151
|
Bcl-2-enhanced efficacy of microtubule-targeting chemotherapy through Bim overexpression: implications for cancer treatment. Neoplasia 2013; 15:49-60. [PMID: 23358890 DOI: 10.1593/neo.121074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
Bcl-2 is commonly overexpressed in tumors, where it is often associated with unfavorable outcome. However, it has also been linked to a favorable sensitivity to microtubule-targeting agents (MTAs). We show that Bcl-2-overexpressing lung and breast cancer cells were more sensitive to both paclitaxel and vinorelbine. Bcl-2 over-expression also significantly potentiated in vivo efficacy of paclitaxel, in terms of tumor volume decrease and survival benefits, in models of nude mice bearing lung cancer xenografts. To further investigate this favorable effect of Bcl-2, a genomic approach was taken. It revealed that Bcl-2 overexpression induced up-regulation of the proapoptotic protein Bim in lung cancer cells and that, conversely, Bcl-2 silencing decreased Bim expression level. A gene regulation study implicated the transcription factor Forkhead box-containing protein, class O3a in Bim up-regulation. Lastly, we show that Bim was responsible for MTA-triggered lung cancer cell death through a dynamin-related protein 1-mediated mitochondrial fragmentation. The Bcl-2-governed Bim induction evidence offers for the first time an explanation for the favorable higher sensitivity to treatment shown by Bcl-2-overexpressing cells. We suggest that Bim could be a powerful predictive factor for tumor response to MTA chemotherapy. Our data also give new insight into some failures in the efficacy of therapies targeted against Bcl-2.
Collapse
|
152
|
Li Q, Wang X, Wang P, Zhang K, Wang H, Feng X, Liu Q. Efficacy of chlorin e6-mediated sono-photodynamic therapy on 4T1 cells. Cancer Biother Radiopharm 2013; 29:42-52. [PMID: 24206161 DOI: 10.1089/cbr.2013.1526] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The present study aims to investigate the antitumor effect and possible mechanisms of chlorin e6 (Ce6)-mediated sono-photodynamic therapy (Ce6-SPDT) on murine 4T1 mammary cancer cells in vitro. MATERIALS Cellular uptake and intracellular distribution of Ce6 in 4T1 cells were detected by flow cytometry and confocal microscope. Cells after loading with 1 μg/mL Ce6 were exposed to ultrasound at 1.0 MHz for up to 1 minute with an intensity of 0.36 W/cm2 and laser light with total radiation dose of 1.2 J/cm2. Cell viability and clonogenicity were determined by MTT assay and colony formation assay. Apoptosis was analyzed by DAPI staining, Western blots were used to detect the activity of Caspase-3. DNA damage, mitochondrial membrane potential (MMP), and intracellular reactive oxygen species (ROS) of 4T1 cells were also evaluated by flow cytometry. FD500 was employed to detect changes of membrane permeability after ultrasound. RESULTS Ce6 rapidly entered 4T1 cells within 4 hours after it has been added and displayed a mitochondria-localization pattern. Compared with sonodynamic therapy (SDT) and photodynamic therapy (PDT) alone, the combined SPDT treatment further enhanced cell viability loss, DNA damage, and clonogenicity inhibition. DAPI staining and western blots analysis reflected that cells with apoptotic morphological characteristics and the activity of Caspase-3 were apparently increased in the combined group. Besides, SPDT caused obvious MMP loss and intracellular ROS generation at early 1 hour post treatment. Interestingly, the SPDT induced cell viability loss and cell apoptosis was greatly inhibited by pre-treatment with ROS scavenger N-acetylcysteine and Caspase inhibitor z-VAD-fmk. FD500 detection showed that ultrasound enhanced cell membrane permeability, implying much higher uptake of Ce6 might be involved in PDT therapy by pre-ultrasound treatment. CONCLUSIONS The findings demonstrated that Ce6-mediated SPDT enhanced the antitumor efficacy on 4T1 cells compared with SDT and PDT alone, a Caspase-dependent apoptosis and loss of MMP, generation of ROS may be involved.
Collapse
Affiliation(s)
- Qing Li
- 1 Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University , Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
153
|
Bandiera S, Matégot R, Girard M, Demongeot J, Henrion-Caude A. MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med 2013; 64:12-9. [PMID: 23792138 DOI: 10.1016/j.freeradbiomed.2013.06.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
Mitochondria play a crucial role in energetic metabolism, signaling pathways, and overall cell viability. Mitochondrial dysfunctions are known to cause a wide range of human diseases that affect tissues especially those with high energetic requirements, such as skeletal muscle, heart, kidney, and central nervous system, while being involved in cancer, aging, and metabolic processes. At the same time, the microRNA (miRNA) gene family has been demonstrated to be involved in most cellular processes through modulation of proteins critical for cellular homeostasis. Given the broad scope of reactivity profiles and the ability of miRNAs to modify numerous proteomic and genomic processes, new emphasis is being placed on the influence of miRNAs at the mitochondrial level. Recently, the localization of miRNAs in mitochondria was characterized in different species. This raises the idea that those miRNAs, noted "mitomiRs," could act as "vectors" that sense and respond dynamically to the changing microenvironment of mitochondria at the cellular level. Reciprocally, we present the involvement of mitochondria in small RNA biogenesis. With the aim of deciphering the significance of this localization, we discuss the putative mechanism of import of miRNAs at mitochondria, their origin, and their hypothetical roles within the organelle.
