151
|
Mehnert M, Sommer T, Jarosch E. ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. Bioessays 2010; 32:905-13. [PMID: 20806269 DOI: 10.1002/bies.201000046] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In eukaryotic cells terminally misfolded proteins of the secretory pathway are retarded in the endoplasmic reticulum (ER) and subsequently degraded in a ubiquitin-proteasome-dependent manner. This highly conserved process termed ER-associated protein degradation (ERAD) ensures homeostasis in the secretory pathway by disposing faulty polypeptides and preventing their deleterious accumulation and eventual aggregation in the cell. The focus of this paper is the functional description of membrane-bound ubiquitin ligases, which are involved in all critical steps of ERAD. In the end we want to speculate on how the modular architecture of these entities ensures the specificity of substrate selection and possibly accomplishes the transport of misfolded polypeptides from the ER into the cytoplasm.
Collapse
Affiliation(s)
- Martin Mehnert
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str., Berlin, Germany
| | | | | |
Collapse
|
152
|
Hegde RS, Ploegh HL. Quality and quantity control at the endoplasmic reticulum. Curr Opin Cell Biol 2010; 22:437-46. [PMID: 20570125 PMCID: PMC2929805 DOI: 10.1016/j.ceb.2010.05.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 11/20/2022]
Abstract
The endoplasmic reticulum (ER) is the site of maturation for secretory and membrane proteins that together make up about one third of the cellular proteome. Cells carefully control the synthetic output of this organelle to regulate both quality and quantity of proteins that emerge. Here, we synthesize current concepts underlying the pathways that mediate protein degradation from the ER and their deployment under physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Ramanujan S. Hegde
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, Tel: 301-496-4855, Fax: 301-402-007
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Rm. 361, Cambridge, MA 02142-1479., Tel.: 617-324-1878, Fax: 617-452-3566
| |
Collapse
|
153
|
Chantret I, Fasseu M, Zaoui K, Le Bizec C, Sadou Yayé H, Dupré T, Moore SEH. Identification of roles for peptide: N-glycanase and endo-beta-N-acetylglucosaminidase (Engase1p) during protein N-glycosylation in human HepG2 cells. PLoS One 2010; 5:e11734. [PMID: 20668520 PMCID: PMC2909182 DOI: 10.1371/journal.pone.0011734] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 06/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo β-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells. Methods/Principal Findings During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Δ deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man8GlcNAc2, corresponding to ∼70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc1Man9GlcNAc2 and Man9GlcNAc2 that corresponds to ∼30% of total fOS. Conclusions/Significance As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming.
Collapse
Affiliation(s)
- Isabelle Chantret
- INSERM, U773, Centre de Recherche Bichat Beaujon, Paris, France; Université Paris 7 Denis Diderot, site Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
The lumen of the endoplasmic reticulum constitutes a separate intracellular compartment with a special proteome and metabolome. The redox conditions of the organelle are also characteristically different from those of the other subcellular compartments. The luminal environment has been considered more oxidizing than the cytosol due to the presence of oxidative protein folding. However, recent observations suggest that redox systems in reduced and oxidized states are present simultaneously. The concerted action of membrane transporters and oxidoreductase enzymes maintains the oxidized state of the thiol-disulfide and the reduced state of the pyridine nucleotide redox systems, which are prerequisites for the normal redox reactions localized in the organelle. The powerful thiol-oxidizing machinery of oxidative protein folding continuously challenges the local antioxidant defense. Alterations of the luminal redox conditions, either in oxidizing or reducing direction, affect protein processing, are sensed by the accumulation of misfolded/unfolded proteins, and may induce endoplasmic reticulum stress and unfolded protein response. The activated signaling pathways attempt to restore the balance between protein loading and processing and induce programmed cell death if these attempts fail. Recent findings strongly support the involvement of redox-based endoplasmic reticulum stress in a plethora of human diseases, either as causative agents or as complications.
Collapse
Affiliation(s)
- Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
155
|
Tamura T, Sunryd JC, Hebert DN. Sorting things out through endoplasmic reticulum quality control. Mol Membr Biol 2010; 27:412-27. [PMID: 20553226 DOI: 10.3109/09687688.2010.495354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) is a highly organized and specialized organelle optimized for the production of proteins. It is comprised of a highly interconnected network of tubules that contain a large set of resident proteins dedicated to the maturation and processing of proteins that traverse the eukaryotic secretory pathway. As protein maturation is an imperfect process, frequently resulting in misfolding and/or the formation of aggregates, proteins are subjected to a series of evaluation processes within the ER. Proteins deemed native are sorted for anterograde trafficking, while immature or non-native proteins are initially retained in the ER in an attempt to rescue the aberrant products. Terminally misfolded substrates are eventually targeted for turnover through the ER-associated degradation or ERAD pathway to protect the cell from the release of a defective product. A clearer picture of the identity of the machinery involved in these quality control evaluation processes and their mechanisms of actions has emerged over the past decade.
