151
|
Abstract
Posttranslational modification with small ubiquitin-related modifier (SUMO) proteins is now established as one of the key regulatory protein modifications in eukaryotic cells. Hundreds of proteins involved in processes such as chromatin organization, transcription, DNA repair, macromolecular assembly, protein homeostasis, trafficking, and signal transduction are subject to reversible sumoylation. Hence, it is not surprising that disease links are beginning to emerge and that interference with sumoylation is being considered for intervention. Here, we summarize basic mechanisms and highlight recent developments in the physiology of sumoylation.
Collapse
Affiliation(s)
- Annette Flotho
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH, Heidelberg D-69120, Germany.
| | | |
Collapse
|
152
|
Westerbeck JW, Pasupala N, Guillotte M, Szymanski E, Matson BC, Esteban C, Kerscher O. A SUMO-targeted ubiquitin ligase is involved in the degradation of the nuclear pool of the SUMO E3 ligase Siz1. Mol Biol Cell 2013; 25:1-16. [PMID: 24196836 PMCID: PMC3873881 DOI: 10.1091/mbc.e13-05-0291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Here we show that the Slx5/Slx8 STUbL complex is involved in the efficient degradation of the nuclear pool of Siz1, a SUMO E3 ligase with many nuclear and cytosolic substrates. This novel finding suggests that STUbLs can regulate cellular SUMO homeostasis by targeting SUMO E3 ligases. The Slx5/Slx8 heterodimer constitutes a SUMO-targeted ubiquitin ligase (STUbL) with an important role in SUMO-targeted degradation and SUMO-dependent signaling. This STUbL relies on SUMO-interacting motifs in Slx5 to aid in substrate targeting and carboxy-terminal RING domains in both Slx5 and Slx8 for substrate ubiquitylation. In budding yeast cells, Slx5 resides in the nucleus, forms distinct foci, and can associate with double-stranded DNA breaks. However, it remains unclear how STUbLs interact with other proteins and their substrates. To examine the targeting and functions of the Slx5/Slx8 STUbL, we constructed and analyzed truncations of the Slx5 protein. Our structure–function analysis reveals a domain of Slx5 involved in nuclear localization and in the interaction with Slx5, SUMO, Slx8, and a novel interactor, the SUMO E3 ligase Siz1. We further analyzed the functional interaction of Slx5 and Siz1 in vitro and in vivo. We found that a recombinant Siz1 fragment is an in vitro ubiquitylation target of the Slx5/Slx8 STUbL. Furthermore, slx5∆ cells accumulate phosphorylated and sumoylated adducts of Siz1 in vivo. Specifically, we show that Siz1 can be ubiquitylated in vivo and is degraded in an Slx5-dependent manner when its nuclear egress is prevented in mitosis. In conclusion, our data provide a first look into the STUbL-mediated regulation of a SUMO E3 ligase.
Collapse
Affiliation(s)
- Jason W Westerbeck
- Biology Department, The College of William & Mary, Williamsburg, VA 23187
| | | | | | | | | | | | | |
Collapse
|
153
|
Paakinaho V, Kaikkonen S, Makkonen H, Benes V, Palvimo JJ. SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res 2013; 42:1575-92. [PMID: 24194604 PMCID: PMC3919585 DOI: 10.1093/nar/gkt1033] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In addition to the glucocorticoids, the glucocorticoid receptor (GR) is regulated by post-translational modifications, including SUMOylation. We have analyzed how SUMOylation influences the activity of endogenous GR target genes and the receptor chromatin binding by using isogenic HEK293 cells expressing wild-type GR (wtGR) or SUMOylation-defective GR (GR3KR). Gene expression profiling revealed that both dexamethasone up- and downregulated genes are affected by the GR SUMOylation and that the affected genes are significantly associated with pathways of cellular proliferation and survival. The GR3KR-expressing cells proliferated more rapidly, and their anti-proliferative response to dexamethasone was less pronounced than in the wtGR-expressing cells. ChIP-seq analyses indicated that the SUMOylation modulates the chromatin occupancy of GR on several loci associated with cellular growth in a fashion that parallels with their differential dexamethasone-regulated expression between the two cell lines. Moreover, chromatin SUMO-2/3 marks, which were associated with active GR-binding sites, showed markedly higher overlap with the wtGR cistrome than with the GR3KR cistrome. In sum, our results indicate that the SUMOylation does not simply repress the GR activity, but regulates the activity of the receptor in a target locus selective fashion, playing an important role in controlling the GR activity on genes influencing cell growth.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, PO Box 1627, FI-70211 Kuopio, Finland, European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | |
Collapse
|
154
|
Mascle XH, Lussier-Price M, Cappadocia L, Estephan P, Raiola L, Omichinski JG, Aubry M. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation. J Biol Chem 2013; 288:36312-27. [PMID: 24174529 DOI: 10.1074/jbc.m113.486845] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications with ubiquitin-like proteins require three sequentially acting enzymes (E1, E2, and E3) that must unambiguously recognize each other in a coordinated fashion to achieve their functions. Although a single E2 (UBC9) and few RING-type E3s (PIAS) operate in the SUMOylation system, the molecular determinants regulating the interactions between UBC9 and the RING-type E3 enzymes are still not well defined. In this study we use biochemical and functional experiments to characterize the interactions between PIAS1 and UBC9. Our results reveal that UBC9 and PIAS1 are engaged both in a canonical E2·E3 interaction as well as assembled into a previously unidentified non-covalent ternary complex with SUMO as evidenced by bioluminescence resonance energy transfer, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry studies. In this ternary complex, SUMO functions as a bridge by forming non-overlapping interfaces with UBC9 and PIAS1. Moreover, our data suggest that phosphorylation of serine residues adjacent to the PIAS1 SUMO-interacting motif favors formation of the non covalent PIAS1·SUMO·UBC9 ternary complex. Finally, our results also indicate that the non-covalent ternary complex is required for the known transcriptional repression activities mediated by UBC9 and SUMO1. Taken together, the data enhance our knowledge concerning the mode of interaction of enzymes of the SUMOylation machinery as well as their role in transcriptional regulation and establishes a framework for investigations of other ubiquitin-like protein systems.
Collapse
Affiliation(s)
- Xavier H Mascle
- From the Département de Biochimie, Université de Montréal, C. P. 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
SUMO-modified proteins are recognized by SUMO interacting motifs (SIMs), thus triggering diverse cellular responses. Here SIMs were used to develop SUMO-traps to capture endogenous SUMOylated proteins. Our results show that these small peptides are transferable motifs that maintain their SUMO binding capacity when fused to the heterologous carrier protein GST. The tandem disposition of SIMs increases the binding capacity of SUMO-traps to specifically interact with polySUMO but not poly-Ubiquitin chains. We demonstrate that this SUMO capturing system purifies SUMOylated proteins such as IκBα, PTEN, PML or p53 in vitro and in vivo. These properties can be used to explore the many critical functions regulated by protein SUMOylation.
Collapse
|
156
|
Shima H, Suzuki H, Sun J, Kono K, Shi L, Kinomura A, Horikoshi Y, Ikura T, Ikura M, Kanaar R, Igarashi K, Saitoh H, Kurumizaka H, Tashiro S. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage. J Cell Sci 2013; 126:5284-92. [PMID: 24046452 DOI: 10.1242/jcs.133744] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic information encoded in chromosomal DNA is challenged by intrinsic and exogenous sources of DNA damage. DNA double-strand breaks (DSBs) are extremely dangerous DNA lesions. RAD51 plays a central role in homologous DSB repair, by facilitating the recombination of damaged DNA with intact DNA in eukaryotes. RAD51 accumulates at sites containing DNA damage to form nuclear foci. However, the mechanism of RAD51 accumulation at sites of DNA damage is still unclear. Post-translational modifications of proteins, such as phosphorylation, acetylation and ubiquitylation play a role in the regulation of protein localization and dynamics. Recently, the covalent binding of small ubiquitin-like modifier (SUMO) proteins to target proteins, termed SUMOylation, at sites containing DNA damage has been shown to play a role in the regulation of the DNA-damage response. Here, we show that the SUMOylation E2 ligase UBC9, and E3 ligases PIAS1 and PIAS4, are required for RAD51 accretion at sites containing DNA damage in human cells. Moreover, we identified a SUMO-interacting motif (SIM) in RAD51, which is necessary for accumulation of RAD51 at sites of DNA damage. These findings suggest that the SUMO-SIM system plays an important role in DNA repair, through the regulation of RAD51 dynamics.