Collapse
Affiliation(s)
- S Bandiera
- INSERM U781 Hôpital Necker-Enfants Malades, Université Paris Descartes-Sorbonne Cité, Institut Imagine, 75015, Paris, France
| | | | | | | | | |
Collapse
|
154
|
Zhang J, Tang J, Cao B, Zhang Z, Li J, Schimmer AD, He S, Mao X. The natural pesticide dihydrorotenone induces human plasma cell apoptosis by triggering endoplasmic reticulum stress and activating p38 signaling pathway. PLoS One 2013; 8:e69911. [PMID: 23922854 PMCID: PMC3724796 DOI: 10.1371/journal.pone.0069911] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/13/2013] [Indexed: 01/04/2023] Open
Abstract
Dihydrorotenone (DHR) is a natural pesticide widely used in farming industry, such as organic produces. DHR is a potent mitochondrial inhibitor and probably induces Parkinsonian syndrome, however, it is not known whether DHR is toxic to other systems. In the present study, we evaluated the cytotoxicity of DHR on human plasma cells. As predicted, DHR impaired mitochondrial function by decreasing mitochondrial membrane potential in plasma cells. Because mito-dysfunction leads to unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, we examined the signature proteins in ER stress, including GRP78, ATF4, and CHOP. After DHR treatment, these proteins were significantly upregulated. It is reported that activation of the mitogen-activated protein kinases p38 and JNK are involved in endoplasmic reticulum stress. However, in the subsequent study, DHR was found to activate p38 but not the JNK signaling. When pre-treated with p38 inhibitor SB203580, activation of p38 and cell apoptosis induced by DHR was partially blocked. Thus, we found that DHR induced human plasma cell death by activating the p38 but not the JNK signaling pathway. Because plasma cells are very important in the immune system, this study provided a new insight in the safety evaluation of DHR application.
Collapse
Affiliation(s)
- Jieyu Zhang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Juan Tang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Biyin Cao
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Zubin Zhang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Jie Li
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Aaron D. Schimmer
- Ontario Cancer Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sudan He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Xinliang Mao
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Pharmacology, College of Pharmacy, Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
155
|
Chen RM, Tai YT, Chen TG, Lin TH, Chang HC, Chen TL, Wu GJ. Propofol protects against nitrosative stress-induced apoptotic insults to cerebrovascular endothelial cells via an intrinsic mitochondrial mechanism. Surgery 2013; 154:58-68. [DOI: 10.1016/j.surg.2013.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/05/2013] [Indexed: 11/16/2022]
|
156
|
Resveratrol Induces Pro-oxidant Effects and Time-Dependent Resistance to Cytotoxicity in Activated Hepatic Stellate Cells. Cell Biochem Biophys 2013; 68:247-57. [DOI: 10.1007/s12013-013-9703-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
157
|
Contreras-Ochoa CO, Lagunas-Martínez A, Belkind-Gerson J, Díaz-Chávez J, Correa D. Toxoplasma gondii invasion and replication within neonate mouse astrocytes and changes in apoptosis related molecules. Exp Parasitol 2013; 134:256-65. [DOI: 10.1016/j.exppara.2013.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 02/02/2023]
|
158
|
Su YC, Qi X. Impairment of mitochondrial dynamics: a target for the treatment of neurological disorders? FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has long been appreciated in the pathogenesis of various neurological disorders. However, the molecular basis underlying the decline in mitochondrial function is not fully understood. Mitochondria are highly dynamic organelles that frequently undergo fusion and fission. In healthy cells, the delicate balance between fusion and fission is required for maintaining normal mitochondrial and cellular function. However, under pathological conditions, the balance is disrupted, resulting in excessive mitochondrial fragmentation and mitochondrial dysfunction. The impaired fusion and fission processes can lead to apoptosis, necrosis and autophagic cell death and seem to play causal roles in the progression of acute and chronic neuronal injuries. In this article, important aspects of what is currently known about the molecular machinery regulating mitochondrial fission and fusion in mammalian cells is summarized. Special emphasis will be given to the consequences of disregulated mitochondrial morphology in the pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Yu-Chin Su
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, E516, Cleveland, OH, 44106-44970, USA
| |
Collapse
|
159
|
Hsiao CP, Wang D, Kaushal A, Saligan L. Mitochondria-related gene expression changes are associated with fatigue in patients with nonmetastatic prostate cancer receiving external beam radiation therapy. Cancer Nurs 2013; 36:189-97. [PMID: 23047795 PMCID: PMC4665987 DOI: 10.1097/ncc.0b013e318263f514] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cancer-related fatigue (CRF) is associated with negative health outcomes and decreased health-related quality of life; however, few longitudinal studies have investigated molecular-genetic mechanisms of CRF. OBJECTIVE The objective of this study was to describe relationships between mitochondria-related gene expression changes and self-reported fatigue in prostate cancer patients receiving external beam radiation therapy (EBRT). METHODS A prospective, exploratory, and repeated-measures design was used. Self-report questionnaires and peripheral whole-blood samples were collected from 15 patients at 7 time points. Baseline data were compared against 15 healthy controls. The Human Mitochondria RT Profiler PCR Array was used to identify differential regulation of genes involved in mitochondrial biogenesis and function. RESULTS Compared with baseline, there were significant increases in fatigue scores (P = .02-.04) and changes in mitochondria-related gene expression (P = .001-.05) over time. Mean fatigue scores were 1.66 (SD, 1.66) at baseline, 3.06 (SD, 1.95) at EBRT midpoint, 2.98 (SD, 2.20) at EBRT completion, and 2.64 (SD, 2.56) at 30 days after EBRT. Over time, 11 genes related to mitochondrial function and structure were differentially expressed. Of these 11 genes, 3 (BCL2L1, FIS1, SLC25A37) were more than 2.5 fold up-regulated, and 8 (AIFM2, BCL2, IMMP2L, MIPEP, MSTO1, NEFL, SLC25A23, SLC25A4) were greater than 2-fold down-regulated. Furthermore, 8 genes (AIFM2, BCL2, FIS1, IMMP2L, MSTO1, SLC25A23, SLC25A37, SLC25A4) were significantly associated with the changes in fatigue scores. CONCLUSION This study provides preliminary evidence that 8 mitochondrial function genes were significantly associated with fatigue in prostate cancer patients during EBRT. IMPLICATIONS FOR PRACTICE These findings identify possible pathways and early biomarkers for targeting novel interventions for CRF.