Collapse
Affiliation(s)
- Taku Tamura
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
156
|
Hosomi A, Tanabe K, Hirayama H, Kim I, Rao H, Suzuki T. Identification of an Htm1 (EDEM)-dependent, Mns1-independent Endoplasmic Reticulum-associated Degradation (ERAD) pathway in Saccharomyces cerevisiae: application of a novel assay for glycoprotein ERAD. J Biol Chem 2010; 285:24324-34. [PMID: 20511219 DOI: 10.1074/jbc.m109.095919] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a quality control system for newly synthesized proteins in the ER; nonfunctional proteins, which fail to form their correct folding state, are then degraded. The cytoplasmic peptide:N-glycanase is a deglycosylating enzyme that is involved in the ERAD and releases N-glycans from misfolded glycoproteins/glycopeptides. We have previously identified a mutant plant toxin protein, RTA (ricin A-chain nontoxic mutant), as the first in vivo Png1 (the cytoplasmic peptide:N-glycanase in Saccharomyces cerevisiae)-dependent ERAD substrate. Here, we report a new genetic device to assay the Png1-dependent ERAD pathway using the new model protein designated RTL (RTA-transmembrane-Leu2). Our extensive studies using different yeast mutants identified various factors involved in RTL degradation. The degradation of RTA/RTL was independent of functional Sec61 but was dependent on Der1. Interestingly, ER-mannosidase Mns1 was not involved in RTA degradation, but it was dependent on Htm1 (ERAD-related alpha-mannosidase in yeast) and Yos9 (a putative degradation lectin), indicating that mannose trimming by Mns1 is not essential for efficient ERAD of RTA/RTL. The newly established RTL assay will allow us to gain further insight into the mechanisms involved in the Png1-dependent ERAD-L pathway.
Collapse
Affiliation(s)
- Akira Hosomi
- Glycometabolome Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
157
|
Prasad R, Kawaguchi S, Ng DTW. A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell 2010; 21:2117-27. [PMID: 20462951 PMCID: PMC2893977 DOI: 10.1091/mbc.e10-02-0111] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intracellular quality control systems monitor protein conformational states. Irreversibly misfolded proteins are cleared through specialized degradation pathways. Their importance is underscored by numerous pathologies caused by aberrant proteins. In the cytosol, where most proteins are synthesized, quality control remains poorly understood. Stress-inducible chaperones and the 26S proteasome are known mediators but how their activities are linked is unclear. To better understand these mechanisms, a panel of model misfolded substrates was analyzed in detail. Surprisingly, their degradation occurs not in the cytosol but in the nucleus. Degradation is dependent on the E3 ubiquitin ligase San1p, known previously to direct the turnover of damaged nuclear proteins. A second E3 enzyme, Ubr1p, augments this activity but is insufficient by itself. San1p and Ubr1p are not required for nuclear import of substrates. Instead, the Hsp70 chaperone system is needed for efficient import and degradation. These data reveal a new function of the nucleus as a compartment central to the quality control of cytosolic proteins.
Collapse
Affiliation(s)
- Rupali Prasad
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604
| | | | | |
Collapse
|
158
|
Kanehara K, Xie W, Ng DTW. Modularity of the Hrd1 ERAD complex underlies its diverse client range. ACTA ACUST UNITED AC 2010; 188:707-16. [PMID: 20212318 PMCID: PMC2835937 DOI: 10.1083/jcb.200907055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Additional factors combine with the core Hrd1 complex in a modular fashion, enabling it to recognize a variety of substrates. Secretory protein folding is monitored by endoplasmic reticulum (ER) quality control mechanisms. Misfolded proteins are retained and targeted to ER-associated degradation (ERAD) pathways. At their core are E3 ubiquitin ligases, which organize factors that recognize, ubiquitinate, and translocate substrates. Of these, we report that the Hrd1 complex manages three distinct substrate classes. A core complex is required for all classes and is sufficient for some membrane proteins. The accessory factors Usa1p and Der1p adapt the complex to process luminal substrates. Their integration is sufficient to process molecules bearing glycan-independent degradation signals. The presence of Yos9p extends the substrate range by mediating the recognition of glycan-based degradation signals. This modular organization enables the Hrd1 complex to recognize topologically diverse substrates. The Hrd1 system does not directly evaluate the folding state of polypeptides. Instead, it does so indirectly, by recognizing specific embedded signals displayed upon misfolding.
Collapse
Affiliation(s)
- Kazue Kanehara
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | |
Collapse
|
159
|
Buck TM, Kolb AR, Boyd CR, Kleyman TR, Brodsky JL. The endoplasmic reticulum-associated degradation of the epithelial sodium channel requires a unique complement of molecular chaperones. Mol Biol Cell 2010; 21:1047-58. [PMID: 20110346 PMCID: PMC2836957 DOI: 10.1091/mbc.e09-11-0944] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/06/2010] [Accepted: 01/15/2010] [Indexed: 12/28/2022] Open
Abstract
The epithelial sodium channel (ENaC) is composed of a single copy of an alpha-, beta-, and gamma-subunit and plays an essential role in water and salt balance. Because ENaC assembles inefficiently after its insertion into the ER, a substantial percentage of each subunit is targeted for ER-associated degradation (ERAD). To define how the ENaC subunits are selected for degradation, we developed novel yeast expression systems for each ENaC subunit. Data from this analysis suggested that ENaC subunits display folding defects in more than one compartment and that subunit turnover might require a unique group of factors. Consistent with this hypothesis, yeast lacking the lumenal Hsp40s, Jem1 and Scj1, exhibited defects in ENaC degradation, whereas BiP function was dispensable. We also discovered that Jem1 and Scj1 assist in ENaC ubiquitination, and overexpression of ERdj3 and ERdj4, two lumenal mammalian Hsp40s, increased the proteasome-mediated degradation of ENaC in vertebrate cells. Our data indicate that Hsp40s can act independently of Hsp70 to select substrates for ERAD.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
160
|
Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:694-705. [PMID: 20219571 DOI: 10.1016/j.bbamcr.2010.02.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/11/2010] [Accepted: 02/18/2010] [Indexed: 01/16/2023]
Abstract
Recognition and elimination of misfolded proteins are essential cellular processes. More than thirty percent of the cellular proteins are proteins of the secretory pathway. They fold in the lumen or membrane of the endoplasmic reticulum from where they are sorted to their site of action. The folding process, as well as any refolding after cell stress, depends on chaperone activity. In case proteins are unable to acquire their native conformation, chaperones with different substrate specificity and activity guide them to elimination. For most misfolded proteins of the endoplasmic reticulum this requires retro-translocation to the cytosol and polyubiquitylation of the misfolded protein by an endoplasmic reticulum associated machinery. Thereafter ubiquitylated proteins are guided to the proteasome for degradation. This review summarizes our up to date knowledge of chaperone classes and chaperone function in endoplasmic reticulum associated degradation of protein waste.
