (HDACs) were designed and synthesized using the tubulin polymerization inhibitor TH-0 as the lead compound. Among them, compound TH-6 exhibited the most potent antiproliferative activity (IC50 = 18-30 nM) against a panel of cancer cell lines. As expected, TH-6 inhibited tubulin assembly and increased the acetylation level of HDAC substrate proteins in HepG2 cells. Further in vivo antitumor assay displayed that TH-6 effectively inhibited tumor growth with no apparent toxicity. More importantly, TH-6 disrupted both the internal and peripheral tumor vasculatures, which contributed to the persistent tumor inhibitory effects after drug withdrawal. Altogether, TH-6 deserves to be further investigated for the new approach to clinical cancer therapy.
Collapse
Affiliation(s)
- Huajian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yuchen Tan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Chen He
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yang Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yiping Duan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Wenjian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Tiandong Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
163
|
Li Z, Zhao B, Qin C, Wang Y, Li T, Wang W. Chromatin Dynamics in Digestive System Cancer: Commander and Regulator. Front Oncol 2022; 12:935877. [PMID: 35965507 PMCID: PMC9372441 DOI: 10.3389/fonc.2022.935877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Digestive system tumors have a poor prognosis due to complex anatomy, insidious onset, challenges in early diagnosis, and chemoresistance. Epidemiological statistics has verified that digestive system tumors rank first in tumor-related death. Although a great number of studies are devoted to the molecular biological mechanism, early diagnostic markers, and application of new targeted drugs in digestive system tumors, the therapeutic effect is still not satisfactory. Epigenomic alterations including histone modification and chromatin remodeling are present in human cancers and are now known to cooperate with genetic changes to drive the cancer phenotype. Chromatin is the carrier of genetic information and consists of DNA, histones, non-histone proteins, and a small amount of RNA. Chromatin and nucleosomes control the stability of the eukaryotic genome and regulate DNA processes such as transcription, replication, and repair. The dynamic structure of chromatin plays a key role in this regulatory function. Structural fluctuations expose internal DNA and thus provide access to the nuclear machinery. The dynamic changes are affected by various complexes and epigenetic modifications. Variation of chromatin dynamics produces early and superior regulation of the expression of related genes and downstream pathways, thereby controlling tumor development. Intervention at the chromatin level can change the process of cancer earlier and is a feasible option for future tumor diagnosis and treatment. In this review, we introduced chromatin dynamics including chromatin remodeling, histone modifications, and chromatin accessibility, and current research on chromatin regulation in digestive system tumors was also summarized.
Collapse
|
164
|
Chen HL, Lo YH, Lin CL, Lee TH, Leung W, Wang SW, Lin IP, Lin MY, Lee CH. Trichodermin inhibits the growth of oral cancer through apoptosis-induced mitochondrial dysfunction and HDAC-2-mediated signaling. Biomed Pharmacother 2022; 153:113351. [PMID: 35785707 DOI: 10.1016/j.biopha.2022.113351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022] Open
Abstract
Trichodermin (TCD), a trichothecene first isolated from marine Trichoderma viride, is an inhibitor of eukaryotic protein synthesis. However, the potential effects of TCD on human oral squamous cell carcinoma (OSCC) cells and the underlying molecular mechanisms remain unknown. In this study, the exposure of OSCC cells (Ca922 and HSC-3 cells) to TCD suppressed cell proliferation assessed using MTT assays and colony formation assays. TCD inhibited the migration and invasion of OSCC cells (Ca922 and HSC-3 cells) through the downregulation of matrix metalloproteinase 9. After treatment of OSCC cells with TCD, the G2/M phase was arrested, caspase-related apoptosis (cleaved caspase-3 and PARP expression) was induced, and the protein level of x-linked inhibitor of apoptosis was reduced. Meanwhile, the TCD-induced cell death was reversed by the pan-caspase inhibitor Z-VAD-FMK. Furthermore, TCD diminished mitochondrial membrane potential, mitochondrial oxidative phosphorylation and glycolytic function in OSCC cells. In addition, TCD decreased the levels of histone deacetylase 2 (HDAC-2) and downstream signaling proteins, including phosphorylated STAT3 and NF-κB. Finally, TCD significantly suppressed tumor growth in a zebrafish OSCC xenotransplantation model. Overall, this evidence demonstrates that TCD is a novel promising strategy for the treatment of OSCCs.