Collapse
Affiliation(s)
- Chao-Pin Hsiao
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
160
|
Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission. Toxicol Lett 2013; 218:30-8. [DOI: 10.1016/j.toxlet.2013.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/04/2012] [Accepted: 01/12/2013] [Indexed: 11/23/2022]
|
161
|
Gray JJ, Zommer AE, Bouchard RJ, Duval N, Blackstone C, Linseman DA. N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress. Brain Res 2012; 1494:28-43. [PMID: 23220553 DOI: 10.1016/j.brainres.2012.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/16/2012] [Accepted: 12/01/2012] [Indexed: 01/02/2023]
Abstract
Neuronal cell death via apoptosis or necrosis underlies several devastating neurodegenerative diseases associated with aging. Mitochondrial dysfunction resulting from oxidative or nitrosative stress often acts as an initiating stimulus for intrinsic apoptosis or necrosis. These events frequently occur in conjunction with imbalances in the mitochondrial fission and fusion equilibrium, although the cause and effect relationships remain elusive. Here, we demonstrate in primary rat cerebellar granule neurons (CGNs) that oxidative or nitrosative stress induces an N-terminal cleavage of optic atrophy-1 (OPA1), a dynamin-like GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. This cleavage event is indistinguishable from the N-terminal cleavage of OPA1 observed in CGNs undergoing caspase-mediated apoptosis (Loucks et al., 2009) and results in removal of a key lysine residue (K301) within the GTPase domain. OPA1 cleavage in CGNs occurs coincident with extensive mitochondrial fragmentation, disruption of the microtubule network, and cell death. In contrast to OPA1 cleavage induced in CGNs by removing depolarizing extracellular potassium (5K apoptotic conditions), oxidative or nitrosative stress-induced OPA1 cleavage caused by complex I inhibition or nitric oxide, respectively, is caspase-independent. N-terminal cleavage of OPA1 is also observed in vivo in aged rat and mouse midbrain and hippocampal tissues. We conclude that N-terminal cleavage and subsequent inactivation of OPA1 may be a contributing factor in the neuronal cell death processes underlying neurodegenerative diseases, particularly those associated with aging. Furthermore, these data suggest that OPA1 cleavage is a likely convergence point for mitochondrial dysfunction and imbalances in mitochondrial fission and fusion induced by oxidative or nitrosative stress.
Collapse
Affiliation(s)
- Josie J Gray
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | | | | | | | | | | |
Collapse
|
162
|
Itoh K, Nakamura K, Iijima M, Sesaki H. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 2012; 23:64-71. [PMID: 23159640 DOI: 10.1016/j.tcb.2012.10.006] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/18/2012] [Accepted: 10/03/2012] [Indexed: 12/21/2022]
Abstract
It has been only 15 years since studies began on the molecular mechanisms underlying mitochondrial fission and fusion using simple model organisms such as Drosophila, yeast, and Caenorhabditis elegans. Beyond the primary functions of mitochondrial fission and fusion in controlling organelle shape, size, and number, it became clear that these dynamic processes are also critical to regulating cell death, mitophagy, and organelle distribution. Now, studies suggest that prominent changes occur in mitochondrial dynamics in a broad array of neurodegenerative diseases, and there is substantial evidence suggesting a key role in disease pathogenesis because neurons are among the most energy-consuming cell types and have a highly developed cell shape. Here, we review the recent findings on mitochondrial dynamics in neurodegeneration.
Collapse
Affiliation(s)
- Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
163
|
Bax activation initiates the assembly of a multimeric catalyst that facilitates Bax pore formation in mitochondrial outer membranes. PLoS Biol 2012; 10:e1001394. [PMID: 23049480 PMCID: PMC3457932 DOI: 10.1371/journal.pbio.1001394] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP) is essential for "intrinsic" apoptotic cell death. Published studies used synthetic liposomes to reveal an intrinsic pore-forming activity of Bax, but it is unclear how other mitochondrial outer membrane (MOM) proteins might facilitate this function. We carefully analyzed the kinetics of Bax-mediated pore formation in isolated MOMs, with some unexpected results. Native MOMs were more sensitive than liposomes to added Bax, and MOMs displayed a lag phase not observed with liposomes. Heat-labile MOM proteins were required for this enhanced response. A two-tiered mathematical model closely fit the kinetic data: first, Bax activation promotes the assembly of a multimeric complex, which then catalyzes the second reaction, Bax-dependent pore formation. Bax insertion occurred immediately upon Bax addition, prior to the end of the lag phase. Permeabilization kinetics were affected in a reciprocal manner by [cBid] and [Bax], confirming the "hit-and-run" hypothesis of cBid-induced direct Bax activation. Surprisingly, MOMP rate constants were linearly related to [Bax], implying that Bax acts non-cooperatively. Thus, the oligomeric catalyst is distinct from Bax. Moreover, contrary to common assumption, pore formation kinetics depend on Bax monomers, not oligomers. Catalyst formation exhibited a sharp transition in activation energy at ∼28°C, suggesting a role for membrane lipid packing. Furthermore, catalyst formation was strongly inhibited by chemical antagonists of the yeast mitochondrial fission protein, Dnm1. However, the mammalian ortholog, Drp1, was undetectable in mitochondrial outer membranes. Moreover, ATP and GTP were dispensable for MOMP. Thus, the data argue that oligomerization of a catalyst protein, distinct from Bax and Drp1, facilitates MOMP, possibly through a membrane-remodeling event.
Collapse
|
164
|
Ferree A, Shirihai O. Mitochondrial dynamics: the intersection of form and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:13-40. [PMID: 22729853 DOI: 10.1007/978-1-4614-3573-0_2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mitochondria within a cell exist as a population in a dynamic -morphological continuum. The balance of mitochondrial fusion and fission dictates a spectrum of shapes from interconnected networks to fragmented individual units. This plasticity bestows the adaptive flexibility needed to adjust to changing cellular stresses and metabolic demands. The mechanisms that regulate mitochondrial dynamics, their importance in normal cell biology, and the roles they play in disease conditions are only beginning to be understood. Dysfunction of mitochondrial dynamics has been identified as a possible disease mechanism in Parkinson's disease. This chapter will introduce the budding field of mitochondrial dynamics and explore unique characteristics of affected neurons in Parkinson's disease that increase susceptibility to disruptions in mitochondrial dynamics.
Collapse
Affiliation(s)
- Andrew Ferree
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
165
|
Abstract
With the current explosion of knowledge on the role of mitochondrial dysfunction in the genesis of various human disease states, there is an increased interest in targeting mitochondrial processes, pathways, and proteins for drug discovery efforts in cancer and cardiovascular, metabolic, and central nervous system diseases, the latter including autism and neurodegenerative diseases. We provide an update on understanding the central role of the mitochondrion in ATP and reactive oxygen species production and in controlling cell death pathways.
