151
|
Kubicek K, Cerna H, Holub P, Pasulka J, Hrossova D, Loehr F, Hofr C, Vanacova S, Stefl R. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev 2012; 26:1891-6. [PMID: 22892239 DOI: 10.1101/gad.192781.112] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recruitment of appropriate RNA processing factors to the site of transcription is controlled by post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II (RNAP II). Here, we report the solution structure of the Ser5 phosphorylated (pSer5) CTD bound to Nrd1. The structure reveals a direct recognition of pSer5 by Nrd1 that requires the cis conformation of the upstream pSer5-Pro6 peptidyl-prolyl bond of the CTD. Mutations at the complex interface diminish binding affinity and impair processing or degradation of noncoding RNAs. These findings underpin the interplay between covalent and noncovalent changes in the CTD structure that constitute the CTD code.
Collapse
Affiliation(s)
- Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Cecere G, Zheng GXY, Mansisidor AR, Klymko KE, Grishok A. Promoters recognized by forkhead proteins exist for individual 21U-RNAs. Mol Cell 2012; 47:734-45. [PMID: 22819322 DOI: 10.1016/j.molcel.2012.06.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/09/2012] [Accepted: 06/01/2012] [Indexed: 12/29/2022]
Abstract
C. elegans 21U-RNAs are equivalent to the piRNAs discovered in other metazoans and have important roles in gametogenesis and transposon control. The biogenesis and molecular function of 21U-RNAs and piRNAs are poorly understood. Here, we demonstrate that transcription of each 21U-RNA is regulated separately through a conserved upstream DNA motif. We use genomic analysis to show that this motif is associated with low nucleosome occupancy, a characteristic of many promoters that drive expression of protein-coding genes, and that RNA polymerase II is localized to this nucleosome-depleted region. We establish that the most conserved 8-mer sequence in the upstream region of 21U-RNAs, CTGTTTCA, is absolutely required for their individual expression. Furthermore, we demonstrate that the 8-mer is specifically recognized by Forkhead family (FKH) transcription factors and that 21U-RNA expression is diminished in several FKH mutants. Our results suggest that thousands of small noncoding transcription units are regulated by FKH proteins.
Collapse
Affiliation(s)
- Germano Cecere
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
153
|
Szczepaniak SA, Zuberek J, Darzynkiewicz E, Kufel J, Jemielity J. Affinity resins containing enzymatically resistant mRNA cap analogs--a new tool for the analysis of cap-binding proteins. RNA (NEW YORK, N.Y.) 2012; 18:1421-32. [PMID: 22589334 PMCID: PMC3383972 DOI: 10.1261/rna.032078.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/12/2012] [Indexed: 05/21/2023]
Abstract
Cap-binding proteins have been routinely isolated using m⁷GTP-Sepharose; however, this resin is inefficient for proteins such as DcpS (scavenger decapping enzyme), which interacts not only with the 7-methylguanosine, but also with the second cap base. In addition, DcpS purification may be hindered by the reduced resin capacity due to the ability of DcpS to hydrolyze m⁷GTP. Here, we report the synthesis of new affinity resins, m⁷GpCH₂pp- and m⁷GpCH₂ppA-Sepharoses, with attached cap analogs resistant to hydrolysis by DcpS. Biochemical tests showed that these matrices, as well as a hydrolyzable m⁷GpppA-Sepharose, bind recombinant mouse eIF4E²⁸⁻²¹⁷ specifically and at high capacity. In addition, purification of cap-binding proteins from yeast extracts confirmed the presence of all expected cap-binding proteins, including DcpS in the case of m⁷GpCH₂pp- and m⁷GpCH₂ppA-Sepharoses. In contrast, binding studies in vitro demonstrated that recombinant human DcpS efficiently bound only m⁷GpCH₂ppA-Sepharose. Our data prove the applicability of these novel resins, especially m⁷GpCH₂ppA-Sepharose, in biochemical studies such as the isolation and identification of cap-binding proteins from different organisms.
Collapse
Affiliation(s)
- Sylwia Anna Szczepaniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Jacek Jemielity
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| |
Collapse
|
154
|
Loya TJ, O'Rourke TW, Reines D. A genetic screen for terminator function in yeast identifies a role for a new functional domain in termination factor Nab3. Nucleic Acids Res 2012; 40:7476-91. [PMID: 22564898 PMCID: PMC3424548 DOI: 10.1093/nar/gks377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The yeast IMD2 gene encodes an enzyme involved in GTP synthesis. Its expression is controlled by guanine nucleotides through a set of alternate start sites and an intervening transcriptional terminator. In the off state, transcription results in a short non-coding RNA that starts upstream of the gene. Transcription terminates via the Nrd1-Nab3-Sen1 complex and is degraded by the nuclear exosome. Using a sensitive terminator read-through assay, we identified trans-acting Terminator Override (TOV) genes that operate this terminator. Four genes were identified: the RNA polymerase II phosphatase SSU72, the RNA polymerase II binding protein PCF11, the TRAMP subunit TRF4 and the hnRNP-like, NAB3. The TOV phenotype can be explained by the loss of function of these gene products as described in models in which termination and RNA degradation are coupled to the phosphorylation state of RNA polymerase II's repeat domain. The most interesting mutations were those found in NAB3, which led to the finding that the removal of merely three carboxy-terminal amino acids compromised Nab3's function. This region of previously unknown function is distant from the protein's well-known RNA binding and Nrd1 binding domains. Structural homology modeling suggests this Nab3 ‘tail’ forms an α-helical multimerization domain that helps assemble it onto an RNA substrate.
Collapse
Affiliation(s)
- Travis J Loya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
155
|
The transcription cycle in eukaryotes: From productive initiation to RNA polymerase II recycling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:391-400. [DOI: 10.1016/j.bbagrm.2012.01.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 01/03/2023]
|
156
|
The yeast RPL9B gene is regulated by modulation between two modes of transcription termination. EMBO J 2012; 31:2427-37. [PMID: 22505027 DOI: 10.1038/emboj.2012.81] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/13/2012] [Indexed: 11/08/2022] Open
Abstract
RNA Pol II transcription termination can occur by at least two alternative pathways. Cleavage and polyadenylation by the CPF/CF complex precedes mRNA transcription termination, while the Nrd1 complex is involved in transcription termination of non-coding RNAs such as sno/snRNAs or cryptic unstable transcripts. Here we show that transcription of RPL9B, one of the two genes coding for the ribosomal protein Rpl9p, terminates by either of these two pathways. The balance between these two pathways is modulated in response to the RPL9 gene copy number, resulting in the autoregulation of RPL9B gene expression. This autoregulation mechanism requires a conserved potential stem-loop structure very close to the polyadenylation sites. We propose a model in which Rpl9p, when in excess, binds this conserved 3'-UTR structure, negatively interfering with cleavage and polyadenylation to the benefit of the Nrd1-dependent termination pathway, which, being coupled to degradation by the nuclear exosome, results in downregulation of RPL9B gene expression.
Collapse
|
157
|
Wolin SL, Sim S, Chen X. Nuclear noncoding RNA surveillance: is the end in sight? Trends Genet 2012; 28:306-13. [PMID: 22475369 DOI: 10.1016/j.tig.2012.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/13/2022]
Abstract
Nuclear noncoding RNA (ncRNA) surveillance pathways play key roles in shaping the steady-state transcriptomes of eukaryotic cells. Defective and unneeded ncRNAs are primarily degraded by exoribonucleases that rely on protein cofactors to identify these RNAs. Recent studies have begun to elucidate both the mechanisms by which these cofactors recognize aberrant RNAs and the features that mark RNAs for degradation. One crucial RNA determinant is the presence of an accessible end; in addition, the failure of aberrant RNAs to fold into compact structures and assemble with specific binding proteins probably also contributes to their recognition and subsequent degradation. To date, ncRNA surveillance has been most extensively studied in budding yeast. However, mammalian cells possess nucleases and cofactors that have no known yeast counterparts, indicating that RNA surveillance pathways may be more complex in metazoans. Importantly, there is evidence that the failure of ncRNA surveillance pathways contributes to human disease.