Collapse
Affiliation(s)
- Hsien-Lin Chen
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chieh-Liang Lin
- School of Nursing, Fooyin University, Kaohsiung 83102, Taiwan; Department of Radiation Oncology, Yuan's General Hospital, Kaohsiung 80249, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wan Leung
- Department of Radiation Oncology, Yuan's General Hospital, Kaohsiung 80249, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City 25245; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - In-Pin Lin
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung 80544, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
165
|
Discovery of 2,5-diphenyl-1,3,4-thiadiazole derivatives as HDAC inhibitors with DNA binding affinity. Eur J Med Chem 2022; 241:114634. [DOI: 10.1016/j.ejmech.2022.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/15/2022]
|
166
|
Anti-proliferative and Apoptotic Effects of Valproic Acid on HeLa Cells. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-120224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Valproic acid (VPA), a branched short-chain fatty acid and histone deacetylase (HDAC) inhibitor, has diverse biological activities in human cells, including anti-cancer properties. Objectives: In the present study, we tested the cytotoxicity of VPA on the proliferation, cell cycle, and apoptosis of the human cervical cancer cell line, HeLa. Methods: HeLa cell line was cultured in Dulbecco’s modified eagle medium (DMEM) and the cytotoxicity effect of VPA (at 0 - 100 mM) on the HeLa cell was evaluated, using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay for 3 incubation times (24, 48, and 72 h). The effects of VPA on cell cycle arrest and apoptosis were evaluated, using flow cytometry. In addition, the alterations in the expression of Bax, Bcl-2, p53, and p21 were assessed with real‐time polymerase chain reaction (PCR). Results: Valproic acid reduced the viability of HeLa cells in a concentration- and time-dependent manner, and the IC50 values at 24, 48, and 72 h were 32.06, 21.29, and 14.51 mM, respectively. Further, VPA treatment remarkably increased the apoptosis of HeLa cells and arrested cells at the sub-G1 phase with a significant reduction in G2-M phase populations. The real-time PCR results demonstrated a significant increase in the expression of pro-apoptotic genes, including Bax, p53, and p21, as well as a reduction in the levels of the anti-apoptotic gene, Bcl-2. Conclusions: Valproic acid inhibits the proliferation of the HeLa cell line through the induction of the intrinsic pathway of apoptosis in a p35-dependent manner.
Collapse
|
167
|
Wang C, Lin Y, Zhu H, Zhou Y, Mao F, Huang X, Sun Q, Li C. Efficacy and Safety Profile of Histone Deacetylase Inhibitors for Metastatic Breast Cancer: A Meta-Analysis. Front Oncol 2022; 12:901152. [PMID: 35712478 PMCID: PMC9192957 DOI: 10.3389/fonc.2022.901152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Acquired resistance to endocrine therapy (ET) remains a big challenge in the management of metastatic breast cancer (MBC). A novel therapeutic agent, histone deacetylase inhibitors (HDACi), targets the abnormal epigenetic modification and may overcome acquired resistance. However, HDACi efficacy and the safety profile for hormone receptor (HoR)-positive/human epidermal growth factor receptor 2 (HER2)-negative MBC remain controversial. Methods Two independent reviewers searched PubMed, Embase, and Cochrane Central Register of Controlled Trials databases for relevant studies on HDACi and HoR+/HER2- MBC. Demographic and clinicopathological parameters were extracted and presented as means and proportions, and between-group differences were assessed by Pearson chi-square test. Fixed- or random-effects models were used for meta-analysis based on inter-study heterogeneity. Pooled results were presented as L’Abbé plot and forest plot. Funnel plot and Egger’s test were employed for evaluation of publication bias. Results Four studies with 1,457 patients were included for meta-analysis. The overall objective response rates (ORRs) of HDACi + ET (HE) and placebo + ET (PE) groups were 11.52% and 6.67%, respectively. The HE regimen significantly increased ORR (odds ratio [OR] 1.633, 95% confidence interval [CI] = 1.103–2.418, p < 0.05) and showed higher clinical benefit rate (CBR) than the PE regimen (HE vs. PE groups: 38.82% vs. 30.58%, OR 1.378, 95% CI = 1.020–1.861, p < 0.05). Additionally, the HE regimen was associated with prolonged progression-free survival (PFS) (hazard ratio [HR] 0.761, 95% CI = 0.650–0.872, p < 0.001) and overall survival (OS) (HR 0.849, 95% CI = 0.702–0.996, p < 0.001). Regarding safety profile, the HE regimen had increasing toxicity in terms of higher overall adverse event (AE), Grade ≥3 AE, dose modification, and discontinuation rate. Conclusions This meta-analysis validated that the HE regimen had superior efficacy over control in terms of ORR, CBR, PFS, and OS, but was accompanied with increasing toxicity. HDACi plus ET could serve as an important option in managing HoR+/HER2- MBC. Future studies may focus on the clinical difference among different HDACi and AE managements to enhance tolerability.