Collapse
Affiliation(s)
- Robert E Davis
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
166
|
Abstract
Mitochondria are dynamic organelles that continually undergo fusion and fission. These opposing processes work in concert to maintain the shape, size, and number of mitochondria and their physiological function. Some of the major molecules mediating mitochondrial fusion and fission in mammals have been discovered, but the underlying molecular mechanisms are only partially unraveled. In particular, the cast of characters involved in mitochondrial fission needs to be clarified. By enabling content mixing between mitochondria, fusion and fission serve to maintain a homogeneous and healthy mitochondrial population. Mitochondrial dynamics has been linked to multiple mitochondrial functions, including mitochondrial DNA stability, respiratory capacity, apoptosis, response to cellular stress, and mitophagy. Because of these important functions, mitochondrial fusion and fission are essential in mammals, and even mild defects in mitochondrial dynamics are associated with disease. A better understanding of these processes likely will ultimately lead to improvements in human health.
Collapse
Affiliation(s)
- David C Chan
- Division of Biology and the Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
167
|
Lovy A, Molina AJA, Cerqueira FM, Trudeau K, Shirihai OS. A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy. J Vis Exp 2012:e3991. [PMID: 22847388 DOI: 10.3791/3991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment. Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks. Often times, upon fragmentation, mitochondria become depolarized, and upon accumulation this leads to impaired cell function. Mitochondrial fission has been shown to signal a cell to progress toward apoptosis. It can also provide a mechanism by which to separate depolarized and inactive mitochondria to keep the bulk of the network robust. Fusion of mitochondria, on the other hand, leads to sharing of matrix proteins, solutes, mtDNA and the electrochemical gradient, and also seems to prevent progression to apoptosis. How fission and fusion of mitochondria affects cell homeostasis and ultimately the functioning of the organism needs further understanding, and therefore the continuous development and optimization of how to gather information on these phenomena is necessary. Existing mitochondrial fusion assays have revealed various insights into mitochondrial physiology, each having its own advantages. The hybrid PEG fusion assay, mixes two populations of differently labeled cells (mtRFP and mtYFP), and analyzes the amount of mixing and colocalization of fluorophores in fused, multinucleated, cells. Although this method has yielded valuable information, not all cell types can fuse, and the conditions under which fusion is stimulated involves the use of toxic drugs that likely affect the normal fusion process. More recently, a cell free technique has been devised, using isolated mitochondria to observe fusion events based on a luciferase assay. Two human cell lines are targeted with either the amino or a carboxy terminal part of Renilla luciferase along with a leucine zipper to ensure dimerization upon mixing. Mitochondria are isolated from each cell line, and fused. The fusion reaction can occur without the cytosol under physiological conditions in the presence of energy, appropriate temperature and inner mitochondrial membrane potential. Interestingly, the cytosol was found to modulate the extent of fusion, demonstrating that cell signaling regulates the fusion process. This assay will be very useful for high throughput screening to identify components of the fusion machinery and also pharmacological compounds that may affect mitochondrial dynamics. However, more detailed whole cell mitochondrial assays will be needed to complement this in vitro assay to observe these events within a cellular environment. A technique for monitoring whole-cell mitochondrial dynamics has been in use for some time and is based on a mitochondrially-targeted photoactivatable GFP (mtPAGFP). Upon expression of the mtPAGFP, a small portion of the mitochondrial network is photoactivated (10-20%), and the spread of the signal to the rest of the mitochondrial network is recorded every 15 minutes for 1 hour using time lapse confocal imaging. Each fusion event leads to a dilution of signal intensity, enabling quantification of the fusion rate. Although fusion and fission are continuously occurring in cells, this technique only monitors fusion as fission does not lead to a dilution of the PAGFP signal. Co-labeling with low levels of TMRE (7-15 nM in INS1 cells) allows quantification of the membrane potential of mitochondria. When mitochondria are hyperpolarized they uptake more TMRE, and when they depolarize they lose the TMRE dye. Mitochondria that depolarize no longer have a sufficient membrane potential and tend not to fuse as efficiently if at all. Therefore, active fusing mitochondria can be tracked with these low levels of TMRE. Accumulation of depolarized mitochondria that lack a TMRE signal may be a sign of phototoxicity or cell death. Higher concentrations of TMRE render mitochondria very sensitive to laser light, and therefore great care must be taken to avoid overlabeling with TMRE. If the effect of depolarization of mitochondria is the topic of interest, a technique using slightly higher levels of TMRE and more intense laser light can be used to depolarize mitochondria in a controlled fashion (Mitra and Lippincott-Schwartz, 2010). To ensure that toxicity due to TMRE is not an issue, we suggest exposing loaded cells (3-15 nM TMRE) to the imaging parameters that will be used in the assay (perhaps 7 stacks of 6 optical sections in a row), and assessing cell health after 2 hours. If the mitochondria appear too fragmented and cells are dying, other mitochondrial markers, such as dsRED or Mitotracker red could be used instead of TMRE. The mtPAGFP method has revealed details about mitochondrial network behavior that could not be visualized using other methods. For example, we now know that mitochondrial fusion can be full or transient, where matrix content can mix without changing the overall network morphology. Additionally, we know that the probability of fusion is independent of contact duration and organelle dimension, is influenced by organelle motility, membrane potential and history of previous fusion activity. In this manuscript, we describe a methodology for scaling up the previously published protocol using mtPAGFP and 15 nM TMRE in order to examine multiple cells at a time and improve the time efficiency of data collection without sacrificing the subcellular resolution. This has been made possible by the use of an automated microscope stage, and programmable image acquisition software. Zen software from Zeiss allows the user to mark and track several designated cells expressing mtPAGFP. Each of these cells can be photoactivated in a particular region of interest, and stacks of confocal slices can be monitored for mtPAGFP signal as well as TMRE at specified intervals. Other confocal systems could be used to perform this protocol provided there is an automated stage that is programmable, an incubator with CO2, and a means by which to photoactivate the PAGFP; either a multiphoton laser, or a 405 nm diode laser.