Collapse
Affiliation(s)
- Sandra L Wolin
- Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | | | | |
Collapse
|
158
|
The Saccharomyces cerevisiae Nrd1-Nab3 transcription termination pathway acts in opposition to Ras signaling and mediates response to nutrient depletion. Mol Cell Biol 2012; 32:1762-75. [PMID: 22431520 DOI: 10.1128/mcb.00050-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Nrd1-Nab3 pathway directs the termination and processing of short RNA polymerase II transcripts. Despite the potential for Nrd1-Nab3 to affect the transcription of both coding and noncoding RNAs, little is known about how the Nrd1-Nab3 pathway interacts with other pathways in the cell. Here we present the results of a high-throughput synthetic lethality screen for genes that interact with NRD1 and show roles for Nrd1 in the regulation of mitochondrial abundance and cell size. We also provide genetic evidence of interactions between the Nrd1-Nab3 and Ras/protein kinase A (PKA) pathways. Whereas the Ras pathway promotes the transcription of genes involved in growth and glycolysis, the Nrd1-Nab3 pathway appears to have a novel role in the rapid suppression of some genes when cells are shifted to poor growth conditions. We report the identification of new mRNA targets of the Nrd1-Nab3 pathway that are rapidly repressed in response to glucose depletion. Glucose depletion also leads to the dephosphorylation of Nrd1 and the formation of novel nuclear speckles that contain Nrd1 and Nab3. Taken together, these results indicate a role for Nrd1-Nab3 in regulating the cellular response to nutrient availability.
Collapse
|
159
|
Soares LM, Buratowski S. Yeast Swd2 is essential because of antagonism between Set1 histone methyltransferase complex and APT (associated with Pta1) termination factor. J Biol Chem 2012; 287:15219-31. [PMID: 22431730 DOI: 10.1074/jbc.m112.341412] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Set1 complex (also known as complex associated with Set1 or COMPASS) methylates histone H3 on lysine 4, with different levels of methylation affecting transcription by recruiting various factors to distinct regions of active genes. Neither Set1 nor its associated proteins are essential for viability with the notable exception of Swd2, a WD repeat protein that is also a subunit of the essential transcription termination factor APT (associated with Pta1). Cells lacking Set1 lose COMPASS recruitment but show increased promoter cross-linking of TFIIE large subunit and the serine 5 phosphorylated form of the Rpb1 C-terminal domain. Although Swd2 is normally required for bringing APT to genes, deletion of SET1 restores both viability and APT recruitment to a strain lacking Swd2. We propose a model in which Swd2 is required for APT to overcome antagonism by COMPASS.
Collapse
Affiliation(s)
- Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
160
|
Schmid M, Jensen TH. Nuclear quality control of RNA polymerase II transcripts. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:474-85. [PMID: 21956943 DOI: 10.1002/wrna.24] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic RNA polymerase II produces an astounding diversity of transcripts. These may need to be 5(') capped, spliced, polyadenylated, and packaged with proteins before their export to the cytoplasm. Unscheduled accumulation of any RNA species can interfere with normal RNA metabolism and poses a serious hazard to cells. Yet, given the amount of primary transcripts and the complexity of the RNA maturation process, production of aberrant RNA species is unavoidable. Cells, therefore, employ nuclear RNA quality control mechanisms to rapidly degrade, actively retain, or transcriptionally silence unwanted RNAs. Pathways that monitor mRNA production are best understood and similar pathways are employed to destroy transcriptional noise. Finally, related mechanisms also contribute to gene regulation during normal growth.
Collapse
Affiliation(s)
- Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, C.F. Møllers Alle, Bldg. 130, 8000 Aarhus C., Denmark
| | | |
Collapse
|
161
|
Noël JF, Larose S, Abou Elela S, Wellinger RJ. Budding yeast telomerase RNA transcription termination is dictated by the Nrd1/Nab3 non-coding RNA termination pathway. Nucleic Acids Res 2012; 40:5625-36. [PMID: 22379137 PMCID: PMC3384322 DOI: 10.1093/nar/gks200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The RNA component of budding yeast telomerase (Tlc1) occurs in two forms, a non-polyadenylated form found in functional telomerase and a rare polyadenylated version with unknown function. Previous work suggested that the functional Tlc1 polyA- RNA is processed from the polyA+ form, but the mechanisms regulating its transcription termination and 3'-end formation remained unclear. Here we examined transcription termination of Tlc1 RNA in the sequences 3' of the TLC1 gene and relate it to telomere maintenance. Strikingly, disruption of all probable or cryptic polyadenylation signals near the 3'-end blocked the accumulation of the previously reported polyA+ RNA without affecting the level, function or specific 3' nucleotide of the mature polyA- form. A genetic approach analysing TLC1 3'-end sequences revealed that transcription terminates upstream of the polyadenylation sites. Furthermore, the results also demonstrate that the function of this Tlc1 terminator depends on the Nrd1/Nab3 transcription termination pathway. The data thus show that transcription termination of the budding yeast telomerase RNA occurs as that of snRNAs and Tlc1 functions in telomere maintenance are not strictly dependent on a polyadenylated precursor, even if the polyA+ form can serve as intermediate in a redundant termination/maturation pathway.
Collapse
Affiliation(s)
- Jean-François Noël
- RNA Group, Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, 3001, 12e Ave Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | | | | |
Collapse
|
162
|
Zhang DW, Rodríguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ. Emerging Views on the CTD Code. GENETICS RESEARCH INTERNATIONAL 2012; 2012:347214. [PMID: 22567385 PMCID: PMC3335543 DOI: 10.1155/2012/347214] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.
Collapse
Affiliation(s)
- David W. Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Juan B. Rodríguez-Molina
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Joshua R. Tietjen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Corey M. Nemec
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
163
|
Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 11:417-29. [PMID: 22286094 DOI: 10.1128/ec.05320-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae SEN1 gene codes for a nuclear, ATP-dependent helicase which is embedded in a complex network of protein-protein interactions. Pleiotropic phenotypes of mutations in SEN1 suggest that Sen1 functions in many nuclear processes, including transcription termination, DNA repair, and RNA processing. Sen1, along with termination factors Nrd1 and Nab3, is required for the termination of noncoding RNA transcripts, but Sen1 is associated during transcription with coding and noncoding genes. Sen1 and Nrd1 both interact directly with Nab3, as well as with the C-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II. It has been proposed that Sen1, Nab3, and Nrd1 form a complex that associates with Rpb1 through an interaction between Nrd1 and the Ser5-phosphorylated (Ser5-P) CTD. To further study the relationship between the termination factors and Rpb1, we used two-hybrid analysis and immunoprecipitation to characterize sen1-R302W, a mutation that impairs an interaction between Sen1 and the Ser2-phosphorylated CTD. Chromatin immunoprecipitation indicates that the impairment of the interaction between Sen1 and Ser2-P causes the reduced occupancy of mutant Sen1 across the entire length of noncoding genes. For protein-coding genes, mutant Sen1 occupancy is reduced early and late in transcription but is similar to that of the wild type across most of the coding region. The combined data suggest a handoff model in which proteins differentially transfer from the Ser5- to the Ser2-phosphorylated CTD to promote the termination of noncoding transcripts or other cotranscriptional events for protein-coding genes.