Collapse
|
161
|
Bernasconi R, Galli C, Calanca V, Nakajima T, Molinari M. Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-LS substrates. ACTA ACUST UNITED AC 2010; 188:223-35. [PMID: 20100910 PMCID: PMC2812524 DOI: 10.1083/jcb.200910042] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Soluble ERAD substrates require the Hrd1 E3 ligase for degradation compared with membrane-anchored peptides that use GP78. Sophisticated quality control mechanisms prolong retention of protein-folding intermediates in the endoplasmic reticulum (ER) until maturation while sorting out terminally misfolded polypeptides for ER-associated degradation (ERAD). The presence of structural lesions in the luminal, transmembrane, or cytosolic domains determines the classification of misfolded polypeptides as ERAD-L, -M, or -C substrates and results in selection of distinct degradation pathways. In this study, we show that disposal of soluble (nontransmembrane) polypeptides with luminal lesions (ERAD-LS substrates) is strictly dependent on the E3 ubiquitin ligase HRD1, the associated cargo receptor SEL1L, and two interchangeable ERAD lectins, OS-9 and XTP3-B. These ERAD factors become dispensable for degradation of the same polypeptides when membrane tethered (ERAD-LM substrates). Our data reveal that, in contrast to budding yeast, tethering of mammalian ERAD-L substrates to the membrane changes selection of the degradation pathway.
Collapse
|
162
|
Xie W, Ng DTW. ERAD substrate recognition in budding yeast. Semin Cell Dev Biol 2010; 21:533-9. [PMID: 20178855 DOI: 10.1016/j.semcdb.2010.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/15/2010] [Indexed: 11/17/2022]
Abstract
During protein synthesis, the orderly progression of folding, modification, and assembly is paramount to function and vis-à-vis cellular viability. Accordingly, sophisticated quality control mechanisms have evolved to monitor protein maturation throughout the cell. Proteins failing at any step are segregated and degraded as a preventative measure against potential toxicity. Although protein quality control is generally poorly understood, recent research advances in endoplasmic reticulum-associated degradation (ERAD) pathways have provided the most detailed view so far. The discovery of distinct substrate processing sites established a biochemical basis for genetic profiles of model misfolded proteins. Detailed mechanisms for substrate recognition were recently uncovered. For some proteins, sequential glycan trimming steps set a time window for folding. Proteins still unfolded at the final stage expose a specific degradation signal recognized by the ERAD machinery. Through this mechanism, the system does not in fact know that a molecule is "misfolded". Instead, it goes by the premise that proteins past due have veered off their normal folding pathways and therefore aberrant.
Collapse
Affiliation(s)
- Wei Xie
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | | |
Collapse
|
163
|
Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol Cell 2010; 36:782-93. [PMID: 20005842 DOI: 10.1016/j.molcel.2009.10.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/10/2009] [Accepted: 09/18/2009] [Indexed: 11/23/2022]
Abstract
Protein quality control in the endoplasmic reticulum is of central importance for cellular homeostasis in eukaryotes. Crucial for this process is the HRD-ubiquitin ligase (HMG-CoA reductase degradation), which singles out terminally misfolded proteins and routes them for degradation to cytoplasmic 26S-proteasomes. Certain functions of this enzyme complex are allocated to defined subunits. However, it remains unclear how these components act in a concerted manner. Here, we show that Usa1 functions as a major scaffold protein of the HRD-ligase. For the turnover of soluble substrates, Der1 binding to the C terminus of Usa1 is required. The N terminus of Usa1 associates with Hrd1 and thus bridges Der1 to Hrd1. Strikingly, the Usa1 N terminus also induces oligomerization of the HRD complex, which is an exclusive prerequisite for the degradation of membrane proteins. Our data demonstrate that scaffold proteins are required to adapt ubiquitin ligase activities toward different classes of substrates.