Collapse
Affiliation(s)
- Hiroki Shima
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
SUMO-targeted ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:75-85. [PMID: 24018209 DOI: 10.1016/j.bbamcr.2013.08.022] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/25/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
|
158
|
Filosa G, Barabino SML, Bachi A. Proteomics strategies to identify SUMO targets and acceptor sites: a survey of RNA-binding proteins SUMOylation. Neuromolecular Med 2013; 15:661-76. [PMID: 23979992 DOI: 10.1007/s12017-013-8256-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/08/2013] [Indexed: 01/09/2023]
Abstract
SUMOylation is a protein posttranslational modification that participates in the regulation of numerous biological processes within the cells. Small ubiquitin-like modifier (SUMO) proteins are members of the ubiquitin-like protein family and, similarly to ubiquitin, are covalently linked to a lysine residue on a target protein via a multi-enzymatic cascade. To assess the specific mechanism triggered by SUMOylation, the identification of SUMO protein substrates and of the precise acceptor site to which SUMO is bound is of critical relevance. Despite hundreds of mammalian proteins have been described as targets of SUMOylation, the identification of the precise acceptor sites still represents an important analytical challenge because of the relatively low stoichiometry in vivo and the highly dynamic nature of this modification. Moreover, mass spectrometry-based identification of SUMOylated sites is hampered by the large peptide remnant of SUMO proteins that are left on the modified lysine residue upon tryptic digestion. The present review provides a survey of the strategies that have been exploited in order to enrich, purify and identify SUMOylation substrates and acceptor sites in human cells on a large-scale format. The success of the presented strategies helped to unravel the numerous activities of this modification, as it was shown by the exemplary case of the RNA-binding protein family, whose SUMOylation is here reviewed.
Collapse
Affiliation(s)
- Giuseppe Filosa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | |
Collapse
|
159
|
Abstract
Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.
Collapse
Affiliation(s)
- Katrin Eckermann
- Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073, Goettingen, Germany,
| |
Collapse
|
160
|
Izumiya Y, Kobayashi K, Kim KY, Pochampalli M, Izumiya C, Shevchenko B, Wang DH, Huerta SB, Martinez A, Campbell M, Kung HJ. Kaposi's sarcoma-associated herpesvirus K-Rta exhibits SUMO-targeting ubiquitin ligase (STUbL) like activity and is essential for viral reactivation. PLoS Pathog 2013; 9:e1003506. [PMID: 23990779 PMCID: PMC3749962 DOI: 10.1371/journal.ppat.1003506] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/03/2013] [Indexed: 01/26/2023] Open
Abstract
The small ubiquitin-like modifier (SUMO) is a protein that regulates a wide variety of cellular processes by covalent attachment of SUMO moieties to a diverse array of target proteins. Sumoylation also plays an important role in the replication of many viruses. Previously, we showed that Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO-ligase, K-bZIP, which catalyzes sumoylation of host and viral proteins. We report here that this virus also encodes a gene that functions as a SUMO-targeting ubiquitin-ligase (STUbL) which preferentially targets sumoylated proteins for degradation. K-Rta, the major transcriptional factor which turns on the entire lytic cycle, was recently found to have ubiquitin ligase activity toward a selected set of substrates. We show in this study that K-Rta contains multiple SIMs (SUMO interacting motif) and binds SUMOs with higher affinity toward SUMO-multimers. Like RNF4, the prototypic cellular STUbL, K-Rta degrades SUMO-2/3 and SUMO-2/3 modified proteins, including promyelocytic leukemia (PML) and K-bZIP. PML-NBs (nuclear bodies) or ND-10 are storage warehouses for sumoylated proteins, which negatively regulate herpesvirus infection, as part of the intrinsic immune response. Herpesviruses have evolved different ways to degrade or disperse PML bodies, and KSHV utilizes K-Rta to inhibit PML-NBs formation. This process depends on K-Rta's ability to bind SUMO, as a K-Rta SIM mutant does not effectively degrade PML. Mutations in the K-Rta Ring finger-like domain or SIM significantly inhibited K-Rta transactivation activity in reporter assays and in the course of viral reactivation. Finally, KSHV with a mutation in the Ring finger-like domain or SIM of K-Rta replicates poorly in culture, indicating that reducing SUMO-conjugates in host cells is important for viral replication. To our knowledge, this is the first virus which encodes both a SUMO ligase and a SUMO-targeting ubiquitin ligase that together may generate unique gene regulatory programs.
Collapse
Affiliation(s)
- Yoshihiro Izumiya
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- Department of Biological Chemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- * E-mail: (YI); (HJK)
| | - Keisuke Kobayashi
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- Department of Basic Pathology, National Defense Medical College, Namiki, Tokorozawa, Saitama, Japan
| | - Kevin Y. Kim
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Mamata Pochampalli
- Department of Biological Chemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Chie Izumiya
- Department of Biological Chemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Bogdan Shevchenko
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Don-Hong Wang
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Steve B. Huerta
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Anthony Martinez
- Department of Biological Chemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Mel Campbell
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Hsing-Jien Kung
- Department of Biological Chemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- National Health Research Institutes, Taipei, Taiwan
- * E-mail: (YI); (HJK)
| |
Collapse
|
161
|
Rivera-Molina YA, Martínez FP, Tang Q. Nuclear domain 10 of the viral aspect. World J Virol 2013; 2:110-122. [PMID: 24255882 PMCID: PMC3832855 DOI: 10.5501/wjv.v2.i3.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/31/2013] [Accepted: 07/11/2013] [Indexed: 02/05/2023] Open
Abstract
Nuclear domain 10 (ND10) are spherical bodies distributed throughout the nucleoplasm and measuring around 0.2-1.0 μm. First observed under an electron microscope, they were originally described as dense bodies found in the nucleus. They are known by a number of other names, including Promyelocytic Leukemia bodies (PML bodies), Kremer bodies, and PML oncogenic domains. ND10 are frequently associated with Cajal bodies and cleavage bodies. It has been suggested that they play a role in regulating gene transcription. ND10 were originally characterized using human autoantisera, which recognizes Speckled Protein of 100 kDa, from patients with primary biliary cirrhosis. At the immunohistochemical level, ND10 appear as nuclear punctate structures, with 10 indicating the approximate number of dots per nucleus observed. ND10 do not colocalize with kinetochores, centromeres, sites of mRNA processing, or chromosomes. Resistance of ND10 antigens to nuclease digestion and salt extraction suggest that ND10 are associated with the nuclear matrix. They are often identified by immunofluorescent assay using specific antibodies against PML, Death domain-associated protein, nuclear dot protein (NDP55), and so on. The role of ND10 has long been the subject of investigation, with the specific connection of ND10 and viral infection having been a particular focus for almost 20 years. This review summarizes the relationship of ND10 and viral infection. Some future study directions are also discussed.
Collapse
|
162
|
The SUMO system: a master organizer of nuclear protein assemblies. Chromosoma 2013; 122:475-85. [DOI: 10.1007/s00412-013-0429-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022]
|
163
|
Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol 2013; 87:10126-38. [PMID: 23843639 DOI: 10.1128/jvi.01671-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses.
Collapse
|
164
|
Ivanschitz L, De Thé H, Le Bras M. PML, SUMOylation, and Senescence. Front Oncol 2013; 3:171. [PMID: 23847762 PMCID: PMC3701148 DOI: 10.3389/fonc.2013.00171] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/14/2013] [Indexed: 11/15/2022] Open
Abstract
Since its discovery, 25 years ago, promyelocytic leukemia (PML) has been an enigma. Implicated in the oncogenic PML/RARA fusion, forming elusive intranuclear domains, triggering cell death or senescence, controlled by and perhaps controlling SUMOylation… there are multiple PML-related issues. Here we review the reciprocal interactions between PML, senescence, and SUMOylation, notably in the context of cellular transformation.
Collapse
Affiliation(s)
- Lisa Ivanschitz
- University Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis , Paris , France ; INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis , Paris , France ; CNRS UMR 7212, Hôpital St. Louis , Paris , France
| | | | | |
Collapse
|
165
|
Cho S, Park JS, Kang YK. Regulated nuclear entry of over-expressed Setdb1. Genes Cells 2013; 18:694-703. [DOI: 10.1111/gtc.12068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/24/2013] [Indexed: 12/01/2022]
Affiliation(s)
| | - Jung Sun Park
- Development and Differentiation Research Center; KRIBB; 111 Gwahangno; Yuseong-gu; Daejeon; 305-806; South Korea
| | | |
Collapse
|
166
|
Salomoni P. The PML-Interacting Protein DAXX: Histone Loading Gets into the Picture. Front Oncol 2013; 3:152. [PMID: 23760585 PMCID: PMC3675705 DOI: 10.3389/fonc.2013.00152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/24/2013] [Indexed: 12/23/2022] Open
Abstract
The promyelocytic leukemia (PML) protein has been implicated in regulation of multiple key cellular functions, from transcription to calcium homeostasis. PML pleiotropic role is in part related to its ability to localize to both the nucleus and cytoplasm. In the nucleus, PML is known to regulate gene transcription, a role linked to its ability to associate with transcription factors as well as chromatin-remodelers. A new twist came from the discovery that the PML-interacting protein death-associated protein 6 (DAXX) acts as chaperone for the histone H3.3 variant. H3.3 is found enriched at active genes, centromeric heterochromatin, and telomeres, and has been proposed to act as important carrier of epigenetic information. Our recent work has implicated DAXX in regulation of H3.3 loading and transcription in the central nervous system (CNS). Remarkably, driver mutations in H3.3 and/or its loading machinery have been identified in brain cancer, thus suggesting a role for altered H3.3 function/deposition in CNS tumorigenesis. Aberrant H3.3 deposition may also play a role in leukemia pathogenesis, given DAXX role in PML-RARα-driven transformation and the identification of a DAXX missense mutation in acute myeloid leukemia. This review aims to critically discuss the existing literature and propose new avenues for investigation.