Collapse
|
164
|
Lubas M, Chlebowski A, Dziembowski A, Jensen TH. Biochemistry and Function of RNA Exosomes. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:1-30. [DOI: 10.1016/b978-0-12-404740-2.00001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
165
|
Colin J, Libri D, Porrua O. Cryptic transcription and early termination in the control of gene expression. GENETICS RESEARCH INTERNATIONAL 2011; 2011:653494. [PMID: 22567365 PMCID: PMC3335523 DOI: 10.4061/2011/653494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/30/2011] [Indexed: 12/04/2022]
Abstract
Recent studies on
yeast transcriptome have revealed the presence
of a large set of RNA polymerase II transcripts
mapping to intergenic and antisense regions or
overlapping canonical genes. Most of these
ncRNAs (ncRNAs) are subject to termination by
the Nrd1-dependent pathway and rapid degradation
by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs). CUTs are often
considered as by-products of transcriptional
noise, but in an increasing number of cases they
play a central role in the control of gene
expression. Regulatory mechanisms involving
expression of a CUT are diverse and include
attenuation, transcriptional interference, and
alternative transcription start site choice.
This review focuses on the impact of cryptic
transcription on gene expression, describes the
role of the Nrd1-complex as the main actor in
preventing nonfunctional and potentially
harmful transcription, and details a few systems
where expression of a CUT has an essential
regulatory function. We also summarize the most
recent studies concerning other types of ncRNAs
and their possible role in
regulation.
Collapse
Affiliation(s)
- Jessie Colin
- LEA Laboratory of Nuclear RNA Metabolism, Centre de Génétique Moléculaire (CNRS), UPR3404, 1 Avenue de la Terrasse, 91190 Gif sur Yvette, France
| | | | | |
Collapse
|
166
|
Jamonnak N, Creamer TJ, Darby MM, Schaughency P, Wheelan SJ, Corden JL. Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA (NEW YORK, N.Y.) 2011; 17:2011-2025. [PMID: 21954178 PMCID: PMC3198594 DOI: 10.1261/rna.2840711] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 08/16/2011] [Indexed: 05/29/2023]
Abstract
RNA polymerase II transcribes both coding and noncoding genes, and termination of these different classes of transcripts is facilitated by different sets of termination factors. Pre-mRNAs are terminated through a process that is coupled to the cleavage/polyadenylation machinery, and noncoding RNAs in the yeast Saccharomyces cerevisiae are terminated through a pathway directed by the RNA-binding proteins Nrd1, Nab3, and the RNA helicase Sen1. We have used an in vivo cross-linking approach to map the binding sites of components of the yeast non-poly(A) termination pathway. We show here that Nrd1, Nab3, and Sen1 bind to a number of noncoding RNAs in an unexpected manner. Sen1 shows a preference for H/ACA over box C/D snoRNAs. Nrd1, which binds to snoRNA terminators, also binds to the upstream region of some snoRNA transcripts and to snoRNAs embedded in introns. We present results showing that several RNAs, including the telomerase RNA TLC1, require Nrd1 for proper processing. Binding of Nrd1 to transcripts from tRNA genes is another unexpected observation. We also observe RNA polymerase II binding to transcripts from RNA polymerase III genes, indicating a possible role for the Nrd1 pathway in surveillance of transcripts synthesized by the wrong polymerase. The binding targets of Nrd1 pathway components change in the absence of glucose, with Nrd1 and Nab3 showing a preference for binding to sites in the mature snoRNA and tRNAs. This suggests a novel role for Nrd1 and Nab3 in destruction of ncRNAs in response to nutrient limitation.
Collapse
Affiliation(s)
- Nuttara Jamonnak
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tyler J. Creamer
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Miranda M. Darby
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Paul Schaughency
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Sarah J. Wheelan
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Biostatistics, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jeffry L. Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
167
|
Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell 2011; 43:624-37. [PMID: 21855801 DOI: 10.1016/j.molcel.2011.06.028] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/13/2011] [Accepted: 06/28/2011] [Indexed: 11/20/2022]
Abstract
The RNA exosome is a conserved degradation machinery, which obtains full activity only when associated with cofactors. The most prominent activator of the yeast nuclear exosome is the RNA helicase Mtr4p, acting in the context of the Trf4p/Air2p/Mtr4p polyadenylation (TRAMP) complex. The existence of a similar activator(s) in humans remains elusive. By establishing an interaction network of the human nuclear exosome, we identify the trimeric Nuclear Exosome Targeting (NEXT) complex, containing hMTR4, the Zn-knuckle protein ZCCHC8, and the putative RNA binding protein RBM7. ZCCHC8 and RBM7 are excluded from nucleoli, and consistently NEXT is specifically required for the exosomal degradation of promoter upstream transcripts (PROMPTs). We also detect putative homolog TRAMP subunits hTRF4-2 (Trf4p) and ZCCHC7 (Air2p) in hRRP6 and hMTR4 precipitates. However, at least ZCCHC7 function is restricted to nucleoli. Our results suggest that human nuclear exosome degradation pathways comprise modules of spatially organized cofactors that diverge from the yeast model.
Collapse
|
168
|
Creamer TJ, Darby MM, Jamonnak N, Schaughency P, Hao H, Wheelan SJ, Corden JL. Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet 2011; 7:e1002329. [PMID: 22028667 PMCID: PMC3197677 DOI: 10.1371/journal.pgen.1002329] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/16/2011] [Indexed: 12/17/2022] Open
Abstract
RNA polymerase II synthesizes a diverse set of transcripts including both protein-coding and non-coding RNAs. One major difference between these two classes of transcripts is the mechanism of termination. Messenger RNA transcripts terminate downstream of the coding region in a process that is coupled to cleavage and polyadenylation reactions. Non-coding transcripts like Saccharomyces cerevisiae snoRNAs terminate in a process that requires the RNA–binding proteins Nrd1, Nab3, and Sen1. We report here the transcriptome-wide distribution of these termination factors. These data sets derived from in vivo protein–RNA cross-linking provide high-resolution definition of non-poly(A) terminators, identify novel genes regulated by attenuation of nascent transcripts close to the promoter, and demonstrate the widespread occurrence of Nrd1-bound 3′ antisense transcripts on genes that are poorly expressed. In addition, we show that Sen1 does not cross-link efficiently to many expected non-coding RNAs but does cross-link to the 3′ end of most pre–mRNA transcripts, suggesting an extensive role in mRNA 3′ end formation and/or termination. Transcription in eukaryotes is widespread including both protein-coding transcripts and an increasing number of non-coding RNAs. Here we present the results of transcriptome-wide mapping of a set of yeast RNA–binding proteins that control expression of some protein-coding genes and a number of novel non-coding RNAs. The yeast Nrd1-Nab3-Sen1 pathway is required for termination and exosome-mediated processing of non-coding RNA polymerase II transcripts. Our data show that these components bind unexpected targets including a large number of antisense transcripts originating from the 3′ end of genes that are poorly expressed in the sense direction. We also show that Sen1 helicase, involved in termination of non-coding RNAs, is also present at the 3′ end of mRNAs, suggesting a more fundamental role in transcription termination. Mis-regulation of transcription is the underlying cause of many disease states. For example, mutation of the human Sen1 gene, senataxin, causes a range of neurodegenerative disorders. Understanding the roles of yeast RNA–binding proteins in controlling termination of coding and non-coding RNAs will be useful in deciphering the mechanism of these proteins in human cells.