Collapse
Affiliation(s)
- Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine
| | | | | | | | | |
Collapse
|
168
|
Liu CJ, Lin JY. Anti-inflammatory and anti-apoptotic effects of strawberry and mulberry fruit polysaccharides on lipopolysaccharide-stimulated macrophages through modulating pro-/anti-inflammatory cytokines secretion and Bcl-2/Bak protein ratio. Food Chem Toxicol 2012; 50:3032-9. [PMID: 22721979 DOI: 10.1016/j.fct.2012.06.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/27/2012] [Accepted: 06/11/2012] [Indexed: 12/31/2022]
Abstract
This study is the first to isolate strawberry (SP) and mulberry fruit polysaccharides (MP) and assess their anti-inflammatory and anti-apoptotic activities using lipopolysaccharide (LPS)-stimulated mouse primary macrophages. Pro-/anti-inflammatory cytokine levels secreted by LPS-stimulated macrophages cultured with SP and MP for 48 h were determined using ELISA method to evaluate anti-inflammatory effects of SP and MP. The Bcl-2/Bak (anti-/pro-apoptotic) protein levels in the cells were determined using Western blotting method to evaluate anti-apoptotic effects of SP and MP. The results showed that the maximum absorption peak of SP and MP appeared at 240 nm with a small shoulder around 280∼310 nm, suggesting that SP and MP might be glycoproteins. SP- and MP-treatment significantly (P<0.05) decreased pro-inflammatory cytokines including interleukin (IL)-1β and IL-6, whereas the anti-inflammatory cytokine IL-10 was markedly increased, suggesting that SP and MP have anti-inflammation potential via modulating pro-/anti-inflammatory cytokine secretion profiles. Both SP and MP modulated Bak and Bcl-2 protein levels in the cells, suggesting that the SP and MP protected LPS-stimulated macrophages from apoptotic cell death. A negative correlation between cytokine secretion levels and Bcl-2 protein levels suggested that pro-inflammatory IL-1β and IL-6 cytokines decreased Bcl-2 levels in the LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Chieh-Jung Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC
| | | |
Collapse
|
169
|
Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats. Crit Care Med 2012; 40:1279-90. [PMID: 22336724 DOI: 10.1097/ccm.0b013e31823dae23] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Mesenchymal stem cells have previously been shown to offer significant therapeutic benefit in ischemic organ injuries. This study aimed at investigating the therapeutic role of adipose tissue-derived mesenchymal stem cells in hepatic ischemia-reperfusion injury and the underlying mechanisms. DESIGN Adult male Fisher rats (n = 30) were equally divided into three groups (group 1: Sham-operated normal controls; group 2: Ischemia-reperfusion injury with intravenous fresh culture medium; group 3: Ischemia-reperfusion injury with intravenous adipose tissue-derived mesenchymal stem cells). Ischemia-reperfusion injury was induced by occluding the vascular supplies of left lobe liver for 60 minutes followed by reperfusion for 72 hrs. Adipose tissue-derived mesenchymal stem cells (1.2 × 106) were administered through tail vein immediately after reperfusion and at 6 hrs and 24 hrs after reperfusion in group 3. All animals were sacrificed 72 hrs after reperfusion. SETTING Animal laboratory at a medical institute. MEASUREMENTS AND MAIN RESULTS Histologic features, plasma aspartate aminotransferase, hepatic cytokine profile, oxidative stress, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling were analyzed. Seventy-two hrs after reperfusion, plasma aspartate aminotransferase, hepatic oxidative stress, messenger RNA expressions of tumor necrosis factor-a, transforming growth factor-b, interleukin-1b, interleukin-6, endothelin-1, matrix metalloproteinase-9, plasminogen activator inhibitor-1, Bax and caspase-3, protein expression of intercellular adhesion molecule as well as the number of apoptotic nuclei were significantly increased in group 2 compared with group 3, whereas messenger RNA expressions of endothelial nitric oxide synthase, Bcl-2, interleukin-10, protein expressions of reduced nicotinamide-adenine dinucleotide phosphate:quinone oxidoreductase 1, and heme oxygenase-1 were lower in group 2 than group 3. CONCLUSIONS The results showed that systemic adipose tissue-derived mesenchymal stem cell administration significantly preserved hepatocyte integrity and suppressed inflammatory responses, oxidative stress, and apoptosis in a rodent model of hepatic ischemia-reperfusion injury.
Collapse
|
170
|
Zhao P, Han T, Guo JJ, Zhu SL, Wang J, Ao F, Jing MZ, She YL, Wu ZH, Ye LB. HCV NS4B induces apoptosis through the mitochondrial death pathway. Virus Res 2012; 169:1-7. [PMID: 22542667 DOI: 10.1016/j.virusres.2012.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/03/2012] [Accepted: 04/11/2012] [Indexed: 02/07/2023]
Abstract
The hepatitis C virus (HCV) NS4B protein is known to induce the formation of a membranous web that is thought to be the site of viral RNA replication. However, the exact functions of NS4B remain poorly characterized. In this study, we found that NS4B induced apoptosis in 293T cells and Huh7 cells, as confirmed by Hoechst staining, DNA fragmentation, and annexin V/PI assays. Furthermore, protein immunoblot analysis demonstrated that NS4B triggered the cleavage of caspase 3, caspase 7, and poly(ADP-ribose) polymerase (PARP). Further studies revealed that NS4B induced the activation of caspase 9, the reduction of mitochondrial membrane potential and the release of cytochrome c from the mitochondria. However, NS4B expression did not trigger XBP1 mRNA splicing and increase the expression of binding immunoglobulin protein (BiP, or GRP78) and C/EBP homologous protein (CHOP), which serves as the indicators of ER stress. Taken together, our results suggest that HCV NS4B induces apoptosis through the mitochondrial death pathway.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Zampese E, Pizzo P. Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? Cell Mol Life Sci 2012; 69:1077-104. [PMID: 21968921 PMCID: PMC11114864 DOI: 10.1007/s00018-011-0845-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
An increase in the concentration of cytosolic free Ca(2+) is a key component regulating different cellular processes ranging from egg fertilization, active secretion and movement, to cell differentiation and death. The multitude of phenomena modulated by Ca(2+), however, do not simply rely on increases/decreases in its concentration, but also on specific timing, shape and sub-cellular localization of its signals that, combined together, provide a huge versatility in Ca(2+) signaling. Intracellular organelles and their Ca(2+) handling machineries exert key roles in this complex and precise mechanism, and this review will try to depict a map of Ca(2+) routes inside cells, highlighting the uniqueness of the different Ca(2+) toolkit components and the complexity of the interactions between them.