Collapse
Affiliation(s)
- Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute , University College London, London , UK
| |
Collapse
|
167
|
Jin G, Wang YJ, Lin HK. Emerging Cellular Functions of Cytoplasmic PML. Front Oncol 2013; 3:147. [PMID: 23761861 PMCID: PMC3674320 DOI: 10.3389/fonc.2013.00147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/21/2013] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor promyelocytic leukemia protein (PML) is located primarily in the nucleus, where it is the scaffold component of the PML nuclear bodies (PML-NBs). PML-NBs regulate multiple cellular functions, such as apoptosis, senescence, DNA damage response, and resistance to viral infection. Despite its nuclear localization, a small portion of PML has been identified in the cytoplasm. The cytoplasmic PML (cPML) could be originally derived from the retention of exported nuclear PML (nPML). In addition, bona fide cPML isoforms devoid of nuclear localization signal (NLS) have also been identified. Recently, emerging evidence showed that cPML performs its specific cellular functions in tumorigenesis, glycolysis, antiviral responses, laminopothies, and cell cycle regulation. In this review, we will summarize the emerging roles of cPML in cellular functions.
Collapse
Affiliation(s)
- Guoxiang Jin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | | | | |
Collapse
|
168
|
Krumova P, Weishaupt JH. Sumoylation in neurodegenerative diseases. Cell Mol Life Sci 2013; 70:2123-38. [PMID: 23007842 PMCID: PMC11113377 DOI: 10.1007/s00018-012-1158-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 12/12/2022]
Abstract
The yeast SUMO (small ubiquitin-like modifier) orthologue SMT3 was initially discovered in a genetic suppressors screen for the centromeric protein Mif2 (Meluh and Koshland in Mol Bio Cell 6:793-807, 1). Later, it turned out that the homologous mammalian proteins SUMO1 to SUMO4 are reversible protein modifiers that can form isopeptide bonds with lysine residues of respective target proteins (Mahajan et al. in Cell 88:97-107, 2). This was the discovery of a post-translational modification called sumoylation, which enzymatically resembles ubiquitination. However, very soon it became clear that SUMO attachments served a far more diverse role than ubiquitination. Meanwhile, numerous cellular processes are known to be subject to the impact of SUMO modification, including transcription, protein targeting, protein solubility, apoptosis or activity of various enzymes. In many instances, SUMO proteins create new protein interaction surfaces or block existing interaction domains (Geiss-Friedlander and Melchior in Nat Rev in Mol Cell Biol 8:947-956, 3). For the past few years, sumoylation attracted increasing attention as a versatile regulator of toxic protein properties in neurodegenerative diseases. In this review, we summarize the growing knowledge about the involvement of sumoylation in neurodegeneration, and discuss the underlying molecular principles affected by this multifaceted and intriguing post-translational modification.
Collapse
Affiliation(s)
- Petranka Krumova
- Neuroscience, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002, Basel, Switzerland.
| | | |
Collapse
|
169
|
Vennemann A, Hofmann TG. SUMO regulates proteasome-dependent degradation of FLASH/Casp8AP2. Cell Cycle 2013; 12:1914-21. [PMID: 23673342 DOI: 10.4161/cc.24943] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
FLASH/Casp8AP2 is a huge multifunctional protein involved in multiple cellular processes, reaching from death receptor signaling to regulation of histone gene transcription and histone mRNA processing. Previous work has shown that FLASH localizes to Cajal bodies and promyelocytic leukemia (PML) bodies. However, the function of its nuclear body association remains unclear. Here we demonstrate that murine FLASH is covalently modified by SUMO at Lys residue 1792. Interestingly, ectopic expression of SUMO results in proteasome-dependent degradation of FLASH. A point mutant of FLASH with a mutated SUMO acceptor lysine residue, FLASH(K1792R), is resistant to SUMO-induced degradation. Finally, we show that arsenic trioxide, a drug known to potentiate SUMO modification and degradation of PML, triggers recruitment of FLASH to PML bodies and concomitant loss of FLASH protein. Our data suggest that SUMO targets FLASH for proteasome-dependent degradation, which is associated with recruitment of FLASH to PML bodies.
Collapse
Affiliation(s)
- Astrid Vennemann
- German Cancer Research Center (DKFZ), Research Group Cellular Senescence, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | |
Collapse
|
170
|
Physical and Genetic Interactions Between Uls1 and the Slx5-Slx8 SUMO-Targeted Ubiquitin Ligase. G3-GENES GENOMES GENETICS 2013; 3:771-780. [PMID: 23550137 PMCID: PMC3618364 DOI: 10.1534/g3.113.005827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Slx5-Slx8 complex is a ubiquitin ligase that preferentially ubiquitylates SUMOylated substrates, targeting them for proteolysis. Mutations in SLX5, SLX8, and other SUMO pathway genes were previously identified in our laboratory as genomic suppressors of a point mutation (mot1-301) in the transcriptional regulator MOT1 To further understand the links between the SUMO and ubiquitin pathways, a screen was performed for high-copy suppressors of mot1-301, yielding three genes (MOT3, MIT1, and ULS1). MOT3 and MIT1 have characteristics of prions, and ULS1 is believed to encode another SUMO-targeted ubiquitin ligase (STUbL) that functionally overlaps with Slx5-Slx8. Here we focus on ULS1, obtaining results suggesting that the relationship between ULS1 and SLX5 is more complex than expected. Uls1 interacted with Slx5 physically in to yeast two-hybrid and co-immunoprecipitation assays, a uls1 mutation that blocked the interaction between Uls1 and Slx5 interfered with ULS1 function, and genetic analyses indicated an antagonistic relationship between ULS1 and SLX5 Combined, our results challenge the assumption that Uls1 and Slx5 are simply partially overlapping STUbLs and begin to illuminate a regulatory relationship between these two proteins.
Collapse
|
171
|
PML-mediated signaling and its role in cancer stem cells. Oncogene 2013; 33:1475-84. [PMID: 23563177 DOI: 10.1038/onc.2013.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 02/08/2023]
Abstract
The promyelocytic leukemia (PML) protein, initially discovered as a part of the PML/retinoic acid receptor alpha fusion protein, has been found to be a critical player in oncogenesis and tumor progression. Multiple cellular activities, including DNA repair, alternative lengthening of telomeres, transcriptional control, apoptosis and senescence, are regulated by PML and its featured subcellular structure, the PML nuclear body. In correspondence with its role in many important life processes, PML mediates several complex downstream signaling pathways. The determinant function of PML in tumorigenesis and cancer progression raises the interest in its involvement in cancer stem cells (CSCs), a subpopulation of cancer cells that share properties with stem cells and are critical for tumor propagation. Recently, there are exciting discoveries concerning the requirement of PML in CSC maintenance. Growing evidences strongly suggest a positive role of PML in regulating CSCs in both hematopoietic cancers and solid tumors, whereas the underlying mechanisms may be different and remain elusive. Here we summarize and discuss the PML-mediated signaling pathways in cancers and their potential roles in regulating CSCs.