Collapse
|
164
|
Hirayama H, Seino J, Kitajima T, Jigami Y, Suzuki T. Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae. J Biol Chem 2010; 285:12390-404. [PMID: 20150426 DOI: 10.1074/jbc.m109.082081] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In eukaryotic cells, N-glycosylation has been recognized as one of the most common and functionally important co- or post-translational modifications of proteins. "Free" forms of N-glycans accumulate in the cytosol of mammalian cells, but the precise mechanism for their formation and degradation remains unknown. Here, we report a method for the isolation of yeast free oligosaccharides (fOSs) using endo-beta-1,6-glucanase digestion. fOSs were undetectable in cells lacking PNG1, coding the cytoplasmic peptide:N-glycanase gene, suggesting that almost all fOSs were formed from misfolded glycoproteins by Png1p. Structural studies revealed that the most abundant fOS was M8B, which is not recognized well by the endoplasmic reticulum-associated degradation (ERAD)-related lectin, Yos9p. In addition, we provide evidence that some of the ERAD substrates reached the Golgi apparatus prior to retrotranslocation to the cytosol. N-Glycan structures on misfolded glycoproteins in cells lacking the cytosol/vacuole alpha-mannosidase, Ams1p, was still quite diverse, indicating that processing of N-glycans on misfolded glycoproteins was more complex than currently envisaged. Under ER stress, an increase in fOSs was observed, whereas levels of M7C, a key glycan structure recognized by Yos9p, were unchanged. Our method can thus provide valuable information on the molecular mechanism of glycoprotein ERAD in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
165
|
A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan. Biochem Biophys Res Commun 2010; 393:384-9. [PMID: 20138839 DOI: 10.1016/j.bbrc.2010.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 02/01/2010] [Indexed: 11/22/2022]
Abstract
Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.
Collapse
|
166
|
Wang S, Ng DTW. Evasion of endoplasmic reticulum surveillance makes Wsc1p an obligate substrate of Golgi quality control. Mol Biol Cell 2010; 21:1153-65. [PMID: 20130083 PMCID: PMC2847520 DOI: 10.1091/mbc.e09-10-0910] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the endoplasmic reticulum (ER), most newly synthesized proteins are retained by quality control mechanisms until folded. Misfolded molecules are sorted to ER-associated degradation (ERAD) pathways for disposal. Reports of mutant proteins degraded in the vacuole/lysosome suggested an independent Golgi-based mechanism also at work. Although little is understood of the post-ER pathway, the growing number of variants using it suggests a major role in quality control. Why seemingly redundant mechanisms in sequential compartments are needed is unclear. To understand their physiological relationship, the identification of endogenous pathway-specific substrates is a prerequisite. With ERAD substrates already well characterized, the discovery of Wsc1p as an obligate substrate of Golgi quality control enabled detailed cross-pathway analyses for the first time. By analyzing a panel of engineered substrates, the data show that the surveillance mode is determined by each polypeptide's intrinsic design. Although most secretory pathway proteins can display ERAD determinants when misfolded, the lack thereof shields Wsc1p from inspection by ER surveillance. Additionally, a powerful ER export signal mediates transport whether the luminal domain is folded or not. By evading ERAD through these passive and active mechanisms, Wsc1p is fully dependent on the post-ER system for its quality control.
Collapse
Affiliation(s)
- Songyu Wang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
167
|
Hosokawa N, Kamiya Y, Kato K. The role of MRH domain-containing lectins in ERAD. Glycobiology 2010; 20:651-60. [PMID: 20118070 DOI: 10.1093/glycob/cwq013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The endoplasmic reticulum (ER) quality control system ensures that newly synthesized proteins in the early secretory pathway are in the correct conformation. Polypeptides that have failed to fold into native conformers are subsequently retrotranslocated and degraded by the cytosolic ubiquitin-proteasome system, a process known as endoplasmic reticulum-associated degradation (ERAD). Most of the polypeptides that enter the ER are modified by the addition of N-linked oligosaccharides, and quality control of these glycoproteins is assisted by lectins that recognize specific sugar moieties and molecular chaperones that recognize unfolded proteins, resulting in proper protein folding and ERAD substrate selection. In Saccharomyces cerevisiae, Yos9p, a lectin that contains a mannose 6-phosphate receptor homology (MRH) domain, was identified as an important component of ERAD. Yos9p was shown to associate with the membrane-embedded ubiquitin ligase complex, Hrd1p-Hrd3p, and provide a proofreading mechanism for ERAD. Meanwhile, the function of the mammalian homologues of Yos9p, OS-9 and XTP3-B remained elusive until recently. Recent studies have determined that both OS-9 and XTP3-B are ER resident proteins that associate with the HRD1-SEL1L ubiquitin ligase complex and are important for the regulation of ERAD. Moreover, recent studies have identified the N-glycan species with which both yeast Yos9p and mammalian OS-9 associate as M7A, a Man(7)GlcNAc(2) isomer that lacks the alpha1,2-linked terminal mannose from both the B and C branches. M7A has since been demonstrated to be a degradation signal in both yeast and mammals.
Collapse
Affiliation(s)
- Nobuko Hosokawa
- Department of Molecular and Cellular Biology Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.