Collapse
Affiliation(s)
- Tyler J. Creamer
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Miranda M. Darby
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nuttara Jamonnak
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul Schaughency
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Haiping Hao
- High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah J. Wheelan
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jeffry L. Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
169
|
Leporé N, Lafontaine DLJ. A functional interface at the rDNA connects rRNA synthesis, pre-rRNA processing and nucleolar surveillance in budding yeast. PLoS One 2011; 6:e24962. [PMID: 21949810 PMCID: PMC3176313 DOI: 10.1371/journal.pone.0024962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/24/2011] [Indexed: 12/21/2022] Open
Abstract
Ribogenesis is a multistep error-prone process that is actively monitored by quality control mechanisms. How ribosomal RNA synthesis, pre-rRNA processing and nucleolar surveillance are integrated is unclear. Nor is it understood how defective ribosomes are recognized. We report in budding yeast that, in vivo, the interaction between the transcription elongation factor Spt5 and Rpa190, the largest subunit of RNA polymerase (Pol) I, requires the Spt5 C-terminal region (CTR), a conserved and highly repetitive domain that is reminiscent of the RNA Pol II C-terminal domain (CTD). We show that this sequence is also required for the interaction between Spt5 and Nrd1, an RNA specific binding protein, and an exosome cofactor. Both the Spt4-Spt5, and the Nrd1-Nab3 complexes interact functionally with Rrp6, and colocalize at the rDNA. Mutations in the RNA binding domain of Nrd1, but not in its RNA Pol II CTD-interacting domain, and mutations in the RRM of Nab3 led to the accumulation of normal and aberrant polyadenylated pre-rRNAs. Altogether these results indicate that Nrd1-Nab3 contributes to recruiting the nucleolar surveillance to elongating polymerases to survey nascent rRNA transcripts.
Collapse
Affiliation(s)
- Nathalie Leporé
- RNA Metabolism, Fonds de la Recherche Scientifique (FRS-FNRS), Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
| | - Denis L. J. Lafontaine
- RNA Metabolism, Fonds de la Recherche Scientifique (FRS-FNRS), Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Académie Wallonie–Bruxelles, Charleroi-Gosselies, Belgium
- * E-mail:
| |
Collapse
|
170
|
Tisseur M, Kwapisz M, Morillon A. Pervasive transcription - Lessons from yeast. Biochimie 2011; 93:1889-96. [PMID: 21771634 DOI: 10.1016/j.biochi.2011.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
Pervasive transcription is now accepted to be a general feature of eukaryotic genomes, generating short and long non-coding RNAs (ncRNAs). Growing number of examples have shown that regulatory ncRNAs can control gene expression and chromatin domain formation. In this review, we discuss recent reports that show that Saccharomyces cerevisiae's genome also supports pervasive transcription, which is strongly controlled by RNA decay pathways and nucleosome positioning. We therefore propose that S. cerevisiae is an excellent model for studying large ncRNAs, which has already provided important examples of antisense-mediated transcriptional silencing.
Collapse
Affiliation(s)
- Mathieu Tisseur
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
171
|
H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1-Nab3-Sen1 pathway. Mol Cell Biol 2011; 31:3569-83. [PMID: 21709022 DOI: 10.1128/mcb.05590-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the Nrd1-Nab3-Sen1 pathway mediates the termination of snoRNAs and cryptic unstable transcripts (CUTs). Both Nrd1 and the Set1 histone H3K4 methyltransferase complex interact with RNA polymerase II (Pol II) during early elongation, leading us to test whether these two processes are functionally linked. The deletion of SET1 exacerbates the growth rate and termination defects of nrd1 mutants. Set1 is important for the appropriate recruitment of Nrd1. Additionally, Set1 modulates histone acetylation levels in the promoter-proximal region via the Rpd3L deacetylase and NuA3 acetyltransferase complexes, both of which contain PHD finger proteins that bind methylated H3K4. Increased levels of histone acetylation reduce the efficiency of Nrd1-dependent termination. We speculate that Set1 promotes proper early termination by the Nrd1-Nab3-Sen1 complex by affecting the kinetics of Pol II transcription in early elongation.
Collapse
|
172
|
Wood M, Rawe M, Johansson G, Pang S, Soderquist RS, Patel AV, Nelson S, Seibel W, Ratner N, Sanchez Y. Discovery of a small molecule targeting IRA2 deletion in budding yeast and neurofibromin loss in malignant peripheral nerve sheath tumor cells. Mol Cancer Ther 2011; 10:1740-50. [PMID: 21697395 DOI: 10.1158/1535-7163.mct-11-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a life-threatening complication of neurofibromatosis type 1 (NF1). NF1 is caused by mutation in the gene encoding neurofibromin, a negative regulator of Ras signaling. There are no effective pharmacologic therapies for MPNST. To identify new therapeutic approaches targeting this dangerous malignancy, we developed assays in NF1(+/+) and NF1(-/-) MPNST cell lines and in budding yeast lacking the NF1 homologue IRA2 (ira2Δ). Here, we describe UC1, a small molecule that targets NF1(-/-) cell lines and ira2Δ budding yeast. By using yeast genetics, we identified NAB3 as a high-copy suppressor of UC1 sensitivity. NAB3 encodes an RNA binding protein that associates with the C-terminal domain of RNA Pol II and plays a role in the termination of nonpolyadenylated RNA transcripts. Strains with deletion of IRA2 are sensitive to genetic inactivation of NAB3, suggesting an interaction between Ras signaling and Nab3-dependent transcript termination. This work identifies a lead compound and a possible target pathway for NF1-associated MPNST, and shows a novel model system approach to identify and validate target pathways for cancer cells in which NF1 loss drives tumor formation.
Collapse
Affiliation(s)
- Matthew Wood
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, 7650 Remsen, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Mittal N, Scherrer T, Gerber AP, Janga SC. Interplay between posttranscriptional and posttranslational interactions of RNA-binding proteins. J Mol Biol 2011; 409:466-79. [PMID: 21501624 DOI: 10.1016/j.jmb.2011.03.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/02/2011] [Accepted: 03/29/2011] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) play important roles in the posttranscriptional control of gene expression. However, our understanding of how RBPs interact with each other at different regulatory levels to coordinate the RNA metabolism of the cell is rather limited. Here, we construct the posttranscriptional regulatory network among 69 experimentally studied RBPs in yeast to show that more than one-third of the RBPs autoregulate their expression at the posttranscriptional level and demonstrate that autoregulatory RBPs show reduced protein noise with a tendency to encode for hubs in this network. We note that in- and outdegrees in the posttranscriptional RBP-RBP regulatory network exhibit gaussian and scale-free distributions, respectively. This network was also densely interconnected with extensive cross-talk between RBPs belonging to different posttranscriptional steps, regulating varying numbers of cellular RNA targets. We show that feed-forward loops and superposed feed-forward/feedback loops are the most significant three-node subgraphs in this network. Analysis of the corresponding protein-protein interaction (posttranslational) network revealed that it is more modular than the posttranscriptional regulatory network. There is significant overlap between the regulatory and protein-protein interaction networks, with RBPs that potentially control each other at the posttranscriptional level tending to physically interact and being part of the same ribonucleoprotein (RNP) complex. Our observations put forward a model wherein RBPs could be classified into those that can stably interact with a limited number of protein partners, forming stable RNP complexes, and others that form transient hubs, having the ability to interact with multiple RBPs forming many RNPs in the cell.