Collapse
|
172
|
Balasubramaniyan N, Luo Y, Sun AQ, Suchy FJ. SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem 2013; 288:13850-62. [PMID: 23546875 DOI: 10.1074/jbc.m112.443937] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Small ubiquitin-like modifiers (SUMO) are covalently conjugated to other proteins including nuclear receptors leading to modification of various cellular processes. RESULTS Ligand-dependent SUMOylation of farnesoid X receptor (FXR) negatively regulates the expression of its target genes. CONCLUSION SUMO modification attenuates the capacity of FXR to function as a transcriptional activator. SIGNIFICANCE Defining post-translation modification of FXR bySUMOis important to understanding how this nuclear receptor functions in health and disease. The farnesoid X receptor (FXR) belongs to a family of ligand-activated transcription factors that regulate many aspects of metabolism including bile acid homeostasis. Here we show that FXR is covalently modified by the small ubiquitin-like modifier (Sumo1), an important regulator of cell signaling and transcription. Well conserved consensus sites at lysine 122 and 275 in the AF-1 and ligand binding domains, respectively, of FXR were subject to SUMOylation in vitro and in vivo. Chromatin immunoprecipitation (ChIP) analysis showed that Sumo1 was recruited to the bile salt export pump (BSEP), the small heterodimer partner (SHP), and the OSTα-OSTβ organic solute transporter loci in a ligand-dependent fashion. Sequential chromatin immunoprecipitation (ChIP-ReChIP) verified the concurrent binding of FXR and Sumo1 to the BSEP and SHP promoters. Overexpression of Sumo1 markedly decreased binding and/or recruitment of FXR to the BSEP and SHP promoters on ChIP-ReChIP. SUMOylation did not have an apparent effect on nuclear localization of FXR. Expression of Sumo1 markedly inhibited the ligand-dependent, transactivation of BSEP and SHP promoters by FXR/retinoid X receptor α (RXRα) in HepG2 cells. In contrast, mutations that abolished SUMOylation of FXR or siRNA knockdown of Sumo1 expression augmented the transactivation of BSEP and SHP promoters by FXR. Pathways for SUMOylation were significantly altered during obstructive cholestasis with differential Sumo1 recruitment to the promoters of FXR target genes. In conclusion, FXR is subject to SUMOylation that regulates its capacity to transactivate its target genes in normal liver and during obstructive cholestasis.
Collapse
Affiliation(s)
- Natarajan Balasubramaniyan
- Department of Pediatrics and Children's Hospital Colorado Research Institute, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
173
|
Pan WW, Zhou JJ, Liu XM, Xu Y, Guo LJ, Yu C, Shi QH, Fan HY. Death domain-associated protein DAXX promotes ovarian cancer development and chemoresistance. J Biol Chem 2013; 288:13620-30. [PMID: 23539629 DOI: 10.1074/jbc.m112.446369] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The role of DAXX in ovarian cancer development and metastasis has not been investigated before now. RESULTS Overexpression of DAXX enhanced ovarian cancer cell proliferation, colony formation, and migration, whereas Daxx depletion had the opposite effects. CONCLUSION DAXX promotes ovarian cancer cell proliferation and chemoresistance. SIGNIFICANCE ModulatingDAXXmay be an effective strategy for preventing the recurrence and chemoresistance of ovarian cancers. Understanding the genes involved in apoptosis and DNA damage responses may improve therapeutic strategies for ovarian cancer. The death domain-associated protein DAXX can be either a pro-apoptotic or an anti-apoptotic factor, depending on the cell type and context. In this study, we found that DAXX was highly expressed in human ovarian surface epithelial tumors but not in granulosa cell tumors. In cultured ovarian cancer cells, DAXX interacted with promyelocytic leukemia protein (PML) and localized to subnuclear domains (so-called PML nuclear bodies). A role for DAXX in ovarian cancer cell proliferation, metastasis, and radio/chemoresistance was examined. Overexpression of DAXX enhanced multiple ovarian cancer cell lines' proliferation, colony formation, and migration, whereas Daxx depletion by RNA interference had the opposite effects. When transplanted into nude mice, ovarian cancer cells that overexpressed DAXX displayed enhanced tumorigenesis capability in vivo, whereas Daxx depletion inhibited tumor development. Importantly, Daxx induced tumorigenic transformation of normal ovarian surface epithelial cells. Daxx also protected ovarian cancer cells against x-irradiation- and chemotherapy-induced DNA damage by interacting with PML. Taken together, our results suggest that DAXX is a novel ovarian cancer oncogene that promotes ovarian cancer cell proliferation and chemoresistance in ovarian cancer cells. Thus, modulating DAXX-PML nuclear body activity may be an effective strategy for preventing the recurrence and chemoresistance of ovarian cancers.
Collapse
Affiliation(s)
- Wei-Wei Pan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Deficient sumoylation of yeast 2-micron plasmid proteins Rep1 and Rep2 associated with their loss from the plasmid-partitioning locus and impaired plasmid inheritance. PLoS One 2013; 8:e60384. [PMID: 23555963 PMCID: PMC3610928 DOI: 10.1371/journal.pone.0060384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022] Open
Abstract
The 2-micron plasmid of the budding yeast Saccharomyces cerevisiae encodes copy-number amplification and partitioning systems that enable the plasmid to persist despite conferring no advantage to its host. Plasmid partitioning requires interaction of the plasmid Rep1 and Rep2 proteins with each other and with the plasmid-partitioning locus STB. Here we demonstrate that Rep1 stability is reduced in the absence of Rep2, and that both Rep proteins are sumoylated. Lysine-to-arginine substitutions in Rep1 and Rep2 that inhibited their sumoylation perturbed plasmid inheritance without affecting Rep protein stability or two-hybrid interaction between Rep1 and Rep2. One-hybrid and chromatin immunoprecipitation assays revealed that Rep1 was required for efficient retention of Rep2 at STB and that sumoylation-deficient mutants of Rep1 and Rep2 were impaired for association with STB. The normal co-localization of both Rep proteins with the punctate nuclear plasmid foci was also lost when Rep1 was sumoylation-deficient. The correlation of Rep protein sumoylation status with plasmid-partitioning locus association suggests a theme common to eukaryotic chromosome segregation proteins, sumoylated forms of which are found enriched at centromeres, and between the yeast 2-micron plasmid and viral episomes that depend on sumoylation of their maintenance proteins for persistence in their hosts.
Collapse
|
175
|
Dual roles for lysine 490 of promyelocytic leukemia protein in the transactivation of glucocorticoid receptor-interacting protein 1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1799-810. [PMID: 23542129 DOI: 10.1016/j.bbamcr.2013.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/12/2013] [Accepted: 03/18/2013] [Indexed: 01/20/2023]
Abstract
Glucocorticoid receptor-interacting protein 1 (GRIP1), a p160 family nuclear receptor co-activator protein, has three activation domains that recruit at least three secondary co-activators: CBP/p300, co-activator-associated arginine methyltransferase 1, and coiled-coil co-activator, which exhibits histone acetyltransferase and/or arginine methyltransferase activities. The regulatory mechanisms underlying the co-activation functions of GRIP1, which associates with promyelocytic leukemia protein (PML) in PML-nuclear bodies, are not well-understood. This study showed that PML specifically and dramatically enhanced the C-terminal transactivation activity of GRIP1 by directly binding to GRIP1 but only when it was sumoylated. Most of the transactivation activity resided in the N-terminal PML regions that are conserved among isoforms. Three N-terminal sumoylation residues (Lys 65, 160, and 490) exhibited differential roles in the regulation of GRIP1 activity, and the sumoylation of Lys 490 acted as the primary nuclear localization signal of PML. While GRIP1 transactivation was stimulated to a similar degree by PML (K490R), located in the nucleus, and wild-type PML, PML (K490D) and the C-truncated mutant PML1-489 both displayed an epinuclear localization and were mostly inactive in stimulating GRIP. Based on these data, nuclear foci, nuclear localization, and the sumoylation status of Lys 490 were not essential for the enhancement of GRIP1 activity by PML, but the charge status of Lys 490 was important for subcellular localization of PML and cross-talk between its N- and C-terminal regions to modulate transcriptional activation. Taken together, these results provide insight into the regulatory mechanisms of PML that control the functional activities of GRIP1.
Collapse
|
176
|
Ubc9 acetylation modulates distinct SUMO target modification and hypoxia response. EMBO J 2013; 32:791-804. [PMID: 23395904 DOI: 10.1038/emboj.2013.5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/09/2013] [Indexed: 01/24/2023] Open
Abstract
While numerous small ubiquitin-like modifier (SUMO) conjugated substrates have been identified, very little is known about the cellular signalling mechanisms that differentially regulate substrate sumoylation. Here, we show that acetylation of SUMO E2 conjugase Ubc9 selectively downregulates the sumoylation of substrates with negatively charged amino acid-dependent sumoylation motif (NDSM) consisting of clustered acidic residues located downstream from the core ψ-K-X-E/D consensus motif, such as CBP and Elk-1, but not substrates with core ψ-K-X-E/D motif alone or SUMO-interacting motif. Ubc9 is acetylated at residue K65 and K65 acetylation attenuates Ubc9 binding to NDSM substrates, causing a reduction in NDSM substrate sumoylation. Furthermore, Ubc9 K65 acetylation can be downregulated by hypoxia via SIRT1, and is correlated with hypoxia-elicited modulation of sumoylation and target gene expression of CBP and Elk-1 and cell survival. Our data suggest that Ubc9 acetylation/deacetylation serves as a dynamic switch for NDSM substrate sumoylation and we report a previously undescribed SIRT1/Ubc9 regulatory axis in the modulation of protein sumoylation and the hypoxia response.