| | | | | |
Collapse
|
168
|
Hosokawa N, Tremblay LO, Sleno B, Kamiya Y, Wada I, Nagata K, Kato K, Herscovics A. EDEM1 accelerates the trimming of 1,2-linked mannose on the C branch of N-glycans. Glycobiology 2010; 20:567-75. [DOI: 10.1093/glycob/cwq001] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
169
|
Hosokawa N, Kato K, Kamiya Y. Mannose 6-phosphate receptor homology domain-containing lectins in mammalian endoplasmic reticulum-associated degradation. Methods Enzymol 2010; 480:181-97. [PMID: 20816211 DOI: 10.1016/s0076-6879(10)80010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Quality control of glycoproteins synthesized in the endoplasmic reticulum (ER) is mediated by lectins and molecular chaperones. N-linked Glc(3)Man(9)GlcNAc(2) oligosaccharides attached to the nascent polypeptides are processed and recognized by lectins in the ER. OS-9 and XTP3-B/Erlectin, mannose 6-phosphate receptor homology (MRH) domain-containing lectins in mammals, were recently identified as ER luminal glycoproteins that participate in ER-associated degradation (ERAD) of misfolded proteins. Frontal affinity chromatography (FAC) and cell-surface expressed lectin assay revealed that both OS-9 and XTP3-B recognize high-mannose type N-glycans that lack the terminal mannose on the C branch. Furthermore, these lectins associate with the HRD1-SEL1L ubiquitin ligase complex on the ER membrane. In this chapter, we describe the FAC methods used to analyze the carbohydrate-recognition specificity of OS-9 and methods to examine the interaction and the effect on ERAD of these proteins in vivo. We also discuss the structure and function of OS-9 and XTP3-B, and the effect of these lectins on ERAD.
Collapse
Affiliation(s)
- Nobuko Hosokawa
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
170
|
Abstract
Ubiquitylation is a protein modification mechanism, which is found in a multitude of cellular processes like DNA repair and replication, cell signaling, intracellular trafficking and also, very prominently, in selective protein degradation. One specific protein degradation event in the cell concerns the elimination of misfolded proteins to prevent disastrous malfunctioning of cellular pathways. The most complex of these ubiquitylation dependent elimination pathways of misfolded proteins is associated with the endoplasmic reticulum (ER). Proteins, which enter the endoplasmic reticulum for secretion, are folded in this organelle and transported to their site of action. A rigid protein quality control check retains proteins in the endoplasmic reticulum, which fail to fold properly and sends them back to the cytosol for elimination by the proteasome. This requires crossing of the misfolded protein of the endoplasmic reticulum membrane and polyubiquitylation in the cytosol by the ubiquitin-activating, ubiquitin-conjugating and ubiquitin-ligating enzyme machinery.Ubiquitylation is required for different steps of the ER-associated degradation process (ERAD). It facilitates efficient extraction of the ubiquitylated misfolded proteins from and out of the ER membrane by the Cdc48-Ufd1-Npl4 complex and thereby triggers their retro translocation to the cytosol. In addition, the modification with ubiquitin chains guarantees guidance, recognition and binding of the misfolded proteins to the proteasome in the cytosol for efficient degradation.
Collapse
Affiliation(s)
- Frederik Eisele
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | | | | |
Collapse
|
171
|
Abstract
Global folding of polypeptides entering the endoplasmic reticulum (ER) starts as soon as they emerge from the narrow Sec61 translocon. Attainment of the native structure can take from several minutes to hours, depending on the gene product. Until then, non-native folding intermediates must be protected from molecular chaperones that recognize misfolded determinants and could prematurely interrupt folding programs by re-directing them to disposal pathways. On the other hand, futile folding attempts must actively be stopped to prevent intraluminal accumulation of defective cargo. This review describes recent advances in understanding how terminally misfolded polypeptides are extracted from the folding environment and directed to specific dislocons within the ER membrane for transfer to the cytoplasm for proteasome-mediated degradation.
Collapse
|
172
|
Hong Z, Jin H, Fitchette AC, Xia Y, Monk AM, Faye L, Li J. Mutations of an alpha1,6 mannosyltransferase inhibit endoplasmic reticulum-associated degradation of defective brassinosteroid receptors in Arabidopsis. THE PLANT CELL 2009; 21:3792-802. [PMID: 20023196 PMCID: PMC2814505 DOI: 10.1105/tpc.109.070284] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/26/2009] [Accepted: 11/19/2009] [Indexed: 05/18/2023]
Abstract
Asn-linked glycans, or the glycan code, carry crucial information for protein folding, transport, sorting, and degradation. The biochemical pathway for generating such a code is highly conserved in eukaryotic organisms and consists of ordered assembly of a lipid-linked tetradeccasaccharide. Most of our current knowledge on glycan biosynthesis was obtained from studies of yeast asparagine-linked glycosylation (alg) mutants. By contrast, little is known about biosynthesis and biological functions of N-glycans in plants. Here, we show that loss-of-function mutations in the Arabidopsis thaliana homolog of the yeast ALG12 result in transfer of incompletely assembled glycans to polypeptides. This metabolic defect significantly compromises the endoplasmic reticulum-associated degradation of bri1-9 and bri1-5, two defective transmembrane receptors for brassinosteroids. Consequently, overaccumulated bri1-9 or bri1-5 proteins saturate the quality control systems that retain the two mutated receptors in the endoplasmic reticulum and can thus leak out of the folding compartment, resulting in phenotypic suppression of the two bri1 mutants. Our results strongly suggest that the complete assembly of the lipid-linked glycans is essential for successful quality control of defective glycoproteins in Arabidopsis.