Collapse
Affiliation(s)
- Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hanjiang Zhu
- Department of Dermatology, University of California San Francisco, San Francisco, CA, United States
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xin Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Qiang Sun, ; Chenggang Li,
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
- *Correspondence: Qiang Sun, ; Chenggang Li,
| |
Collapse
|
168
|
Rahbari R, Rasmi Y, Khadem-Ansari MH, Abdi M. The role of histone deacetylase 3 in breast cancer. Med Oncol 2022; 39:84. [PMID: 35578147 DOI: 10.1007/s12032-022-01681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/05/2022] [Indexed: 11/25/2022]
Abstract
It has been recently revealed that Histone Deacetylase (HDAC) 3, a unique member of the HDACs family, can trigger and progress cancers by alternation in genes expression and proteins activity. Epigenetic modifications by HDACs have been studied well in various cancer cells. Recent studies have focused on the HDAC enzymes as a possible target in cancer therapy. There are significant documents on upregulation of HDAC3 in breast cancer (BC) cells which suggest an oncogenic role for this enzyme. Interestingly, some studies showed that HDAC3 inhibition could be considered as a promising target in breast cancer therapy, and thus far, several inhibitors from different nature have been introduced. In this review, we discussed the function and highlight the existing inhibitors of HDAC3 in BC pathogenesis and therapy.
Collapse
Affiliation(s)
- Rezgar Rahbari
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
169
|
Ganji C, Farran B. Current clinical trials for epigenetic targets and therapeutic inhibitors for pancreatic cancer therapy. Drug Discov Today 2022; 27:1404-1410. [PMID: 34952224 DOI: 10.1016/j.drudis.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is an aggressive disease characterized by high mortality. Diagnosis at advanced stage, resistance, and recurrence are major hurdles for PC therapy and contribute to poor survival rate. Mutations in tumor-promoting kinases and epigenetic dysregulation in tumor suppressor genes are hallmarks of PC and can be used for diagnosis and therapy. In this review, we highlight dysregulated genes associated with epigenetic mechanisms, including DNA methylation and histone acetylation, involved in PC progression and resistance. We also explore epigenetic drugs currently in clinical trials. Combining epigenetic drugs and targeted therapies might represent a promising approach for PC.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
170
|
M JR, Ramalingam PS, Mathavan S, B.R.D. Yamajala R, Moparthi NR, Kurappalli RK, Manyam RR. Synthesis, in vitro and structural aspects of cap substituted Suberoylanilide hydroxamic acid analogs as potential inducers of apoptosis in Glioblastoma cancer cells via HDAC /microRNA regulation. Chem Biol Interact 2022; 357:109876. [DOI: 10.1016/j.cbi.2022.109876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
171
|
Chen YJC, Koutelou E, Dent SY. Now open: Evolving insights to the roles of lysine acetylation in chromatin organization and function. Mol Cell 2022; 82:716-727. [PMID: 35016034 PMCID: PMC8857060 DOI: 10.1016/j.molcel.2021.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Protein acetylation is conserved across phylogeny and has been recognized as one of the most prominent post-translational modifications since its discovery nearly 60 years ago. Histone acetylation is an active mark characteristic of open chromatin, but acetylation on specific lysine residues and histone variants occurs in different biological contexts and can confer various outcomes. The significance of acetylation events is indicated by the associations of lysine acetyltransferases, deacetylases, and acetyl-lysine readers with developmental disorders and pathologies. Recent advances have uncovered new roles of acetylation regulators in chromatin-centric events, which emphasize the complexity of these functional networks. In this review, we discuss mechanisms and dynamics of acetylation in chromatin organization and DNA-templated processes, including gene transcription and DNA repair and replication.