Collapse
|
177
|
Dangoumau A, Veyrat-Durebex C, Blasco H, Praline J, Corcia P, Andres CR, Vourc'h P. Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. Int J Neurosci 2013; 123:366-74. [PMID: 23289752 DOI: 10.3109/00207454.2012.761984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The covalent attachment of SUMO proteins (small ubiquitin-like modifier) to specific proteins or SUMOylation regulates their functional properties in the nucleus and cytoplasm of neurons. Recent studies reported dysfunction of the SUMO pathway in molecular and cellular abnormalities associated with amyotrophic lateral sclerosis (ALS). Furthermore, several observations support a direct role for SUMOylation in diverse pathogenic mechanisms involved in ALS, such as response to hypoxia, oxidative stress, glutamate excitotoxicity and proteasome impairment. Recent results also suggest that SUMO modifications of superoxide dismutase 1, transactive response DNA-binding protein 43, CTE (COOH terminus of EAAT2) (proteolytic C-terminal fragment of the glutamate transporter excitatory amino acid transporter 2, EAAT2) and proteins regulating the turnover of ALS-related proteins can participate in the pathogenesis of ALS. Moreover, the fused in sarcoma (FUS) gene, mutated in ALS, encodes a protein with a SUMO E3 ligase activity. In this review, we summarize the functioning of the SUMO pathway in normal conditions and in response to stresses, its action on ALS-related proteins and discuss the need for further research on this pathway in ALS.
Collapse
|
178
|
Kumar N, Wethkamp N, Waters LC, Carr MD, Klempnauer KH. Tumor suppressor protein Pdcd4 interacts with Daxx and modulates the stability of Daxx and the Hipk2-dependent phosphorylation of p53 at serine 46. Oncogenesis 2013; 2:e37. [PMID: 23536002 PMCID: PMC3564021 DOI: 10.1038/oncsis.2012.37] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor protein Pdcd4 is a nuclear/cytoplasmic shuttling protein that has been implicated in the development of several types of human cancer. In the nucleus, Pdcd4 affects the transcription of specific genes by modulating the activity of several transcription factors. We have identified the Daxx protein as a novel interaction partner of Pdcd4. Daxx is a scaffold protein with roles in diverse processes, including transcriptional regulation, DNA-damage signaling, apoptosis and chromatin remodeling. We show that the interaction of both proteins is mediated by the N-terminal domain of Pdcd4 and the central part of Daxx, and that binding to Pdcd4 stimulates the degradation of Daxx, presumably by disrupting the interaction of Daxx with the de-ubiquitinylating enzyme Hausp. Daxx has previously been shown to serve as a scaffold for protein kinase Hipk2 and tumor suppressor protein p53 and to stimulate the phosphorylation of p53 at serine 46 (Ser-46) in response to genotoxic stress. We show that Pdcd4 also disrupts the Daxx–Hipk2 interaction and inhibits the phosphorylation of p53. We also show that ultraviolet irradiation decreases the expression of Pdcd4. Taken together, our results support a model in which Pdcd4 serves to suppress the phosphorylation of p53 in the absence of DNA damage, while the suppressive effect of Pdcd4 is abrogated after DNA damage owing to the decrease of Pdcd4. Overall, our data demonstrate that Pdcd4 is a novel modulator of Daxx function and provide evidence for a role of Pdcd4 in restraining p53 activity in unstressed cells.
Collapse
Affiliation(s)
- N Kumar
- 1] Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Münster, Germany [2] Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität Münster, Germany
| | | | | | | | | |
Collapse
|
179
|
Cheng X, Kao HY. Post-translational modifications of PML: consequences and implications. Front Oncol 2013; 2:210. [PMID: 23316480 PMCID: PMC3539660 DOI: 10.3389/fonc.2012.00210] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/16/2012] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor promyelocytic leukemia protein (PML) predominantly resides in a structurally distinct sub-nuclear domain called PML nuclear bodies. Emerging evidences indicated that PML actively participates in many aspects of cellular processes, but the molecular mechanisms underlying PML regulation in response to stress and environmental cues are not complete. Post-translational modifications, such as SUMOylation, phosphorylation, acetylation, and ubiquitination of PML add a complex layer of regulation to the physiological function of PML. In this review, we discuss the fast-moving horizon of post-translational modifications targeting PML.
Collapse
Affiliation(s)
- Xiwen Cheng
- Department of Biochemistry, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
- Comprehensive Cancer Center, Case Western Reserve UniversityCleveland, OH, USA
- University Hospital of Cleveland, Case Western Reserve UniversityCleveland, OH, USA
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve UniversityCleveland, OH, USA
- Comprehensive Cancer Center, Case Western Reserve UniversityCleveland, OH, USA
- University Hospital of Cleveland, Case Western Reserve UniversityCleveland, OH, USA
| |
Collapse
|
180
|
Campagna M, Marcos-Villar L, Arnoldi F, de la Cruz-Herrera CF, Gallego P, González-Santamaría J, González D, Lopitz-Otsoa F, Rodriguez MS, Burrone OR, Rivas C. Rotavirus viroplasm proteins interact with the cellular SUMOylation system: implications for viroplasm-like structure formation. J Virol 2013; 87:807-17. [PMID: 23115286 PMCID: PMC3554093 DOI: 10.1128/jvi.01578-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/25/2012] [Indexed: 01/27/2023] Open
Abstract
Posttranslational modification by SUMO provides functional flexibility to target proteins. Viruses interact extensively with the cellular SUMO modification system in order to improve their replication, and there are numerous examples of viral proteins that are SUMOylated. However, thus far the relevance of SUMOylation for rotavirus replication remains unexplored. In this study, we report that SUMOylation positively regulates rotavirus replication and viral protein production. We show that SUMO can be covalently conjugated to the viroplasm proteins VP1, VP2, NSP2, VP6, and NSP5. In addition, VP1, VP2, and NSP2 can also interact with SUMO in a noncovalent manner. We observed that an NSP5 SUMOylation mutant protein retains most of its activities, such as its interaction with VP1 and NSP2, the formation of viroplasm-like structures after the coexpression with NSP2, and the ability to complement in trans the lack of NSP5 in infected cells. However, this mutant is characterized by a high degree of phosphorylation and is impaired in the formation of viroplasm-like structures when coexpressed with VP2. These results reveal for the first time a positive role for SUMO modification in rotavirus replication, describe the SUMOylation of several viroplasm resident rotavirus proteins, and demonstrate a requirement for NSP5 SUMOylation in the production of viroplasm-like structures.
Collapse
Affiliation(s)
| | | | - Francesca Arnoldi
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, University of Trieste, Trieste, Italy
| | | | - Pedro Gallego
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | | | | - Manuel S. Rodriguez
- Proteomics Unit, CIC bioGUNE, CIBERehd, Derio, Spain
- Ubiquitylation and Cancer Molecular Biology laboratory, Inbiomed, San Sebastian-Donostia, Gipuzkoa, Spain
| | - Oscar R. Burrone
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Carmen Rivas
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
181
|
Dynamic regulation of steroid hormone receptor transcriptional activity by reversible SUMOylation. VITAMINS AND HORMONES 2013; 93:227-61. [PMID: 23810010 DOI: 10.1016/b978-0-12-416673-8.00008-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transcription complexes containing steroid hormone receptors (SRs) have been well characterized at selected canonical target genes. More recently, the advent of whole genome technologies has allowed for complete SR transcriptome analyses in diverse cell types and in response to a variety of cellular stimuli. These types of studies have revealed little overlap between the tissue or cell type-specific transcriptomes of a given SR, suggesting that all SRs are highly context-dependent transcription factors. However, the mechanisms controlling SR promoter selectivity have not been fully elucidated. Many factors may influence SR promoter selectivity, including chromatin structure, cofactor availability, and posttranslational modifications to SRs and/or their numerous coregulators; this review focuses on the impact that covalent attachment of small ubiquitin-like modifier (SUMO) moieties to SRs (i.e., SUMOylation) have on the transcriptional regulation of SR target genes.
Collapse
|
182
|
New insights into the role of the small ubiquitin-like modifier (SUMO) in plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:161-209. [PMID: 23273862 DOI: 10.1016/b978-0-12-405210-9.00005-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a small (∼12kDa) protein that occurs in all eukaryotes and participates in the reversible posttranslational modification of target cellular proteins. The three-dimensional structure of SUMO and ubiquitin (Ub) are superimposable although there is very little similarity in their primary amino acid sequences. In all organisms, conjugation and deconjugation of Ub and SUMO proceed by the same reactions while using pathway-specific enzymes. SUMO conjugation in plants is a part of the controls governing important biological processes such as growth, development, flowering, environmental (abiotic) stress responses, and response to pathogen infection. Most of the evidence for this comes from genetic analyses. Recent efforts to dissect the function of sumoylation have focused on uncovering targets of SUMO conjugation by using either a yeast two-hybrid screen employing components of the SUMO cycle as bait or by using affinity purification of SUMO-conjugated proteins followed by identification of these proteins by mass spectrometry. This chapter reviews the current knowledge regarding sumoylation in plants, with special focus on the model plant Arabidopsis thaliana.