Collapse
Affiliation(s)
- Enrico Zampese
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
172
|
Li Y, Wang P, Zhao P, Zhu S, Wang X, Liu Q. Apoptosis induced by sonodynamic treatment by protoporphyrin IX on MDA-MB-231 cells. ULTRASONICS 2012; 52:490-496. [PMID: 22115526 DOI: 10.1016/j.ultras.2011.10.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/21/2011] [Accepted: 10/30/2011] [Indexed: 05/31/2023]
Abstract
Sonodynamic therapy (SDT) is a promising modality for cancer treatment, involving the synergistic interaction of ultrasound and some chemical compounds termed as sono-sensitizers. It has been found that SDT can lead to apoptotic cell death because of the induction of direct sonochemical and subsequent redox reactions. However, the detailed mechanisms are not clear. This study was to identify the cytotoxic effects of ultrasound-activated protoporphyrin IX (PpIX) on MDA-MB-231 cells. The fluorescence microscope was used to detect the sub-cellular localization of PpIX. Several distinct sonochemical effects were found after SDT treatment, including the decrease of cell viability, generation of intracellular ROS, the loss of mitochondrial membrane potential. The activation of some special apoptosis-associated proteins [Caspase-9, Caspase-3 and polypeptide poly (ADP-robose) polymerase] was evaluated by western blotting. The results show that PpIX mediated SDT (PpIX-SDT) treatment could obviously inhibit the proliferation of MDA-MB-231 cells, and which was significantly reduced by the pan-Caspase inhibitor z-VAD-fmk and the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC). Further, SDT induced a conspicuous loss of mitochondrial membrane potential (MMP) and a mass of ROS accumulation in MDA-MB-231 cells at 1h post-treatment and the SDT-treated cells showed obvious Caspase-3 and Caspase-9 activation, and PARP cleavage at 6h after treatment. And, the general apoptosis marker-Caspase-3 activation-was also greatly relieved by NAC. These findings primarily indicate a Caspase-depended apoptosis could be induced by PpIX-SDT in MDA-MB-231 cells, and the intracellular ROS was involved during the apoptotic process.
Collapse
Affiliation(s)
- Yixiang Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, China
| | | | | | | | | | | |
Collapse
|
173
|
Rodrigues V, Cordeiro-da-Silva A, Laforge M, Ouaissi A, Silvestre R, Estaquier J. Modulation of mammalian apoptotic pathways by intracellular protozoan parasites. Cell Microbiol 2012; 14:325-33. [PMID: 22168464 DOI: 10.1111/j.1462-5822.2011.01737.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During intracellular parasitic infections, pathogens and host cells take part in a complex web of events that are crucial for the outcome of the infection. Modulation of host cell apoptosis by pathogens attracted the attention of scientists during the last decade. Apoptosis is an efficient mechanism used by the host to control infection and limit pathogen multiplication and dissemination. In order to ensure completion of their complex life cycles and to guarantee transmission between different hosts, intracellular parasites have developed mechanisms to block apoptosis and sustain the viability of their host cells. Here, we review how some of the most prominent intracellular protozoan parasites modulate the main mammalian apoptotic pathways by emphasizing the advances from the last decade, which have begun to dissect this dynamic and complex interaction.
Collapse
|
174
|
Oettinghaus B, Licci M, Scorrano L, Frank S. Less than perfect divorces: dysregulated mitochondrial fission and neurodegeneration. Acta Neuropathol 2012; 123:189-203. [PMID: 22179580 DOI: 10.1007/s00401-011-0930-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/29/2022]
Abstract
Research efforts during the last decade have deciphered the basic molecular mechanisms governing mitochondrial fusion and fission. We now know that in mammalian cells mitochondrial fission is mediated by the large GTPase dynamin-related protein 1 (Drp1) acting in concert with outer mitochondrial membrane (OMM) proteins such as Fis1, Mff, and Mief1. It is also generally accepted that organelle fusion depends on the action of three large GTPases: mitofusins (Mfn1, Mfn2) mediating membrane fusion on the OMM level, and Opa1 which is essential for inner mitochondrial membrane fusion. Significantly, mutations in Drp1, Mfn2, and Opa1 have causally been linked to neurodegenerative conditions. Despite this knowledge, crucial questions such as to how fission of the inner and outer mitochondrial membranes are coordinated and how these processes are integrated into basic physiological processes such as apoptosis and autophagy remain to be answered in detail. In this review, we will focus on what is currently known about the mechanism of mitochondrial fission and explore the pathophysiological consequences of dysregulated organelle fission with a special focus on neurodegenerative conditions, including Alzheimer's, Huntington's and Parkinson's disease, as well as ischemic brain damage.
Collapse
Affiliation(s)
- Björn Oettinghaus
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
175
|
Wang Z, Cheng Y, Wang N, Wang DM, Li YW, Han F, Shen JG, Yang DP, Guan XY, Chen JP. Dioscin induces cancer cell apoptosis through elevated oxidative stress mediated by downregulation of peroxiredoxins. Cancer Biol Ther 2012; 13:138-47. [PMID: 22231406 DOI: 10.4161/cbt.13.3.18693] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dioscin has been shown to promote anticancer activity against several forms of cancers. However, its detailed molecular mechanisms have not been clearly clarified.In this study, we demonstrate that dioscin induces apoptosis in cancer cells through the induction of oxidative stress. Treatment with cancer cells in vitro with dioscin resulted in rapid generation of reactive oxygen species (ROS) and the induction of mitochondrial pathway apoptosis in human esophageal cancer cell line Kyse510. Inhibition of oxidative stress by the antioxidant N-acetylcysteine blocked the induction of apoptosis by dioscin, indicating that ROS generation is the primary mechanism responsible for the proapoptotic activity of dioscin. Proteomic analysis and protein gel blotting further revealed peroxiredoxins 1 and 6 (PRDX 1 and 6), which are implicated in ROS metabolism and apoptosis, were associated with the anticancer effects of dioscin. Meanwhile, overexpression of PRDX 1 and 6 significantly blocked the elevated ROS and apoptosis induced by dioscin. In conclusion, we suggest that PRDX1 and PRDX6 are key targets in the process of dioscin-induced apoptosis that involves intracellular elevated ROS.