Collapse
Affiliation(s)
- Nitish Mittal
- Biozentrum, University of Basel, Klingelbergstrasse, Switzerland
| | | | | | | |
Collapse
|
174
|
The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J 2011; 30:1790-803. [PMID: 21460797 PMCID: PMC3102002 DOI: 10.1038/emboj.2011.97] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/03/2011] [Indexed: 11/16/2022] Open
Abstract
The exosome and Trf4/5–Air1/2–Mtr4 polyadenylation (TRAMP) complexes together with the Nrd1–Nab3 RNA-binding heterodimer have an important role in RNA surveillance. Here, the global analysis of Nrd1, Nab3 and Trf4 binding sites identifies targets for the nuclear surveillance system, including mRNAs, ncRNAs and RNA polymerase III transcripts. A key question in nuclear RNA surveillance is how target RNAs are recognized. To address this, we identified in vivo binding sites for nuclear RNA surveillance factors, Nrd1, Nab3 and the Trf4/5–Air1/2–Mtr4 polyadenylation (TRAMP) complex poly(A) polymerase Trf4, by UV crosslinking. Hit clusters were reproducibly found over known binding sites on small nucleolar RNAs (snoRNAs), pre-mRNAs and cryptic, unstable non-protein-coding RNAs (ncRNAs) (‘CUTs'), along with ∼642 predicted long anti-sense ncRNAs (asRNAs), ∼178 intergenic ncRNAs and, surprisingly, ∼1384 mRNAs. Five putative asRNAs tested were confirmed to exist and were stabilized by loss of Nrd1, Nab3 or Trf4. Mapping of micro-deletions and substitutions allowed clear definition of preferred, in vivo Nab3 and Nrd1 binding sites. Nrd1 and Nab3 were believed to be Pol II specific but, unexpectedly, bound many oligoadenylated Pol III transcripts, predominately pre-tRNAs. Depletion of Nrd1 or Nab3 stabilized tested Pol III transcripts and their oligoadenylation was dependent on Nrd1–Nab3 and TRAMP. Surveillance targets were enriched for non-encoded A-rich tails. These were generally very short (1–5 nt), potentially explaining why adenylation destabilizes these RNAs while stabilizing mRNAs with long poly(A) tails.
Collapse
|
175
|
Mischo HE, Gómez-González B, Grzechnik P, Rondón AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 2011; 41:21-32. [PMID: 21211720 PMCID: PMC3314950 DOI: 10.1016/j.molcel.2010.12.007] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 09/21/2010] [Accepted: 10/21/2010] [Indexed: 11/23/2022]
Abstract
Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes. These hybrids displace the nontranscribed strand and create R loop structures. Loss of Sen1 results in transient R loop accumulation and so elicits transcription-associated recombination. SEN1 genetically interacts with DNA repair genes, suggesting that R loop resolution requires proteins involved in homologous recombination. Based on these findings, we propose that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability.
Collapse
Affiliation(s)
- Hannah E Mischo
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Galopier A, Hermann-Le Denmat S. Mitochondria of the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis contain nuclear rDNA-encoded proteins. PLoS One 2011; 6:e16325. [PMID: 21283537 PMCID: PMC3026818 DOI: 10.1371/journal.pone.0016325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/10/2010] [Indexed: 12/03/2022] Open
Abstract
In eukaryotes, the nuclear ribosomal DNA (rDNA) is the source of the structural 18S, 5.8S and 25S rRNAs. In hemiascomycetous yeasts, the 25S rDNA sequence was described to lodge an antisense open reading frame (ORF) named TAR1 for Transcript Antisense to Ribosomal RNA. Here, we present the first immuno-detection and sub-cellular localization of the authentic product of this atypical yeast gene. Using specific antibodies against the predicted amino-acid sequence of the Saccharomyces cerevisiae TAR1 product, we detected the endogenous Tar1p polypeptides in S. cerevisiae (Sc) and Kluyveromyces lactis (Kl) species and found that both proteins localize to mitochondria. Protease and carbonate treatments of purified mitochondria further revealed that endogenous Sc Tar1p protein sub-localizes in the inner membrane in a Nin-Cout topology. Plasmid-versions of 5′ end or 3′ end truncated TAR1 ORF were used to demonstrate that neither the N-terminus nor the C-terminus of Sc Tar1p were required for its localization. Also, Tar1p is a presequence-less protein. Endogenous Sc Tar1p was found to be a low abundant protein, which is expressed in fermentable and non-fermentable growth conditions. Endogenous Sc TAR1 transcripts were also found low abundant and consistently 5′ flanking regions of TAR1 ORF exhibit modest promoter activity when assayed in a luciferase-reporter system. Using rapid amplification of cDNA ends (RACE) PCR, we also determined that endogenous Sc TAR1 transcripts possess heterogeneous 5′ and 3′ ends probably reflecting the complex expression of a gene embedded in actively transcribed rDNA sequence. Altogether, our results definitively ascertain that the antisense yeast gene TAR1 constitutes a functional transcription unit within the nuclear rDNA repeats.
Collapse
|
177
|
Honorine R, Mosrin-Huaman C, Hervouet-Coste N, Libri D, Rahmouni AR. Nuclear mRNA quality control in yeast is mediated by Nrd1 co-transcriptional recruitment, as revealed by the targeting of Rho-induced aberrant transcripts. Nucleic Acids Res 2010; 39:2809-20. [PMID: 21113025 PMCID: PMC3074134 DOI: 10.1093/nar/gkq1192] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The production of mature export-competent transcripts is under the surveillance of quality control steps where aberrant mRNP molecules resulting from inappropriate or inefficient processing and packaging reactions are subject to exosome-mediated degradation. Previously, we have shown that the heterologous expression of bacterial Rho factor in yeast interferes in normal mRNP biogenesis leading to the production of full-length yet aberrant transcripts that are degraded by the nuclear exosome with ensuing growth defect. Here, we took advantage of this new tool to investigate the molecular mechanisms by which an integrated system recognizes aberrancies at each step of mRNP biogenesis and targets the defective molecules for destruction. We show that the targeting and degradation of Rho-induced aberrant transcripts is associated with a large increase of Nrd1 recruitment to the transcription complex via its CID and RRM domains and a concomitant enrichment of exosome component Rrp6 association. The targeting and degradation of the aberrant transcripts is suppressed by the overproduction of Pcf11 or its isolated CID domain, through a competition with Nrd1 for recruitment by the transcription complex. Altogether, our results support a model in which a stimulation of Nrd1 co-transcriptional recruitment coordinates the recognition and removal of aberrant transcripts by promoting the attachment of the nuclear mRNA degradation machinery.
Collapse
Affiliation(s)
- Romy Honorine
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Rue Charles Sadron, 45071 Orléans, France
| | | | | | | | | |
Collapse
|
178
|
Hobor F, Pergoli R, Kubicek K, Hrossova D, Bacikova V, Zimmermann M, Pasulka J, Hofr C, Vanacova S, Stefl R. Recognition of transcription termination signal by the nuclear polyadenylated RNA-binding (NAB) 3 protein. J Biol Chem 2010; 286:3645-57. [PMID: 21084293 PMCID: PMC3030368 DOI: 10.1074/jbc.m110.158774] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Non-coding RNA polymerase II transcripts are processed by the poly(A)-independent termination pathway that requires the Nrd1 complex. The Nrd1 complex includes two RNA-binding proteins, the nuclear polyadenylated RNA-binding (Nab) 3 and the nuclear pre-mRNA down-regulation (Nrd) 1 that bind their specific termination elements. Here we report the solution structure of the RNA-recognition motif (RRM) of Nab3 in complex with a UCUU oligonucleotide, representing the Nab3 termination element. The structure shows that the first three nucleotides of UCUU are accommodated on the β-sheet surface of Nab3 RRM, but reveals a sequence-specific recognition only for the central cytidine and uridine. The specific contacts we identified are important for binding affinity in vitro as well as for yeast viability. Furthermore, we show that both RNA-binding motifs of Nab3 and Nrd1 alone bind their termination elements with a weak affinity. Interestingly, when Nab3 and Nrd1 form a heterodimer, the affinity to RNA is significantly increased due to the cooperative binding. These findings are in accordance with the model of their function in the poly(A) independent termination, in which binding to the combined and/or repetitive termination elements elicits efficient termination.