Collapse
Affiliation(s)
- Ying-Jiun C. Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sharon Y.R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Correspondence:
| |
Collapse
|
172
|
HDAC10 Inhibits Cervical Cancer Progression through Downregulating the HDAC10-microRNA-223-EPB41L3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:8092751. [PMID: 35075362 PMCID: PMC8783137 DOI: 10.1155/2022/8092751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
Background Although the tumorigenesis of cervical cancer (CC) has been widely investigated and recognized, the study of the systematic impact of histone deacetylase 10 (HDAC10), microRNA, and downstream molecular mechanisms in CC is still limited. Herein, cervical cancer, precancer lesions, and normal cervical tissues were collected to test the expression level of HDAC10, miR-223, and EPB41L3. The mechanism of HDAC10, miR-223, and EPB41L3 was interpreted in cervical cancer cells after HDAC10, miR-223, or EPB41L3 expression was altered. Results HDAC10 was poorly expressed in cervical cancer and precancer lesions, while miR-223 was highly expressed in cervical cancer. HDAC10 bound to miR-223, and miR-223 targeted EPB41L3. HDAC10 depressed the invasion property and tumorigenesis of cervical cancer via downregulating miR-223 and subsequently targeting EPB41L3. Conclusion The study clarifies that HDAC10 inhibits cervical cancer by downregulating miR-223 and subsequently targeting EPB41L3 expression, which might provide a new insight for management upon cervical cancer and precancer lesions.
Collapse
|
173
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
174
|
Zhou M, Yuan M, Zhang M, Lei C, Aras O, Zhang X, An F. Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. Eur J Med Chem 2021; 226:113825. [PMID: 34562854 DOI: 10.1016/j.ejmech.2021.113825] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating the expression of genes involved in tumorigenesis and tumor maintenance, and hence they have been considered as key targets in cancer therapy. As a novel category of antitumor agents, histone deacetylase inhibitors (HDACis) can induce cell cycle arrest, apoptosis, and differentiation in cancer cells, ultimately combating cancer. Although in the United States, the use of HDACis for the treatment of certain cancers has been approved, the therapeutic efficacy of HDACis as a single therapeutic agent in solid tumorshas been unsatisfactory and drug resistance may yet occur. To enhance therapeutic efficacy and limit drug resistance, numerous combination therapies involving HDACis in synergy with other antitumor therapies have been studied. In this review, we describe the classification of HDACs. Moreover, we summarize the antitumor mechanism of the HDACis for targeting key cellular processes of cancers (cell cycle, apoptosis, angiogenesis, DNA repair, and immune response). In addition, we outline the major developments of other antitumor therapies in combination with HDACis, including chemotherapy, radiotherapy, phototherapy, targeted therapy, and immunotherapy. Finally, we discuss the current state and challenges of HDACis-drugs combinations in future clinical studies, with the aim of optimizing the antitumor effect of such combinations.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Minjian Yuan
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Meng Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chenyi Lei
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| |
Collapse
|
175
|
Mekala JR, Kurappalli RK, Ramalingam P, Moparthi NR. N-acetyl l-aspartate and Triacetin modulate tumor suppressor MicroRNA and class I and II HDAC gene expression induce apoptosis in Glioblastoma cancer cells in vitro. Life Sci 2021; 286:120024. [PMID: 34626605 DOI: 10.1016/j.lfs.2021.120024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM), grade IV glioma and is aggressive, malignant primary brain cancer. Altered expression and activity of epigenetic proteins such as histone deacetylases (HDACs) are involved in GBM metastasis. Also, acetates are important to brain metabolites that regulate cell proliferation and apoptosis. Here, we have examined the effect of the acetates on the cell-cycle. U87MG cancer cells treated with N-acetyl l-aspartate (NAA) and sodium acetate have exhibited G1 phase cell-cycle arrest whereas U87MG cells treated with Triacetin (TA), and potassium acetate has induced G2/M cell cycle arrest. We have observed inhibition of histone deacetylase (HDAC) mRNA levels in acetate treated U87MG cells. Interestingly, acetates-treated U87MG cells have shown a significant reduction in the mRNA level of class II HDACs than class I HDACs. Acetate treated cells have exhibited an enhanced expression of various microRNAs such as miR-15b, miR-92, miR-101, miR-155, miR-199, miR-200, miR-223, miR-16, and miR-17 that are involved in the inhibition of cancer cell proliferation, invasion, migration, and angiogenesis. Further, these acetate molecules regulate genes involved in mammalian target of rapamycin complex 2 (mTORC2) such as mammalian stress-activated protein kinase-interacting protein (mSIN1), protein observed with Rictor 2 (Protor 2), and protein kinase C α (PKCα). The present study reveals the possible involvement of the mTORC2 complex during acetate-mediated HDAC inhibition, as well as microRNA modulation. Furthermore, molecular modeling studies were employed to understand the binding mode of these acetate molecules to mTOR, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor), and HDAC-8 proteins. Thus in this study, we have identified the pivotal role of acetates in the modulation of mTOR complex, epigenetic genes and provide structural as well as functional insights that will help in future drug discovery against GBM cancer therapy.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India; Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India.