Collapse
Affiliation(s)
- Zhiyu Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Grimm S. The ER-mitochondria interface: the social network of cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:327-34. [PMID: 22182703 DOI: 10.1016/j.bbamcr.2011.11.018] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/20/2011] [Accepted: 11/21/2011] [Indexed: 12/23/2022]
Abstract
When cellular organelles communicate bad things can happen. Recent findings uncovered that the junction between the endoplasmic reticulum (ER) and the mitochondria holds a crucial role for cell death regulation. Not only does this locale connect the two best-known organelles in apoptosis, numerous regulators of cell death are concentrated at this spot, providing a terrain for intense signal transfers. Ca2+ is the most prominent signalling factor that is released from the ER and, at high concentration, mediates the transfer of an apoptosis signal to mitochondria as the executioner organelle for cell death. An elaborate array of checks and balances is fine-tuning this process including Bcl-2 family members. Moreover, MAMs, "mitochondria-associated membranes", are distinct membrane sections at the ER that are in close contact with mitochondria and have been found to exchange lipids and lipid-derived molecules such as ceramide for apoptosis induction. Recent work has also described a reverse transfer of apoptosis signals, from mitochondria to the ER, via cytochrome c release and prolonged IP3R opening or through the mitochondrial fission factor Fis1 and Bap31 at the ER, which form the ARCosome, a novel caspase-activation complex.
Collapse
|
177
|
Gu X, Yao Y, Cheng R, Zhang Y, Dai Z, Wan G, Yang Z, Cai W, Gao G, Yang X. Plasminogen K5 activates mitochondrial apoptosis pathway in endothelial cells by regulating Bak and Bcl-x(L) subcellular distribution. Apoptosis 2011; 16:846-55. [PMID: 21656147 DOI: 10.1007/s10495-011-0618-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plasminogen Kringle 5(K5) is a proteolytic fragment of plasminogen, which displays potent anti-angiogenic activities. K5 has been shown to induce apoptosis in proliferating endothelial cells; however the exact mechanism has not been well explored. The present study was designed to elucidate the possible molecular mechanism of K5-induced endothelial cell apoptosis. Our results showed that K5 inhibited basic fibroblast growth factors activated in human umbilical vein endothelial cells (HUVECs), indicating proliferation in a dose-dependent manner and induced endothelial cell death via apoptosis. K5 exposure activated caspase 7, 8 and 9. These results suggested that both the intrinsic mitochondrial apoptosis pathway and extrinsic pathway might be involved in K5-induced apoptosis. K5 reduced mitochondrial membrane potential (MMP) of HUVECs, demonstrating mitochondrial depolarization in HUVECs. K5 increased the ratio of Bak to Bcl-x(L) on mitochondria, decreased the ratio in cytosol, and had no effect on the total amounts of these proteins. K5 also did not effect on Bax/Bcl-2 distribution. K5 increased the ratio of Bak to Bcl-x(L) on mitochondrial that resulted in mitochondrial depolarization, cytochrome c release and consequently the cleavage of caspase 9. These results suggested that K5 induces endothelial cell apoptosis at least in part via activating mitochondrial apoptosis pathway. The regulation of K5 on Bak and Bcl-x(L) distribution may play an important role in endothelial cell apoptosis. These results provide further insight into the anti-angiogenesis roles of K5 in angiogenesis-related ocular diseases and solid tumors.
Collapse
Affiliation(s)
- Xiaoqiong Gu
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Papanicolaou KN, Ngoh GA, Dabkowski ER, O'Connell KA, Ribeiro RF, Stanley WC, Walsh K. Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am J Physiol Heart Circ Physiol 2011; 302:H167-79. [PMID: 22037195 DOI: 10.1152/ajpheart.00833.2011] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molecular studies examining the impact of mitochondrial morphology on the mammalian heart have previously focused on dynamin related protein-1 (Drp-1) and mitofusin-2 (Mfn-2), while the role of the other mitofusin isoform, Mfn-1, has remained largely unexplored. In the present study, we report the generation and initial characterization of cardiomyocyte-specific Mfn-1 knockout (Mfn-1 KO) mice. Using electron microscopic analysis, we detect a greater prevalence of small, spherical mitochondria in Mfn-1 KO hearts, indicating that the absence of Mfn-1 causes a profound shift in the mitochondrial fusion/fission balance. Nevertheless, Mfn-1 KO mice exhibit normal left-ventricular function, and isolated Mfn-1 KO heart mitochondria display a normal respiratory repertoire. Mfn-1 KO myocytes are protected from mitochondrial depolarization and exhibit improved viability when challenged with reactive oxygen species (ROS) in the form of hydrogen peroxide (H(2)O(2)). Furthermore, in vitro studies detect a blunted response of KO mitochondria to undergo peroxide-induced mitochondrial permeability transition pore opening. These data suggest that Mfn-1 deletion confers protection against ROS-induced mitochondrial dysfunction. Collectively, we suggest that mitochondrial fragmentation in myocytes is not sufficient to induce heart dysfunction or trigger cardiomyocyte death. Additionally, our data suggest that endogenous levels of Mfn-1 can attenuate myocyte viability in the face of an imminent ROS overload, an effect that could be associated with the ability of Mfn-1 to remodel the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Peng JY, Lin CC, Chen YJ, Kao LS, Liu YC, Chou CC, Huang YH, Chang FR, Wu YC, Tsai YS, Hsu CN. Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics. PLoS Comput Biol 2011; 7:e1002212. [PMID: 21998575 PMCID: PMC3188504 DOI: 10.1371/journal.pcbi.1002212] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/12/2011] [Indexed: 11/19/2022] Open
Abstract
Morphological dynamics of mitochondria is associated with key cellular processes related to aging and neuronal degenerative diseases, but the lack of standard quantification of mitochondrial morphology impedes systematic investigation. This paper presents an automated system for the quantification and classification of mitochondrial morphology. We discovered six morphological subtypes of mitochondria for objective quantification of mitochondrial morphology. These six subtypes are small globules, swollen globules, straight tubules, twisted tubules, branched tubules and loops. The subtyping was derived by applying consensus clustering to a huge collection of more than 200 thousand mitochondrial images extracted from 1422 micrographs of Chinese hamster ovary (CHO) cells treated with different drugs, and was validated by evidence of functional similarity reported in the literature. Quantitative statistics of subtype compositions in cells is useful for correlating drug response and mitochondrial dynamics. Combining the quantitative results with our biochemical studies about the effects of squamocin on CHO cells reveals new roles of Caspases in the regulatory mechanisms of mitochondrial dynamics. This system is not only of value to the mitochondrial field, but also applicable to the investigation of other subcellular organelle morphology. Mitochondria are “cellular power plants” that synthesize adenosine triphosphate (ATP) from degradation of nutrients, providing chemical energy for cellular activities. In addition, mitochondria are involved in a range of other cellular processes, such as signaling, cell differentiation, cell death, cell cycle and cell growth. Dysfunctional mitochondrial dynamics have been linked to several neurodegenerative diseases, and may play a role in the aging process. Previous studies on the correlation between mitochondrial morphological changes and pathological processes involve mostly manual or semi-automated classification and quantification of morphological features, which introduces biases and inconsistency, and are labor intensive. In this work we have developed an automated quantification system for mitochondrial morphology, which is able to extract and distinguish six representative morphological subtypes within cells. Using this system, we have analyzed 1422 cells and extracted more than 200 thousand individual mitochondrion, and calculated morphological statistics for each cell. From the numerical results we were able to derive new biological conclusions about mitochondrial morphological dynamics. With this new system, investigations of mitochondrial morphology can be scaled up and objectively quantified, allowing standardization of morphological distinctions and replicability between experiments. This system will facilitate future research on the relation between subcellular morphology and various physiological processes.