Collapse
Affiliation(s)
- Fruzsina Hobor
- National Centre for Biomolecular Research, Central European Institute of Technology, Faculty of Science, Masaryk University, Brno CZ-62500, Czechia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat Struct Mol Biol 2010; 17:1279-86. [PMID: 20835241 PMCID: PMC3048030 DOI: 10.1038/nsmb.1913] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/20/2010] [Indexed: 12/21/2022]
Abstract
Dynamic phosphorylation of the RNA polymerase II CTD repeats (YS2PTS5PS7) is coupled to transcription and may act as a “code” that controls mRNA synthesis and processing. To examine the "code" in budding yeast, we mapped genome-wide CTD S2, 5 and 7 phosphorylations (PO4) and compared them with the CTD-associated termination factors, Nrd1 and Pcf11. CTD-PO4 dynamics are not scaled to the size of the gene. At 5’ ends, the onset of S2-PO4 is delayed by about 450 bases relative to S5-PO4, regardless of gene length. Phospho-CTD dynamics are gene-specific, with high S5/7-PO4 at the 5' end being characteristic of well-expressed genes with nucleosome-occupied promoters. Furthermore, the CTD kinases Kin28 and Ctk1 profoundly affect pol II distribution along genes in a highly gene-specific way. The "code" is therefore written differently on different genes, probably under the control of promoters. S7-PO4 is enriched on introns and at sites of Nrd1 accumulation suggesting that this modification may function in splicing and Nrd1 recruitment. Nrd1 and Pcf11 frequently co-localized, suggesting functional overlap between these terminators. Surprisingly, Pcf11 is also recruited to centromeres and pol III transcribed genes.
Collapse
|
180
|
Tomecki R, Drazkowska K, Dziembowski A. Mechanisms of RNA degradation by the eukaryotic exosome. Chembiochem 2010; 11:938-45. [PMID: 20301164 DOI: 10.1002/cbic.201000025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rafal Tomecki
- Department of Biophysics, Institute of Biochemistry and Biophysics, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
181
|
Tomecki R, Kristiansen MS, Lykke-Andersen S, Chlebowski A, Larsen KM, Szczesny RJ, Drazkowska K, Pastula A, Andersen JS, Stepien PP, Dziembowski A, Jensen TH. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J 2010; 29:2342-57. [PMID: 20531386 DOI: 10.1038/emboj.2010.121] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 05/18/2010] [Indexed: 11/09/2022] Open
Abstract
The eukaryotic RNA exosome is a ribonucleolytic complex involved in RNA processing and turnover. It consists of a nine-subunit catalytically inert core that serves a structural function and participates in substrate recognition. Best defined in Saccharomyces cerevisiae, enzymatic activity comes from the associated subunits Dis3p (Rrp44p) and Rrp6p. The former is a nuclear and cytoplasmic RNase II/R-like enzyme, which possesses both processive exo- and endonuclease activities, whereas the latter is a distributive RNase D-like nuclear exonuclease. Although the exosome core is highly conserved, identity and arrangements of its catalytic subunits in different vertebrates remain elusive. Here, we demonstrate the association of two different Dis3p homologs--hDIS3 and hDIS3L--with the human exosome core. Interestingly, these factors display markedly different intracellular localizations: hDIS3 is mainly nuclear, whereas hDIS3L is strictly cytoplasmic. This compartmental distribution reflects the substrate preferences of the complex in vivo. Both hDIS3 and hDIS3L are active exonucleases; however, only hDIS3 has retained endonucleolytic activity. Our data suggest that three different ribonucleases can serve as catalytic subunits for the exosome in human cells.
Collapse
Affiliation(s)
- Rafal Tomecki
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Luz JS, Ramos CRR, Santos MCT, Coltri PP, Palhano FL, Foguel D, Zanchin NIT, Oliveira CC. Identification of archaeal proteins that affect the exosome function in vitro. BMC BIOCHEMISTRY 2010; 11:22. [PMID: 20507607 PMCID: PMC2890523 DOI: 10.1186/1471-2091-11-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 05/27/2010] [Indexed: 11/17/2022]
Abstract
Background The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.
Collapse
Affiliation(s)
- Juliana S Luz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Lemay JF, D'Amours A, Lemieux C, Lackner DH, St-Sauveur VG, Bähler J, Bachand F. The nuclear poly(A)-binding protein interacts with the exosome to promote synthesis of noncoding small nucleolar RNAs. Mol Cell 2010; 37:34-45. [PMID: 20129053 DOI: 10.1016/j.molcel.2009.12.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/11/2009] [Accepted: 11/09/2009] [Indexed: 11/19/2022]
Abstract
Poly(A)-binding proteins (PABPs) are important to eukaryotic gene expression. In the nucleus, the PABP PABPN1 is thought to function in polyadenylation of pre-mRNAs. Deletion of fission yeast pab2, the homolog of mammalian PABPN1, results in transcripts with markedly longer poly(A) tails, but the nature of the hyperadenylated transcripts and the mechanism that leads to RNA hyperadenylation remain unclear. Here we report that Pab2 functions in the synthesis of noncoding RNAs, contrary to the notion that PABPs function exclusively on protein-coding mRNAs. Accordingly, the absence of Pab2 leads to the accumulation of polyadenylated small nucleolar RNAs (snoRNAs). Our findings suggest that Pab2 promotes poly(A) tail trimming from pre-snoRNAs by recruiting the nuclear exosome. This work unveils a function for the nuclear PABP in snoRNA synthesis and provides insights into exosome recruitment to polyadenylated RNAs.
Collapse
Affiliation(s)
- Jean-François Lemay
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC JIH 5N4, Canada
| | | | | | | | | | | | | |
Collapse
|
184
|
Harrison BR, Yazgan O, Krebs JE. Life without RNAi: noncoding RNAs and their functions in Saccharomyces cerevisiae. Biochem Cell Biol 2010; 87:767-79. [PMID: 19898526 DOI: 10.1139/o09-043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are a number of well-characterized and fundamental roles for noncoding RNAs (ncRNAs) in gene regulation in all kingdoms of life. ncRNAs, such as ribosomal RNAs, transfer RNAs, small nuclear RNAs, small nucleolar RNAs, and small interfering RNAs, can serve catalytic and scaffolding functions in transcription, messenger RNA processing, translation, and RNA degradation. Recently, our understanding of gene expression has been dramatically challenged by the identification of large and diverse populations of novel ncRNAs in the eukaryotic genomes surveyed thus far. Studies carried out using the budding yeast Saccharomyces cerevisiae indicate that at least some coding genes are regulated by these novel ncRNAs. S. cerevisiae lacks RNA interference (RNAi) and, thus, provides an ideal system for studying the RNAi-independent mechanisms of ncRNA-based gene regulation. The current picture of gene regulation is one of great unknowns, in which the transcriptional environment surrounding a given locus may have as much to do with its regulation as its DNA sequence or local chromatin structure. Drawing on the recent research in S. cerevisiae and other organisms, this review will discuss the identification of ncRNAs, their origins and processing, and several models that incorporate ncRNAs into the regulation of gene expression and chromatin structure.