Collapse
|
183
|
Berscheminski J, Groitl P, Dobner T, Wimmer P, Schreiner S. The adenoviral oncogene E1A-13S interacts with a specific isoform of the tumor suppressor PML to enhance viral transcription. J Virol 2013; 87:965-77. [PMID: 23135708 PMCID: PMC3554061 DOI: 10.1128/jvi.02023-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/20/2012] [Indexed: 12/21/2022] Open
Abstract
PML nuclear bodies (PML NBs), also called ND10, are matrix-bound nuclear structures that have been implicated in a variety of functions, including DNA repair, transcriptional regulation, protein degradation, and tumor suppression. These domains are also known for their potential to mediate an intracellular defense mechanism against many virus types. This is likely why they are targeted and subsequently manipulated by numerous viral proteins. Paradoxically, the genomes of various DNA viruses become associated with PML NBs, and initial sites of viral transcription/replication centers are often juxtaposed to these domains. The question is why viruses start their transcription and replication next to their supposed antagonists. Here, we report that PML NBs are targeted by the adenoviral (Ad) transactivator protein E1A-13S. Alternatively spliced E1A isoforms (E1A-12S and E1A-13S) are the first proteins expressed upon Ad infection. E1A-13S is essential for activating viral transcription in the early phase of infection. Coimmunoprecipitation assays showed that E1A-13S preferentially interacts with only one (PML-II) of at least six nuclear human PML isoforms. Deletion mapping located the interaction site within E1A conserved region 3 (CR3), which was previously described as the transcription factor binding region of E1A-13S. Indeed, cooperation with PML-II enhanced E1A-mediated transcriptional activation, while deleting the SUMO-interacting motif (SIM) of PML proved even more effective. Our results suggest that in contrast to PML NB-associated antiviral defense, PML-II may help transactivate viral gene expression and therefore play a novel role in activating Ad transcription during the early viral life cycle.
Collapse
Affiliation(s)
- Julia Berscheminski
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
184
|
Schmitz ML, Grishina I. Regulation of the tumor suppressor PML by sequential post-translational modifications. Front Oncol 2012; 2:204. [PMID: 23293771 PMCID: PMC3533183 DOI: 10.3389/fonc.2012.00204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/11/2012] [Indexed: 01/08/2023] Open
Abstract
Post-translational modifications (PTMs) regulate multiple biological functions of the promyelocytic leukemia (PML) protein and also the fission, disassembly, and rebuilding of PML nuclear bodies (PML-NBs) during the cell cycle. Pathway-specific PML modification patterns ensure proper signal output from PML-NBs that suit the specific functional requirements. Here we comprehensively review the signaling pathways and enzymes that modify PML and also the oncogenic PML-RARα fusion protein. Many PTMs occur in a hierarchical and timely organized fashion. Phosphorylation or acetylation constitutes typical starting points for many PML modifying events, while degradative ubiquitination is an irreversible end point of the modification cascade. As this hierarchical organization of PTMs frequently turns phosphorylation events as primordial events, kinases or phosphatases regulating PML phosphorylation may be interesting drug targets to manipulate the downstream modifications and thus the stability and function of PML or PML-RARα.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Department of Biochemistry, Medical Faculty, Justus Liebig University, German Center for Lung Research Giessen, Germany
| | | |
Collapse
|
185
|
Yang WC, Shih HM. The deubiquitinating enzyme USP37 regulates the oncogenic fusion protein PLZF/RARA stability. Oncogene 2012. [PMID: 23208507 DOI: 10.1038/onc.2012.537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute promyelocytic leukemia (APL) is predominantly characterized by chromosomal translocations between the retinoic acid receptor, alpha (RARA) gene and the promyelocytic leukemia (PML) or promyelocytic leukemia zinc finger (PLZF) gene. In APL cells with PML/RARA fusions, arsenic trioxide and all-trans retinoic acid treatments specifically target the fusion protein for proteasome-dependent degradation, thereby promoting cellular differentiation and clinical remission of disease. In contrast, APL cells expressing PLZF/RARA fusion proteins are largely resistant to similar treatments and prognosis for patients with this translocation is poor. Understanding the molecular mechanisms regulating PLZF/RARA protein stability would provide novel therapeutic targets for PLZF/RARA-associated APL. Toward this end, we have performed an RNAi-based screen to identify factors affecting PLZF/RARA stability. Among the factors identified was the ubiquitin-specific peptidase 37 (USP37). We showed that USP37 interacted with PLZF/RARA through the PLZF moiety and sustained PLZF/RARA steady state levels. Domain mapping study revealed that N-terminal domain of USP37 is required for the PLZF/RARA interaction and protein regulation. Furthermore, overexpression or depletion of USP37 caused an increase or decrease of PLZF/RARA protein half-life, correlating with down- or upregulation of PLZF/RARA poly-ubiquitination, respectively. By PLZF/RARA-transduced primary mouse hematopoietic progenitor cells, we demonstrated that Usp37 knockdown alleviated PLZF/RARA-mediated target gene suppression and cell transformation potential. Altogether, our findings of USP37-modulating PLZF/RARA stability and cell transformation suggest that USP37 is a potential therapeutic target for PLZF/RARA-associated APL.
Collapse
Affiliation(s)
- W-C Yang
- 1] Molecular Medicine Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan [2] Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan [3] Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
186
|
The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS One 2012; 7:e49630. [PMID: 23166733 PMCID: PMC3499415 DOI: 10.1371/journal.pone.0049630] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/11/2012] [Indexed: 12/22/2022] Open
Abstract
During the replication of human cytomegalovirus (HCMV) genome, the viral DNA polymerase subunit UL44 plays a key role, as by binding both DNA and the polymerase catalytic subunit it confers processivity to the holoenzyme. However, several lines of evidence suggest that UL44 might have additional roles during virus life cycle. To shed light on this, we searched for cellular partners of UL44 by yeast two-hybrid screenings. Intriguingly, we discovered the interaction of UL44 with Ubc9, an enzyme involved in the covalent conjugation of SUMO (Small Ubiquitin-related MOdifier) to cellular and viral proteins. We found that UL44 can be extensively sumoylated not only in a cell-free system and in transfected cells, but also in HCMV-infected cells, in which about 50% of the protein resulted to be modified at late times post-infection, when viral genome replication is accomplished. Mass spectrometry studies revealed that UL44 possesses multiple SUMO target sites, located throughout the protein. Remarkably, we observed that binding of UL44 to DNA greatly stimulates its sumoylation both in vitro and in vivo. In addition, we showed that overexpression of SUMO alters the intranuclear distribution of UL44 in HCMV-infected cells, and enhances both virus production and DNA replication, arguing for an important role for sumoylation in HCMV life cycle and UL44 function(s). These data report for the first time the sumoylation of a viral processivity factor and show that there is a functional interplay between the HCMV UL44 protein and the cellular sumoylation system.
Collapse
|
187
|
Pilla E, Möller U, Sauer G, Mattiroli F, Melchior F, Geiss-Friedlander R. A novel SUMO1-specific interacting motif in dipeptidyl peptidase 9 (DPP9) that is important for enzymatic regulation. J Biol Chem 2012; 287:44320-9. [PMID: 23152501 DOI: 10.1074/jbc.m112.397224] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sumoylation affects many cellular processes by regulating the interactions of modified targets with downstream effectors. Here we identified the cytosolic dipeptidyl peptidase 9 (DPP9) as a SUMO1 interacting protein. Surprisingly, DPP9 binds to SUMO1 independent of the well known SUMO interacting motif, but instead interacts with a loop involving Glu(67) of SUMO1. Intriguingly, DPP9 selectively associates with SUMO1 and not SUMO2, due to a more positive charge in the SUMO1-loop. We mapped the SUMO-binding site of DPP9 to an extended arm structure, predicted to directly flank the substrate entry site. Importantly, whereas mutants in the SUMO1-binding arm are less active compared with wild-type DPP9, SUMO1 stimulates DPP9 activity. Consistent with this, silencing of SUMO1 leads to a reduced cytosolic prolyl-peptidase activity. Taken together, these results suggest that SUMO1, or more likely, a sumoylated protein, acts as an allosteric regulator of DPP9.