Collapse
Affiliation(s)
- Jyh-Ying Peng
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Taipei City Hospital, Taipei, Taiwan
- * E-mail: (JYP); (CNH)
| | - Chung-Chih Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Jen Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Young-Chau Liu
- College of Liberal Education, Shu-Te University, Kaohsiung City, Taiwan
| | - Chung-Chien Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Hung Huang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Yuh-Show Tsai
- Graduate Institute of Biomedical Engineering, Chung-Yuan Christian University, Zhongli City, Taiwan
| | - Chun-Nan Hsu
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Information Sciences Institute, University of Southern California, Marina del Rey, California, United States of America
- * E-mail: (JYP); (CNH)
| |
Collapse
|
180
|
ORAI-mediated calcium influx in T cell proliferation, apoptosis and tolerance. Cell Calcium 2011; 50:261-9. [DOI: 10.1016/j.ceca.2011.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 12/25/2022]
|
181
|
Alaimo A, Gorojod RM, Kotler ML. The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells. Neurochem Int 2011; 59:297-308. [DOI: 10.1016/j.neuint.2011.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 01/24/2023]
|
182
|
Tang MC, Su Y. Thymosin β₄ knockdown disrupts mitochondrial functions of SW480 human colon cancer cells. Cancer Sci 2011; 102:1665-72. [PMID: 21668580 DOI: 10.1111/j.1349-7006.2011.02002.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Thymosin β(4) (Tβ(4)), overexpressed in various tumors, has been shown to be involved in cellular anti-oxidation. Reactive oxygen species (ROS) function as signaling molecules and play certain roles in tumor progression. To assess the anti-oxidative role of endogenous Tβ(4) in tumor cells, its expression in SW480 cells was knocked down by a shRNA, which induced significant increases of ROS. Interestingly, some cristae-lost and several electron-dense mitochondria appeared in cells with Tβ(4) knockdown that was accompanied by a marked decline of the membrane potential of these organelles. Strikingly, while the ATP and lactate levels in SW480 cells were notably elevated by Tβ(4) downregulation, this treatment significantly diminished the mitochondrial DNA copy number and protein levels of several subunits of the electron transport complexes. Finally, immunofluorescent staining results suggested the presence of Tβ(4) in mitochondria. To the best of our knowledge, this is the first report to demonstrate that Tβ(4) knockdown can disrupt the morphology and some crucial functions of mitochondria in human colorectal carcinoma (CRC) cells.
Collapse
Affiliation(s)
- Mei-Chuan Tang
- Institute of Biopharmaceutical Sciences, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
183
|
Joyce PI, Fratta P, Fisher EMC, Acevedo-Arozena A. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome 2011; 22:420-48. [PMID: 21706386 DOI: 10.1007/s00335-011-9339-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/26/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with no cure. Breakthroughs in understanding ALS pathogenesis came with the discovery of dominant mutations in the superoxide dismutase 1 gene (SOD1) and other genes, including the gene encoding transactivating response element DNA binding protein-43 (TDP-43). This has led to the creation of animal models to further our understanding of the disease and identify a number of ALS-causing mechanisms, including mitochondrial dysfunction, protein misfolding and aggregation, oxidative damage, neuronal excitotoxicity, non-cell autonomous effects and neuroinflammation, axonal transport defects, neurotrophin depletion, effects from extracellular mutant SOD1, and aberrant RNA processing. Here we summarise the SOD1 and TDP-43 animal models created to date, report on recent findings supporting the potential mechanisms of ALS pathogenesis, and correlate this understanding with current developments in the clinic.
Collapse
Affiliation(s)
- Peter I Joyce
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, UK.
| | | | | | | |
Collapse
|
184
|
Palmer CS, Osellame LD, Stojanovski D, Ryan MT. The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 2011; 23:1534-45. [PMID: 21683788 DOI: 10.1016/j.cellsig.2011.05.021] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/31/2011] [Indexed: 01/04/2023]
Abstract
Mitochondria typically form a reticular network radiating from the nucleus, creating an interconnected system that supplies the cell with essential energy and metabolites. These mitochondrial networks are regulated through the complex coordination of fission, fusion and distribution events. While a number of key mitochondrial morphology proteins have been identified, the precise mechanisms which govern their activity remain elusive. Moreover, post translational modifications including ubiquitination, phosphorylation and sumoylation of the core machinery are thought to regulate both fusion and division of the network. These proteins can undergo several different modifications depending on cellular signals, environment and energetic demands of the cell. Proteins involved in mitochondrial morphology may also have dual roles in both dynamics and apoptosis, with regulation of these proteins under tight control of the cell to ensure correct function. The absolute reliance of the cell on a functional mitochondrial network is highlighted in neurons, which are particularly vulnerable to any changes in organelle dynamics due to their unique biochemical requirements. Recent evidence suggests that defects in the shape or distribution of mitochondria correlate with the progression of neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease. This review focuses on our current understanding of the mitochondrial morphology machinery in cell homeostasis, apoptosis and neurodegeneration, and the post translational modifications that regulate these processes.
Collapse
Affiliation(s)
- Catherine S Palmer
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | | | | |
Collapse
|