Collapse
Affiliation(s)
- Benjamin R Harrison
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | | | | |
Collapse
|
185
|
Coy S, Vasiljeva L. The exosome and heterochromatin : multilevel regulation of gene silencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:105-21. [PMID: 21713681 DOI: 10.1007/978-1-4419-7841-7_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Heterochromatic silencing is important for repressing gene expression, protecting cells against viral invasion, maintaining DNA integrity and for proper chromosome segregation. Recently, it has become apparent that expression of eukaryotic genomesis far more complex than had previously been anticipated. Strikingly, it has emerged that most of the genome is transcribed including intergenic regions and heterochromatin, calling for us to re-address the question of how gene silencing is regulated and re-evaluate the concept ofheterochromatic regions of the genome being transcriptionally inactive. Although heterochromatic silencing can be regulated at the transcriptional level, RNA degrading activities supplied either by the exosome complex or RNAi also significantly contribute to this process. The exosome also regulates noncoding RNAs (ncRNAs) involved in the establishment of heterochromatin, further underscoring its role as the major cellular machinery involved in RNA processing and turn-over. This multilevel control of the transcriptome may be utilized to ensure greater accuracy of gene expression and allow distinction between functional transcripts and background noise. In this chapter, we will discuss the regulation of gene silencing across species, with special emphasis on the exosome's contribution to the process. We will also discuss the links between transcriptional and posttranscriptional mechanisms for gene silencing and their impact on the regulation of eukaryotic transcriptomes.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | |
Collapse
|
186
|
Butler JS, Mitchell P. Rrp6, Rrp47 and Cofactors of the Nuclear Exosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:91-104. [DOI: 10.1007/978-1-4419-7841-7_8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
187
|
Splicing factor Spf30 assists exosome-mediated gene silencing in fission yeast. Mol Cell Biol 2009; 30:1145-57. [PMID: 20028739 DOI: 10.1128/mcb.01317-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heterochromatin assembly in fission yeast relies on the processing of cognate noncoding RNAs by both the RNA interference and the exosome degradation pathways. Recent evidence indicates that splicing factors facilitate the cotranscriptional processing of centromeric transcripts into small interfering RNAs (siRNAs). In contrast, how the exosome contributes to heterochromatin assembly and whether it also relies upon splicing factors were unknown. We provide here evidence that fission yeast Spf30 is a splicing factor involved in the exosome pathway of heterochromatin silencing. Spf30 and Dis3, the main exosome RNase, colocalize at centromeric heterochromatin and euchromatic genes. At the centromeres, Dis3 helps recruiting Spf30, whose deficiency phenocopies the dis3-54 mutant: heterochromatin is impaired, as evidenced by reduced silencing and the accumulation of polyadenylated centromeric transcripts, but the production of siRNAs appears to be unaffected. Consistent with a direct role, Spf30 binds centromeric transcripts and locates at the centromeres in an RNA-dependent manner. We propose that Spf30, bound to nascent centromeric transcripts, perhaps with other splicing factors, assists their processing by the exosome. Splicing factor intercession may thus be a common feature of gene silencing pathways.
Collapse
|
188
|
Rondón AG, Mischo HE, Kawauchi J, Proudfoot NJ. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol Cell 2009; 36:88-98. [PMID: 19818712 PMCID: PMC2779338 DOI: 10.1016/j.molcel.2009.07.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/05/2009] [Accepted: 07/22/2009] [Indexed: 12/15/2022]
Abstract
Transcription termination of RNA polymerase II (Pol II) on protein-coding genes in S. cerevisiae relies on pA site recognition by 3′ end processing factors. Here we demonstrate the existence of two alternative termination mechanisms that rescue polymerases failing to disengage from the template at pA sites. One of these fail-safe mechanisms is mediated by the NRD complex, similar to termination of short noncoding genes. The other termination mechanism is mediated by Rnt1 cleavage of the nascent transcript. Both fail-safe termination mechanisms trigger degradation of readthrough transcripts by the exosome. However, Rnt1-mediated termination can also enhance the usage of weak pA signals and thereby generate functional mRNA. We propose that these alternative Pol II termination pathways serve the dual function of avoiding transcription interference and promoting rapid removal of aberrant transcripts.
Collapse
Affiliation(s)
- Ana G Rondón
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
189
|
Callahan KP, Butler JS. TRAMP complex enhances RNA degradation by the nuclear exosome component Rrp6. J Biol Chem 2009; 285:3540-3547. [PMID: 19955569 DOI: 10.1074/jbc.m109.058396] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA-processing exosome contains ribonucleases that degrade aberrant RNAs in archael and eukaryotic cells. In Saccharomyces cerevisiae, the nuclear/nucleolar 3'-5' exoribonuclease Rrp6 distinguishes the nuclear exosome from the cytoplasmic exosome. In vivo, the TRAMP complex enhances the ability of the nuclear exosome to destroy some aberrant RNAs. Previous reports showed that purified TRAMP enhanced RNA degradation by the nuclear exosome in vitro. However, the exoribonucleolytic component(s) of the nuclear exosome enhanced by TRAMP remain unidentified. We show that TRAMP does not significantly enhance RNA degradation by purified exosomes lacking Rrp6 in vitro, suggesting that TRAMP activation experiments with nuclear exosome preparations reflect, in part, effects on the activity of Rrp6. Consistent with this, we show that incubation of purified TRAMP with recombinant Rrp6 results in a 10-fold enhancement of the rate of RNA degradation. This increased activity results from enhancement of the hydrolytic activity of Rrp6 because TRAMP cannot enhance the activity of an Rrp6 mutant lacking a key amino acid side chain in its active site. We observed no ATP or polyadenylation dependence for the enhancement of Rrp6 activity by TRAMP, suggesting that neither the poly(A) polymerase activity of Trf4 nor the helicase activity of Mtr4 plays a role in the enhancement. These findings identify TRAMP as an exosome-independent enhancer of Rrp6 activity.
Collapse
Affiliation(s)
- Kevin P Callahan
- From the Departments of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | - J Scott Butler
- From the Departments of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642; Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642; the Center for RNA Biology: From Genome to Medicine, University of Rochester Medical Center, Rochester, New York 14642.
| |
Collapse
|
190
|
Jacquier A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 2009; 10:833-44. [PMID: 19920851 DOI: 10.1038/nrg2683] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past few years, techniques have been developed that have allowed the study of transcriptomes without bias from previous genome annotations, which has led to the discovery of a plethora of unexpected RNAs that have no obvious coding capacities. There are many different kinds of products that are generated by this pervasive transcription; this Review focuses on small non-coding RNAs (ncRNAs) that have been found to be associated with promoters in eukaryotes from animals to yeast. After comparing the different classes of such ncRNAs described in various studies, the Review discusses how the models proposed for their origins and their possible functions challenge previous views of the basic transcription process and its regulation.
Collapse
Affiliation(s)
- Alain Jacquier
- Unité de Génétique des Interactions Macromoléculaires, Institut Pasteur, Centre National de la Recherche Scientifique URA2171, 25 Rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
191
|
Singh N, Ma Z, Gemmill T, Wu X, Defiglio H, Rossettini A, Rabeler C, Beane O, Morse RH, Palumbo MJ, Hanes SD. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Mol Cell 2009; 36:255-66. [PMID: 19854134 DOI: 10.1016/j.molcel.2009.08.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/03/2009] [Accepted: 08/13/2009] [Indexed: 12/17/2022]
Abstract
Genome-wide studies have identified abundant small, noncoding RNAs, including small nuclear RNAs, small nucleolar RNAs (snoRNAs), cryptic unstable transcripts (CUTs), and upstream regulatory RNAs (uRNAs), that are transcribed by RNA polymerase II (pol II) and terminated by an Nrd1-dependent pathway. Here, we show that the prolyl isomerase Ess1 is required for Nrd1-dependent termination of noncoding RNAs. Ess1 binds the carboxy-terminal domain (CTD) of pol II and is thought to regulate transcription by conformational isomerization of Ser-Pro bonds within the CTD. In ess1 mutants, expression of approximately 10% of the genome was altered, due primarily to defects in termination of snoRNAs, CUTs, stable unannotated transcripts, and uRNAs. Ess1 promoted dephosphorylation of Ser5 (but not Ser2) within the CTD, most likely by the Ssu72 phosphatase. We also provide evidence for a competition between Nrd1 and Pcf11 for CTD binding that is regulated by Ess1. These data indicate that a prolyl isomerase is required for specifying the "CTD code."