Collapse
Affiliation(s)
- Esther Pilla
- Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Goettingen, Humboldtallee 23, 37073 Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
188
|
Sun H, Hunter T. Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. J Biol Chem 2012; 287:42071-83. [PMID: 23086935 DOI: 10.1074/jbc.m112.410985] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polysumoylation is a crucial cellular response to stresses against genomic integrity or proteostasis. Like the small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligase RNF4, proteins with clustered SUMO-interacting motifs (SIMs) can be important signal transducers downstream of polysumoylation. To identify novel polySUMO-binding proteins, we conducted a computational string search with a custom Python script. We found clustered SIMs in another RING domain protein Arkadia/RNF111. Detailed biochemical analysis of the Arkadia SIMs revealed that dominant SIMs in a SIM cluster often contain a pentameric VIDLT ((V/I/L/F/Y)(V/I)DLT) core sequence that is also found in the SIMs in PIAS family E3s and is likely the best-fitted structure for SUMO recognition. This idea led to the identification of additional novel SIM clusters in FLASH/CASP8AP2, C5orf25, and SOBP/JXC1. We suggest that the clustered SIMs in these proteins form distinct SUMO binding domains to recognize diverse forms of protein sumoylation.
Collapse
Affiliation(s)
- Huaiyu Sun
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
189
|
Maroui MA, Kheddache-Atmane S, El Asmi F, Dianoux L, Aubry M, Chelbi-Alix MK. Requirement of PML SUMO interacting motif for RNF4- or arsenic trioxide-induced degradation of nuclear PML isoforms. PLoS One 2012; 7:e44949. [PMID: 23028697 PMCID: PMC3445614 DOI: 10.1371/journal.pone.0044949] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 08/14/2012] [Indexed: 11/18/2022] Open
Abstract
PML, the organizer of nuclear bodies (NBs), is expressed in several isoforms designated PMLI to VII which differ in their C-terminal region due to alternative splicing of a single gene. This variability is important for the function of the different PML isoforms. PML NB formation requires the covalent linkage of SUMO to PML. Arsenic trioxide (As2O3) enhances PML SUMOylation leading to an increase in PML NB size and promotes its interaction with RNF4, a poly-SUMO-dependent ubiquitin E3 ligase responsible for proteasome-mediated PML degradation. Furthermore, the presence of a bona fide SUMO Interacting Motif (SIM) within the C-terminal region of PML seems to be required for recruitment of other SUMOylated proteins within PML NBs. This motif is present in all PML isoforms, except in the nuclear PMLVI and in the cytoplasmic PMLVII. Using a bioluminescence resonance energy transfer (BRET) assay in living cells, we found that As2O3 enhanced the SUMOylation and interaction with RNF4 of nuclear PML isoforms (I to VI). In addition, among the nuclear PML isoforms, only the one lacking the SIM sequence, PMLVI, was resistant to As2O3-induced PML degradation. Similarly, mutation of the SIM in PMLIII abrogated its sensitivity to As2O3-induced degradation. PMLVI and PMLIII-SIM mutant still interacted with RNF4. However, their resistance to the degradation process was due to their inability to be polyubiquitinated and to recruit efficiently the 20S core and the β regulatory subunit of the 11S complex of the proteasome in PML NBs. Such resistance of PMLVI to As2O3-induced degradation was alleviated by overexpression of RNF4. Our results demonstrate that the SIM of PML is dispensable for PML SUMOylation and interaction with RNF4 but is required for efficient PML ubiquitination, recruitment of proteasome components within NBs and proteasome-dependent degradation of PML in response to As2O3.
Collapse
Affiliation(s)
| | | | - Faten El Asmi
- CNRS, FRE 3235, Université Paris Descartes, Paris, France
| | | | - Muriel Aubry
- Département de Biochimie, Université de Montréal, Montréal, Canada
- * E-mail: (MKC); (MA)
| | | |
Collapse
|
190
|
Sudharsan R, Azuma Y. The SUMO ligase PIAS1 regulates UV-induced apoptosis by recruiting Daxx to SUMOylated foci. J Cell Sci 2012; 125:5819-29. [PMID: 22976298 DOI: 10.1242/jcs.110825] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) ligase PIAS1 (Protein Inhibitor of Activated Stat-1) has been shown to play a role in cellular stress response by SUMOylating several proteins that are involved in DNA repair, apoptosis and transcription. In this paper, we show that PIAS1 regulates ultraviolet (UV)-induced apoptosis by recruiting Death-associated protein 6 (Daxx) to PIAS1-generated SUMO-foci. Cells that ectopically express PIAS1, but not other PIASes, show increased sensitivity to UV irradiation, suggesting that PIAS1 has a distinct function in UV-dependent apoptosis. Domain analysis of PIAS1 indicates that both PIAS1 SUMO-ligase activity and the specific localization of PIAS1 through its N-terminal and C-terminal domains are essential for UV-induced cell death. Daxx colocalizes with PIAS1-generated SUMOylated foci, and the reduction of Daxx using RNAi alleviates UV-induced apoptosis in PIAS1-expressing cells. PIAS1-mediated recruitment of Daxx and apoptosis following UV irradiation are dependent upon the Daxx C-terminal SUMO-interacting motif (SIM). Overall, our data suggest that the pro-apoptotic protein Daxx specifically interacts with one or more substrates SUMOylated by PIAS1 and this interaction leads to apoptosis following UV irradiation.
Collapse
Affiliation(s)
- Raghavi Sudharsan
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Haworth Hall, Rm. 3037, Lawrence, KS 66045, USA
| | | |
Collapse
|
191
|
Chen RH, Lee YR, Yuan WC. The role of PML ubiquitination in human malignancies. J Biomed Sci 2012; 19:81. [PMID: 22935031 PMCID: PMC3438505 DOI: 10.1186/1423-0127-19-81] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/27/2012] [Indexed: 11/13/2022] Open
Abstract
Tumor suppressors are frequently downregulated in human cancers and understanding of the mechanisms through which tumor cells restrict the expression of tumor suppressors is important for the prognosis and intervention of diseases. The promyelocytic leukemia (PML) protein plays a critical role in multiple tumor suppressive functions, such as growth inhibition, apoptosis, replicative senescence, suppression of oncogenic transformation, and inhibition of migration and angiogenesis. These tumor suppression functions are recapitulated in several mouse models. The expression of PML protein is frequently downregulated in diverse types of human tumors and this downregulation often correlates with tumor progression. Recent evidence has emerged that PML is aberrantly degraded in various types of tumors through ubiquitination-dependent mechanisms. Here, we summarize our current understanding of the PML ubiquitination/degradation pathways in human cancers. We point out that multiple pathways lead to PML ubiquitination and degradation. Furthermore, the PML ubiquitination processes are often dependent on other types of posttranslational modifications, such as phosphorylation, prolylisomerization, and sumoylation. Such feature indicates a highly regulated nature of PML ubiquitination in different cellular conditions and cell contexts, thus providing many avenues of opportunity to intervene PML ubiquitination pathways. We discuss the potential of targeting PML ubiquitination pathways for anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | | | | |
Collapse
|
192
|
Dynamic SUMOylation is linked to the activity cycles of androgen receptor in the cell nucleus. Mol Cell Biol 2012; 32:4195-205. [PMID: 22890844 DOI: 10.1128/mcb.00753-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite of the progress in the molecular etiology of prostate cancer, the androgen receptor (AR) remains the major druggable target for the advanced disease. In addition to hormonal ligands, AR activity is regulated by posttranslational modifications. Here, we show that androgen induces SUMO-2 and SUMO-3 (SUMO-2/3) modification (SUMOylation) of the endogenous AR in prostate cancer cells, which is also reflected in the chromatin-bound receptor. Although only a small percentage of AR is SUMOylated at the steady state, AR SUMOylation sites have an impact on the receptor's stability, intranuclear mobility, and chromatin interactions and on expression of its target genes. Interestingly, short-term proteotoxic and cell stress, such as hyperthermia, that detaches the AR from the chromatin triggers accumulation of the SUMO-2/3-modified AR pool which concentrates into the nuclear matrix compartment. Alleviation of the stress allows rapid reversal of the SUMO-2/3 modifications and the AR to return to the chromatin. In sum, these results suggest that the androgen-induced SUMOylation is linked to the activity cycles of the holo-AR in the nucleus and chromatin binding, whereas the stress-induced SUMO-2/3 modifications sustain the solubility of the AR and protect it from proteotoxic insults in the nucleus.
Collapse
|
193
|
Altmannová V, Kolesár P, Krejčí L. SUMO Wrestles with Recombination. Biomolecules 2012; 2:350-75. [PMID: 24970142 PMCID: PMC4030836 DOI: 10.3390/biom2030350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 06/27/2012] [Accepted: 07/13/2012] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand breaks (DSBs) comprise one of the most toxic DNA lesions, as the failure to repair a single DSB has detrimental consequences on the cell. Homologous recombination (HR) constitutes an error-free repair pathway for the repair of DSBs. On the other hand, when uncontrolled, HR can lead to genome rearrangements and needs to be tightly regulated. In recent years, several proteins involved in different steps of HR have been shown to undergo modification by small ubiquitin-like modifier (SUMO) peptide and it has been suggested that deficient sumoylation impairs the progression of HR. This review addresses specific effects of sumoylation on the properties of various HR proteins and describes its importance for the homeostasis of DNA repetitive sequences. The article further illustrates the role of sumoylation in meiotic recombination and the interplay between SUMO and other post-translational modifications.