| | - Rohil Kumar Kurappalli
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - PrasannaSrinivasan Ramalingam
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Nageswara Rao Moparthi
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India
| |
Collapse
|
176
|
Marx C, Sonnemann J, Beyer M, Maddocks ODK, Lilla S, Hauzenberger I, Piée‐Staffa A, Siniuk K, Nunna S, Marx‐Blümel L, Westermann M, Wagner T, Meyer FB, Thierbach R, Mullins CS, Kdimati S, Linnebacher M, Neri F, Heinzel T, Wang Z, Krämer OH. Mechanistic insights into p53-regulated cytotoxicity of combined entinostat and irinotecan against colorectal cancer cells. Mol Oncol 2021; 15:3404-3429. [PMID: 34258881 PMCID: PMC8637561 DOI: 10.1002/1878-0261.13060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Late-stage colorectal cancer (CRC) is still a clinically challenging problem. The activity of the tumor suppressor p53 is regulated via post-translational modifications (PTMs). While the relevance of p53 C-terminal acetylation for transcriptional regulation is well defined, it is unknown whether this PTM controls mitochondrially mediated apoptosis directly. We used wild-type p53 or p53-negative human CRC cells, cells with acetylation-defective p53, transformation assays, CRC organoids, and xenograft mouse models to assess how p53 acetylation determines cellular stress responses. The topoisomerase-1 inhibitor irinotecan induces acetylation of several lysine residues within p53. Inhibition of histone deacetylases (HDACs) with the class I HDAC inhibitor entinostat synergistically triggers mitochondrial damage and apoptosis in irinotecan-treated p53-positive CRC cells. This specifically relies on the C-terminal acetylation of p53 by CREB-binding protein/p300 and the presence of C-terminally acetylated p53 in complex with the proapoptotic BCL2 antagonist/killer protein. This control of C-terminal acetylation by HDACs can mechanistically explain why combinations of irinotecan and entinostat represent clinically tractable agents for the therapy of p53-proficient CRC.