Collapse
Affiliation(s)
- Navjot Singh
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Perales R, Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 2009; 36:178-91. [PMID: 19854129 DOI: 10.1016/j.molcel.2009.09.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/07/2009] [Accepted: 08/06/2009] [Indexed: 12/27/2022]
Abstract
Much of the complex process of RNP biogenesis takes place at the gene cotranscriptionally. The target for RNA binding and processing factors is, therefore, not a solitary RNA molecule but, rather, a transcription elongation complex (TEC) comprising the growing nascent RNA and RNA polymerase traversing a chromatin template with associated passenger proteins. RNA maturation factors are not the only nuclear machines whose work is organized cotranscriptionally around the TEC scaffold. Additionally, DNA repair, covalent chromatin modification, "gene gating" at the nuclear pore, Ig gene hypermutation, and sister chromosome cohesion have all been demonstrated or suggested to involve a cotranscriptional component. From this perspective, TECs can be viewed as potent "community organizers" within the nucleus.
Collapse
Affiliation(s)
- Roberto Perales
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC, MS8101, P.O. Box 6511, Aurora CO, 80045, USA
| | | |
Collapse
|
193
|
Kuan YS, Brewer-Jensen P, Bai WL, Hunter C, Wilson CB, Bass S, Abernethy J, Wing JS, Searles LL. Drosophila suppressor of sable protein [Su(s)] promotes degradation of aberrant and transposon-derived RNAs. Mol Cell Biol 2009; 29:5590-603. [PMID: 19687295 PMCID: PMC2756875 DOI: 10.1128/mcb.00039-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/16/2009] [Accepted: 08/09/2009] [Indexed: 11/20/2022] Open
Abstract
RNA-binding proteins act at various stages of gene expression to regulate and fine-tune patterns of mRNA accumulation. One protein in this class is Drosophila Su(s), a nuclear protein that has been previously shown to inhibit the accumulation of mutant transcripts by an unknown mechanism. Here, we have identified several additional RNAs that are downregulated by Su(s). These Su(s) targets include cryptic wild-type transcripts from the developmentally regulated Sgs4 and ng1 genes, noncoding RNAs derived from tandemly repeated alphabeta/alphagamma elements within an Hsp70 locus, and aberrant transcripts induced by Hsp70 promoter transgenes inserted at ectopic sites. We used the alphabeta RNAs to investigate the mechanism of Su(s) function and obtained evidence that these transcripts are degraded by the nuclear exosome and that Su(s) promotes this process. Furthermore, we showed that the RNA binding domains of Su(s) are important for this effect and mapped the sequences involved to a 267-nucleotide region of an alphabeta element. Taken together, these results suggest that Su(s) binds to certain nascent transcripts and stimulates their degradation by the nuclear exosome.
Collapse
Affiliation(s)
- Yung-Shu Kuan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Lykke-Andersen S, Brodersen DE, Jensen TH. Origins and activities of the eukaryotic exosome. J Cell Sci 2009; 122:1487-94. [PMID: 19420235 DOI: 10.1242/jcs.047399] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exosome is a multi-subunit 3'-5' exonucleolytic complex that is conserved in structure and function in all eukaryotes studied to date. The complex is present in both the nucleus and cytoplasm, where it continuously works to ensure adequate quantities and quality of RNAs by facilitating normal RNA processing and turnover, as well as by participating in more complex RNA quality-control mechanisms. Recent progress in the field has convincingly shown that the nucleolytic activity of the exosome is maintained by only two exonuclease co-factors, one of which is also an endonuclease. The additional association of the exosome with RNA-helicase and poly(A) polymerase activities results in a flexible molecular machine that is capable of dealing with the multitude of cellular RNA substrates that are found in eukaryotic cells. Interestingly, the same basic set of enzymatic activities is found in prokaryotic cells, which might therefore illustrate the evolutionary origin of the eukaryotic system. In this Commentary, we compare the structural and functional characteristics of the eukaryotic and prokaryotic RNA-degradation systems, with an emphasis on some of the functional networks in which the RNA exosome participates in eukaryotes.
Collapse
Affiliation(s)
- Søren Lykke-Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, C. F. Møllers Allé 1130, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
195
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
196
|
Roth KM, Byam J, Fang F, Butler JS. Regulation of NAB2 mRNA 3'-end formation requires the core exosome and the Trf4p component of the TRAMP complex. RNA (NEW YORK, N.Y.) 2009; 15:1045-58. [PMID: 19369424 PMCID: PMC2685527 DOI: 10.1261/rna.709609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The nuclear exosome functions in a variety of pathways catalyzing formation of mature RNA 3'-ends or the destruction of aberrant RNA transcripts. The RNA 3'-end formation activity of the exosome appeared restricted to small noncoding RNAs. However, the nuclear exosome controls the level of the mRNA encoding the poly(A)-binding protein Nab2p in a manner requiring an A(26) sequence in the mRNA 3' untranslated regions (UTR), and the activities of Nab2p and the exosome-associated exoribonuclease Rrp6p. Here we show that the A(26) sequence inhibits normal 3'-end processing of NAB2 mRNA in vivo and in vitro, and makes formation of the mature 3'-end dependent on trimming of the transcript by the core exosome and the Trf4p component of the TRAMP complex from a downstream site. The detection of mature, polyadenylated transcripts ending at, or within, the A(26) sequence indicates that exosome trimming sometimes gives way to polyadenylation of the mRNA. Alternatively, Rrp6p and the TRAMP-associated Mtr4p degrade these transcripts thereby limiting the amount of Nab2p in the cell. These findings suggest that NAB2 mRNA 3'-end formation requires the exosome and TRAMP complex, and that competition between polyadenylation and Rrp6p-dependent degradation controls the level of this mRNA.
Collapse
Affiliation(s)
- Kelly M Roth
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
197
|
Belostotsky D. Exosome complex and pervasive transcription in eukaryotic genomes. Curr Opin Cell Biol 2009; 21:352-8. [DOI: 10.1016/j.ceb.2009.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/19/2009] [Accepted: 04/20/2009] [Indexed: 12/27/2022]
|
198
|
Anderson JT, Wang X. Nuclear RNA surveillance: no sign of substrates tailing off. Crit Rev Biochem Mol Biol 2009; 44:16-24. [PMID: 19280429 DOI: 10.1080/10409230802640218] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The production of cellular RNAs is tightly regulated to ensure gene expression is limited to appropriate times and locations. Elimination of RNA can be rapid and programmed to quickly terminate gene expression, or can be used to purge old, damaged or inappropriately formed RNAs. It is elimination of RNAs through the action of a polyadenylation complex (TRAMP), first described in the yeast Saccharomyces cerevisiae, which is the focus of this review. The discovery of TRAMP and presence of orthologs in most eukaryotes, along with an increasing number of potential TRAMP substrates in the form of new small non-coding RNAs, many of which emanate from areas of genomes once thought transcriptionally silent; promise to make this area of research of great interest for the foreseeable future.
Collapse
Affiliation(s)
- James T Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.
| | | |
Collapse
|
199
|
Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009; 136:688-700. [PMID: 19239889 DOI: 10.1016/j.cell.2009.02.001] [Citation(s) in RCA: 660] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pathway from gene activation in the nucleus to mRNA translation and decay at specific locations in the cytoplasm is both streamlined and highly interconnected. This review discusses how pre-mRNA processing, including 5' cap addition, splicing, and polyadenylation, contributes to both the efficiency and fidelity of gene expression. The connections of pre-mRNA processing to upstream events in transcription and downstream events, including translation and mRNA decay, are elaborate, extensive, and remarkably interwoven.
Collapse
Affiliation(s)
- Melissa J Moore
- Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
200
|
Evguenieva‐Hackenberg E, Klug G. Chapter 7 RNA Degradation in Archaea and Gram‐Negative Bacteria Different from Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:275-317. [DOI: 10.1016/s0079-6603(08)00807-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|