Collapse
Affiliation(s)
| | - Peter Kolesár
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| | - Lumír Krejčí
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
194
|
Abstract
The selective estrogen receptor downregulator (SERD) fulvestrant can be used as second-line treatment for patients relapsing after treatment with tamoxifen, a selective estrogen receptor modulator (SERM). Unlike tamoxifen, SERDs are devoid of partial agonist activity. While the full antiestrogenicity of SERDs may result in part from their capacity to downregulate levels of estrogen receptor alpha (ERα) through proteasome-mediated degradation, SERDs are also fully antiestrogenic in the absence of increased receptor turnover in HepG2 cells. Here we report that SERDs induce the rapid and strong SUMOylation of ERα in ERα-positive and -negative cell lines, including HepG2 cells. Four sites of SUMOylation were identified by mass spectrometry analysis. In derivatives of the SERD ICI164,384, SUMOylation was dependent on the length of the side chain and correlated with full antiestrogenicity. Preventing SUMOylation by the overexpression of a SUMO-specific protease (SENP) deSUMOylase partially derepressed transcription in the presence of full antiestrogens in HepG2 cells without a corresponding increase in activity in the presence of agonists or of the SERM tamoxifen. Mutations increasing transcriptional activity in the presence of full antiestrogens reduced SUMOylation levels and suppressed stimulation by SENP1. Our results indicate that ERα SUMOylation contributes to full antiestrogenicity in the absence of accelerated receptor turnover.
Collapse
|
195
|
de Thé H, Le Bras M, Lallemand-Breitenbach V. The cell biology of disease: Acute promyelocytic leukemia, arsenic, and PML bodies. J Cell Biol 2012; 198:11-21. [PMID: 22778276 PMCID: PMC3392943 DOI: 10.1083/jcb.201112044] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 06/15/2012] [Indexed: 12/12/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is driven by a chromosomal translocation whose product, the PML/retinoic acid (RA) receptor α (RARA) fusion protein, affects both nuclear receptor signaling and PML body assembly. Dissection of APL pathogenesis has led to the rediscovery of PML bodies and revealed their role in cell senescence, disease pathogenesis, and responsiveness to treatment. APL is remarkable because of the fortuitous identification of two clinically effective therapies, RA and arsenic, both of which degrade PML/RARA oncoprotein and, together, cure APL. Analysis of arsenic-induced PML or PML/RARA degradation has implicated oxidative stress in the biogenesis of nuclear bodies and SUMO in their degradation.
Collapse
Affiliation(s)
- Hugues de Thé
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 944, Equipe labellisée par la Ligue Nationale contre le Cancer, 2 University Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| | | | | |
Collapse
|
196
|
Abstract
NSP 5a3a is a novel structural protein found to be over-expressed in certain cancer cell lines in-vitro such as Hela, Saos-2, and MCF-7 while barely detectable levels in normal body tissues except for Testis. This particular isoform has been known to interact with cyto- nuclear proteins B23, known to be involved in multi-faceted cellular processes such as cell division, apoptosis, ribosome biogenesis, and rRNA processing, as well as with hnRNP-L, known to be involved with RNA metabolism and rRNA processing. A previous preliminary investigation of NSP 5a3a as a potential target in Head and Neck Carcinoma revealed a novel p73 dependent mechanism through which NSP 5a3a induced apoptosis in Head and Neck cell lines when over-expressed in-vitro. Our present investigation further elucidated a novel dual axis signaling point by which NSP 5a3a induces apoptosis in Head and Neck cell line HN30 through p73-DAXX and TRAF2-TRADD. Interestingly, this novel mechanism appears independent of canonical caspases involved in the intrinsic mitochondrial pathway as well as those in the death receptor pathway thru TRAF2 and TRADD.
Collapse
|
197
|
Kolesar P, Sarangi P, Altmannova V, Zhao X, Krejci L. Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 2012; 40:7831-43. [PMID: 22705796 PMCID: PMC3439891 DOI: 10.1093/nar/gks484] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Srs2 DNA helicase of Saccharomyces cerevisiae affects recombination in multiple ways. Srs2 not only inhibits recombination at stalled replication forks but also promotes the synthesis-dependent strand annealing (SDSA) pathway of recombination. Both functions of Srs2 are regulated by sumoylation--sumoylated PCNA recruits Srs2 to the replication fork to disfavor recombination, and sumoylation of Srs2 can be inhibitory to SDSA in certain backgrounds. To understand Srs2 function, we characterize the mechanism of its sumoylation in vitro and in vivo. Our data show that Srs2 is sumoylated at three lysines, and its sumoylation is facilitated by the Siz SUMO ligases. We also show that Srs2 binds to SUMO via a C-terminal SUMO-interacting motif (SIM). The SIM region is required for Srs2 sumoylation, likely by binding to SUMO-charged Ubc9. Srs2's SIM also cooperates with an adjacent PCNA-specific interaction site in binding to sumoylated PCNA to ensure the specificity of the interaction. These two functions of Srs2's SIM exhibit a competitive relationship: sumoylation of Srs2 decreases the interaction between the SIM and SUMO-PCNA, and the SUMO-PCNA-SIM interaction disfavors Srs2 sumoylation. Our findings suggest a potential mechanism for the equilibrium of sumoylated and PCNA-bound pools of Srs2 in cells.
Collapse
Affiliation(s)
- Peter Kolesar
- Department of Biology, National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
198
|
Berndt A, Wilkinson KA, Henley JM. Regulation of Neuronal Protein Trafficking and Translocation by SUMOylation. Biomolecules 2012; 2:256-68. [PMID: 24970136 PMCID: PMC4030841 DOI: 10.3390/biom2020256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 01/15/2023] Open
Abstract
Post-translational modifications of proteins are essential for cell function. Covalent modification by SUMO (small ubiquitin-like modifier) plays a role in multiple cell processes, including transcriptional regulation, DNA damage repair, protein localization and trafficking. Factors affecting protein localization and trafficking are particularly crucial in neurons because of their polarization, morphological complexity and functional specialization. SUMOylation has emerged as a major mediator of intranuclear and nucleo-cytoplasmic translocations of proteins involved in critical pathways such as circadian rhythm, apoptosis and protein degradation. In addition, SUMO-regulated re-localization of extranuclear proteins is required to sustain neuronal excitability and synaptic transmission. Thus, SUMOylation is a key arbiter of neuronal viability and function. Here, we provide an overview of recent advances in our understanding of regulation of neuronal protein localization and translocation by SUMO and highlight exciting areas of ongoing research.
Collapse
Affiliation(s)
- Anja Berndt
- School of Biochemistry, Medical Research Council Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Medical Research Council Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Medical Research Council Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
199
|
The SUMO pathway promotes basic helix-loop-helix proneural factor activity via a direct effect on the Zn finger protein senseless. Mol Cell Biol 2012; 32:2849-60. [PMID: 22586269 DOI: 10.1128/mcb.06595-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During development, proneural transcription factors of the basic helix-loop-helix (bHLH) family are required to commit cells to a neural fate. In Drosophila neurogenesis, a key mechanism promoting sense organ precursor (SOP) fate is the synergy between proneural factors and their coactivator Senseless in transcriptional activation of target genes. Here we present evidence that posttranslational modification by SUMO enhances this synergy via an effect on Senseless protein. We show that Senseless is a direct target for SUMO modification and that mutagenesis of a predicted SUMOylation motif in Senseless reduces Senseless/proneural synergy both in vivo and in cell culture. We propose that SUMOylation of Senseless via lysine 509 promotes its synergy with proneural proteins during transcriptional activation and hence regulates an important step in neurogenesis leading to the formation and maturation of the SOPs.
Collapse
|
200
|
An acetylation switch regulates SUMO-dependent protein interaction networks. Mol Cell 2012; 46:759-70. [PMID: 22578841 DOI: 10.1016/j.molcel.2012.04.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/21/2012] [Accepted: 04/05/2012] [Indexed: 11/23/2022]
Abstract
The attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO. Here we define acetylation within this basic interface as a central mechanism for the control of SUMO-mediated interactions. The acetyl-mediated neutralization of basic charges on SUMO prevents binding to SIMs in PML, Daxx, and PIAS family members but does not affect the interaction between RanBP2 and SUMO. Acetylation is controlled by HDACs and attenuates SUMO- and PIAS-mediated gene silencing. Moreover, it affects the assembly of PML nuclear bodies and restrains the recruitment of the corepressor Daxx to these structures. This acetyl-dependent switch thus expands the regulatory repertoire of SUMO signaling and determines the selectivity and dynamics of SUMO-SIM interactions.
Collapse
|