Collapse
Affiliation(s)
- Zhi Hong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Hua Jin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Anne-Catherine Fitchette
- Laboratoire GLYCAD, Centre National de la Recherche Scientifique-Université de Rouen, Faculté des Sciences, F-76130 Mont Saint Aignan, France
| | - Yang Xia
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Andrew M. Monk
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Loïc Faye
- Laboratoire GLYCAD, Centre National de la Recherche Scientifique-Université de Rouen, Faculté des Sciences, F-76130 Mont Saint Aignan, France
| | - Jianming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
- Address correspondence to
| |
Collapse
|
173
|
Hoseki J, Ushioda R, Nagata K. Mechanism and components of endoplasmic reticulum-associated degradation. J Biochem 2009; 147:19-25. [DOI: 10.1093/jb/mvp194] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
174
|
Yamaguchi D, Hu D, Matsumoto N, Yamamoto K. Human XTP3-B binds to 1-antitrypsin variant nullHong Kong via the C-terminal MRH domain in a glycan-dependent manner. Glycobiology 2009; 20:348-55. [DOI: 10.1093/glycob/cwp182] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
175
|
Mikami K, Yamaguchi D, Tateno H, Hu D, Qin SY, Kawasaki N, Yamada M, Matsumoto N, Hirabayashi J, Ito Y, Yamamoto K. The sugar-binding ability of human OS-9 and its involvement in ER-associated degradation. Glycobiology 2009; 20:310-21. [DOI: 10.1093/glycob/cwp175] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
176
|
Pearse BR, Hebert DN. Lectin chaperones help direct the maturation of glycoproteins in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:684-93. [PMID: 19891995 DOI: 10.1016/j.bbamcr.2009.10.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/09/2009] [Accepted: 10/20/2009] [Indexed: 02/06/2023]
Abstract
Eukaryotic secretory pathway cargo fold to their native structures within the confines of the endoplasmic reticulum (ER). To ensure a high degree of folding fidelity, a multitude of covalent and noncovalent constraints are imparted upon nascent proteins. These constraints come in the form of topological restrictions or membrane tethers, covalent modifications, and interactions with a series of molecular chaperones. N-linked glycosylation provides inherent benefits to proper folding and creates a platform for interactions with specific chaperones and Cys modifying enzymes. Recent insights into this timeline of protein maturation have revealed mechanisms for protein glycosylation and iterative targeting of incomplete folding intermediates, which provides nurturing interactions with molecular chaperones that assist in the efficient maturation of proteins in the eukaryotic secretory pathway.
Collapse
Affiliation(s)
- Bradley R Pearse
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
177
|
Aebi M, Bernasconi R, Clerc S, Molinari M. N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 2009; 35:74-82. [PMID: 19853458 DOI: 10.1016/j.tibs.2009.10.001] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 11/26/2022]
Abstract
The processing of N-linked glycans determines secretory protein homeostasis in the eukaryotic cell. Folding and degradation of glycoproteins in the endoplasmic reticulum (ER) are regulated by molecular chaperones and enzymes recruited by specific oligosaccharide structures. Recent findings have identified several components of this protein quality control system that specifically modify N-linked glycans, thereby generating oligosaccharide structures recognized by carbohydrate-binding proteins, lectins. In turn, lectins direct newly synthesized polypeptides to the folding, secretion or degradation pathways. The "glyco-code of the ER" displays the folding status of a multitude of cargo proteins. Deciphering this code will be instrumental in understanding protein homeostasis regulation in eukaryotic cells and for intervention because such processes can have crucial importance for clinical and industrial applications.
Collapse
Affiliation(s)
- Markus Aebi
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
178
|
Cameron PH, Chevet E, Pluquet O, Thomas DY, Bergeron JJM. Calnexin phosphorylation attenuates the release of partially misfolded alpha1-antitrypsin to the secretory pathway. J Biol Chem 2009; 284:34570-9. [PMID: 19815548 DOI: 10.1074/jbc.m109.053165] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calnexin is a type I integral membrane phosphoprotein resident of the endoplasmic reticulum. Its intraluminal domain has been deduced to function as a lectin chaperone coordinating the timing of folding of newly synthesized N-linked glycoproteins of the secretory pathway. Its C-terminal cytosolic oriented extension has an ERK1 phosphorylation site at Ser(563) affecting calnexin association with the translocon. Here we find an additional function for calnexin phosphorylation at Ser(563) in endoplasmic reticulum quality control. A low dose of the misfolding agent l-azetidine 2-carboxylic acid slows glycoprotein maturation and diminishes the extent and rate of secretion of newly synthesized secretory alpha1-antitrypsin. Under these conditions the phosphorylation of calnexin is enhanced at Ser(563). Inhibition of this phosphorylation by the MEK1 inhibitor PD98059 enhanced the extent and rate of alpha1-antitrypsin secretion comparable with that achieved by inhibiting alpha-mannosidase activity with kifunensine. This is the first report in which the phosphorylation of calnexin is linked to the efficiency of secretion of a cargo glycoprotein.
Collapse
Affiliation(s)
- Pamela H Cameron
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | |
Collapse
|
179
|
Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc Natl Acad Sci U S A 2009; 106:17043-8. [PMID: 19805114 DOI: 10.1073/pnas.0905566106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the rhodopsin gene that disrupt the encoded protein's folding properties are a major cause of autosomal dominant retinitis pigmentosa (ADRP). This disease is faithfully modeled in Drosophila where similar mutations in the ninaE gene, encoding rhodopsin-1 (Rh-1), cause ER stress and dominantly trigger age-related retinal degeneration. In addition, mutant flies bearing certain ninaE alleles have dramatically reduced Rh-1 protein levels, but the underlying mechanism for this reduction and significance of its contribution to the ADRP phenotype remains unclear. To address this question, we specifically analyzed the role of Drosophila genes homologous to the known yeast and animal regulators of the ER-associated degradation (ERAD) pathway, a process that reduces levels of misfolded proteins in the ER through proteasomal degradation. We found that loss-of-function of these putative ERAD factors resulted in increased levels of Rh-1 in ninaE mutant flies. Conversely, in an ER stress assay where mutant or wild-type Rh-1 were overexpressed in developing imaginal discs beyond the ER protein folding capacity of those cells, co-expression of certain ERAD factors was sufficient to reduce Rh-1 protein levels and to completely suppress ER stress reporter activation. Significantly, those ERAD factors that specifically reduced misfolded Rh-1 in the imaginal disc assay also delayed age-related retinal degeneration caused by an endogenous ninaE allele, indicating that ERAD acts as a protective mechanism against retinal degeneration in the Drosophila model for ADRP. These results suggest that manipulation of ERAD may serve as a powerful therapeutic strategy against a number of diseases associated with ER stress.