Collapse
Affiliation(s)
- Christian Marx
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
- Cancer Research UK Beatson InstituteGlasgowUK
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
| | - Jürgen Sonnemann
- Department of Paediatric Haematology and OncologyChildren's ClinicJena University HospitalGermany
- Research Center LobedaJena University HospitalGermany
| | - Mandy Beyer
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
| | - Oliver D. K. Maddocks
- Cancer Research UK Beatson InstituteGlasgowUK
- Wolfson Wohl Cancer Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| | | | - Irene Hauzenberger
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
| | - Andrea Piée‐Staffa
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
| | | | - Suneetha Nunna
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Lisa Marx‐Blümel
- Department of Paediatric Haematology and OncologyChildren's ClinicJena University HospitalGermany
- Research Center LobedaJena University HospitalGermany
| | | | - Tobias Wagner
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
- Cellular and Molecular MedicineHoward Hughes Medical InstituteUniversity of California, San DiegoLa JollaCAUSA
| | - Felix B. Meyer
- Department of Human NutritionInstitute of NutritionFriedrich Schiller University of JenaGermany
| | - René Thierbach
- Department of Human NutritionInstitute of NutritionFriedrich Schiller University of JenaGermany
| | - Christina S. Mullins
- Molecular Oncology and ImmunotherapyDepartment of Thoracic SurgeryUniversity of RostockGermany
| | - Said Kdimati
- Molecular Oncology and ImmunotherapyDepartment of General, Visceral, Vascular and Transplantation SurgeryUniversity of RostockGermany
| | - Michael Linnebacher
- Molecular Oncology and ImmunotherapyDepartment of General, Visceral, Vascular and Transplantation SurgeryUniversity of RostockGermany
| | - Francesco Neri
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Thorsten Heinzel
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
| | - Zhao‐Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Faculty of Biological SciencesFriedrich‐Schiller‐University of JenaGermany
| | - Oliver H. Krämer
- Department of ToxicologyUniversity Medical CenterJohannes Gutenberg University MainzGermany
- Department of BiochemistryCenter for Molecular BiomedicineInstitute for Biochemistry and BiophysicsFriedrich Schiller University of JenaGermany
| |
Collapse
|
177
|
Halasa M, Adamczuk K, Adamczuk G, Afshan S, Stepulak A, Cybulski M, Wawruszak A. Deacetylation of Transcription Factors in Carcinogenesis. Int J Mol Sci 2021; 22:11810. [PMID: 34769241 PMCID: PMC8583941 DOI: 10.3390/ijms222111810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Reversible Nε-lysine acetylation/deacetylation is one of the most common post-translational modifications (PTM) of histones and non-histone proteins that is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). This epigenetic process is highly involved in carcinogenesis, affecting histone and non-histone proteins' properties and their biological functions. Some of the transcription factors, including tumor suppressors and oncoproteins, undergo this modification altering different cell signaling pathways. HDACs deacetylate their targets, which leads to either the upregulation or downregulation of proteins involved in the regulation of cell cycle and apoptosis, ultimately influencing tumor growth, invasion, and drug resistance. Therefore, epigenetic modifications are of great clinical importance and may constitute a new therapeutic target in cancer treatment. This review is aimed to present the significance of HDACs in carcinogenesis through their influence on functions of transcription factors, and therefore regulation of different signaling pathways, cancer progression, and metastasis.
Collapse
Affiliation(s)
- Marta Halasa
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Kamila Adamczuk
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Kazimierza Jaczewskiego 8b St., 20-090 Lublin, Poland;
| | - Syeda Afshan
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland;
| | - Andrzej Stepulak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Marek Cybulski
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Anna Wawruszak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| |
Collapse
|
178
|
Sabnis RW. Novel HDAC1 and HDAC2 Inhibitors for Treating Diseases. ACS Med Chem Lett 2021; 12:1532-1533. [PMID: 34676033 DOI: 10.1021/acsmedchemlett.1c00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia30309, United States
| |
Collapse
|
179
|
Botchkarev VA, Sharov AA. Histone Deacetylases in the Control of Epidermal Homeostasis: From Chromatin Biology toward Therapy. J Invest Dermatol 2021; 142:12-14. [PMID: 34565558 DOI: 10.1016/j.jid.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
Histone deacetylases (HDACs) induce gene repression and modify the activity of nonhistone proteins. In a new article in the Journal of Investigative Dermatology, Zhu et al. (2021) demonstrate essential roles for HDAC1/2 in maintaining keratinocyte proliferation and survival in adult epidermis and basal cell carcinoma, thus providing a rationale for using HDAC inhibitors for the treatment of hyperproliferative and neoplastic skin disorders.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Andrey A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
180
|
Sabnis RW. Novel Histone Deacetylase 6 Inhibitors for Treating Alzheimer's Disease and Cancer. ACS Med Chem Lett 2021; 12:1202-1203. [PMID: 34413942 DOI: 10.1021/acsmedchemlett.1c00339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
181
|
Sabnis RW. Novel Histone Deacetylase Inhibitors for Treating HIV Infection. ACS Med Chem Lett 2021; 12:1196-1197. [PMID: 34413939 DOI: 10.1021/acsmedchemlett.1c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|