Collapse
|
180
|
A luminal flavoprotein in endoplasmic reticulum-associated degradation. Proc Natl Acad Sci U S A 2009; 106:14831-6. [PMID: 19706418 DOI: 10.1073/pnas.0900742106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The quality control system of the endoplasmic reticulum (ER) discriminates between native and nonnative proteins. The latter are degraded by the ER-associated degradation (ERAD) pathway. Whereas many cytosolic and membrane components of this system are known, only few luminal players have been identified. In this study, we characterize ERFAD (ER flavoprotein associated with degradation), an ER luminal flavoprotein that functions in ERAD. Upon knockdown of ERFAD, the degradation of the ERAD model substrate ribophorin 332 is delayed, and the overall level of polyubiquitinated cellular proteins is decreased. We also identify the ERAD components SEL1L, OS-9 and ERdj5, a known reductase of ERAD substrates, as interaction partners of ERFAD. Our data show that ERFAD facilitates the dislocation of certain ERAD substrates to the cytosol, and we discuss the findings in relation to a potential redox function of the protein.
Collapse
|
181
|
Yoshida Y, Tanaka K. Lectin-like ERAD players in ER and cytosol. Biochim Biophys Acta Gen Subj 2009; 1800:172-80. [PMID: 19665047 DOI: 10.1016/j.bbagen.2009.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/08/2009] [Accepted: 07/18/2009] [Indexed: 11/15/2022]
Abstract
Protein quality control in the endoplasmic reticulum (ER) is an elaborate process conserved from yeast to mammals, ensuring that only newly synthesized proteins with correct conformations in the ER are sorted further into the secretory pathway. It is well known that high-mannose type N-glycans are involved in protein-folding events. In the quality control process, proteins that fail to achieve proper folding or proper assembly are degraded in a process known as ER-associated degradation (ERAD). The ERAD pathway comprises multiple steps including substrate recognition and targeting to the retro-translocation machinery, retrotranslocation from the ER into the cytosol, and proteasomal degradation through ubiquitination. Recent studies have documented the important roles of sugar-recognition (lectin-type) molecules for trimmed high-mannose type N-glycans and glycosidases in the ERAD pathways in both ER and cytosol. In this review, we discuss a fundamental system that monitors glycoprotein folding in the ER and the unique roles of the sugar-recognizing ubiquitin ligase and peptide:N-glycanase (PNGase) in the cytosolic ERAD pathway.
Collapse
Affiliation(s)
- Yukiko Yoshida
- Laboratory of Frontier Science, The Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | | |
Collapse
|
182
|
Brodsky JL, Wojcikiewicz RJ. Substrate-specific mediators of ER associated degradation (ERAD). Curr Opin Cell Biol 2009; 21:516-21. [PMID: 19443192 PMCID: PMC2756615 DOI: 10.1016/j.ceb.2009.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 01/21/2023]
Abstract
Approximately one-third of newly synthesized eukaryotic proteins are targeted to the secretory pathway, which is composed of an organellar network that houses the enzymes and maintains the chemical environment required for the maturation of secreted and membrane proteins. Nevertheless, this diverse group of proteins may fail to achieve their native states and are consequently selected for ER associated degradation (ERAD). Over the past few years, significant effort has been made to dissect the components of the core ERAD machinery that is responsible for the destruction of most ERAD substrates. Interestingly, however, some ERAD substrates associate with dedicated chaperone-like proteins that target them for proteolysis or protect them from destruction. Other substrates fold and function normally but can be selected for ERAD by protein adaptors that identify and transmit regulatory cues.
Collapse
Affiliation(s)
- Jeffrey L. Brodsky
- Department of Biological Sciences 274 Crawford Hall University of Pittsburgh Pittsburgh, PA 15260 Tel.412-624-4831; Fax.412-624-4759;
| | - Richard J.H. Wojcikiewicz
- Department of Pharmacology 3307 Weiskotten Hall SUNY Upstate Medical University Syracuse, NY 13210 Tel.315-464-7956; Fax.315-464-8014;
| |
Collapse
|
183
|
Hu D, Kamiya Y, Totani K, Kamiya D, Kawasaki N, Yamaguchi D, Matsuo I, Matsumoto N, Ito Y, Kato K, Yamamoto K. Sugar-binding activity of the MRH domain in the ER alpha-glucosidase II beta subunit is important for efficient glucose trimming. Glycobiology 2009; 19:1127-35. [PMID: 19625484 DOI: 10.1093/glycob/cwp104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glucosidase II (GII) is a glycan-processing enzyme that trims two alpha1,3-linked glucose residues from N-glycan on newly synthesized glycoproteins. Trimming of the first alpha1,3-linked glucose from Glc(2)Man(9)GlcNAc(2) (G2M9) is important for a glycoprotein to interact with calnexin/calreticulin (CNX/CRT), and cleavage of the innermost glucose from Glc(1)Man(9)GlcNAc(2) (G1M9) sets glycoproteins free from the CNX/CRT cycle and allows them to proceed to the Golgi apparatus. GII is a heterodimeric complex consisting of a catalytic alpha subunit (GIIalpha) and a tightly associated beta subunit (GIIbeta) that contains a mannose 6-phosphate receptor homology (MRH) domain. A recent study has suggested a possible involvement of the MRH domain of GIIbeta (GIIbeta-MRH) in the glucose trimming process via its putative sugar-binding activity. However, it remains unknown whether GIIbeta-MRH possesses sugar-binding activity and, if so, what role this activity plays in the function of GII. Here, we demonstrate that human GIIbeta-MRH binds to high-mannose-type glycans. Frontal affinity chromatography revealed that GIIbeta-MRH binds most strongly to the glycans with the alpha1,2-linked mannobiose structure. GII with the mutant GIIbeta that lost the sugar-binding activity of GIIbeta-MRH hydrolyzes p-nitrophenyl-alpha-glucopyranoside, but the capacity to remove glucose residues from G1M9 and G2M9 is significantly decreased. Our results clearly demonstrate the capacity of the GIIbeta-MRH to bind high-mannose-type glycans and its importance in efficient glucose trimming of N-glycans.
Collapse
Affiliation(s)
- Dan Hu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Quinn RP, Mahoney SJ, Wilkinson BM, Thornton DJ, Stirling CJ. A novel role for Gtb1p in glucose trimming of N-linked glycans. Glycobiology 2009; 19:1408-16. [PMID: 19542522 DOI: 10.1093/glycob/cwp087] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glucosidase II (GluII) is a glycan-trimming enzyme active on nascent glycoproteins in the endoplasmic reticulum (ER). It trims the middle and innermost glucose residues (Glc2 and Glc1) from N-linked glycans. The monoglucosylated glycan produced by the first GluII trimming reaction is recognized by calnexin/calreticulin and serves as the signal for entry into this folding pathway. GluII is a heterodimer of alpha and beta subunits corresponding to yeast Gls2p and Gtb1p, respectively. While Gls2p contains the glucosyl hydrolase active site, the Gtb1p subunit has previously been shown to be essential for the Glc1 trimming event. Here we demonstrate that Gtb1p also determines the rate of Glc2 trimming. In order to further dissect these activities we mutagenized a number of conserved residues across the protein. Our data demonstrate that both the MRH and G2B domains of Gtb1p contribute to the Glc2 trimming event but that the MRH domain is essential for Glc1 trimming.
Collapse
Affiliation(s)
- Robert P Quinn
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
185
|
Cormier JH, Tamura T, Sunryd JC, Hebert DN. EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol Cell 2009; 34:627-33. [PMID: 19524542 PMCID: PMC2740909 DOI: 10.1016/j.molcel.2009.05.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/20/2009] [Accepted: 05/21/2009] [Indexed: 11/16/2022]
Abstract
Terminally misfolded or unassembled secretory proteins are retained in the endoplasmic reticulum (ER) and subsequently cleared by the ER-associated degradation (ERAD) pathway. The degradation of ERAD substrates involves mannose trimming of N-linked glycans; however, the mechanisms of substrate recognition and sorting to the ERAD pathway are poorly defined. EDEM1 (ER degradation-enhancing alpha-mannosidase-like 1 protein) has been proposed to play a role in ERAD substrate signaling or recognition. We show that EDEM1 specifically binds nonnative proteins in a glycan-independent manner. Inhibition of mannosidase activity with kifunensine or disruption of the EDEM1 mannosidase-like domain by mutation had no effect on EDEM1 substrate binding but diminished its association with the ER membrane adaptor protein SEL1L. These results support a model whereby EDEM1 binds nonnative proteins and uses its mannosidase-like domain to target aberrant proteins to the ER membrane dislocation and ubiquitination complex containing SEL1L.
Collapse
Affiliation(s)
- James H. Cormier
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003
| | | | - Johan C. Sunryd
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003
| | - Daniel N. Hebert
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003
| |
Collapse
|
186
|
Xie W, Kanehara K, Sayeed A, Ng DTW. Intrinsic conformational determinants signal protein misfolding to the Hrd1/Htm1 endoplasmic reticulum-associated degradation system. Mol Biol Cell 2009; 20:3317-29. [PMID: 19458187 DOI: 10.1091/mbc.e09-03-0231] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endoplasmic reticulum (ER) quality control mechanisms monitor the folding of nascent polypeptides of the secretory pathway. These are dynamic processes that retain folding proteins, promote the transport of conformationally mature proteins, and target misfolded proteins to ER-associated degradation (ERAD) pathways. Aided by the identification of numerous ERAD factors, late functions that include substrate extraction, ubiquitination, and degradation are fairly well described. By contrast, the mechanisms of substrate recognition remain mysterious. For some substrates, a specific N-linked glycan forms part of the recognition code but how it is read is incompletely understood. In this study, systematic analysis of model substrates revealed such glycans mark structural determinants that are sensitive to the overall folding state of the molecule. This strategy effectively generates intrinsic folding sensors that communicate with high fidelity to ERAD. Normally, these segments fold into the mature structure to pass the ERAD checkpoint. However, should a molecule fail to fold completely, they form a bipartite signal that comprises the unfolded local structure and adjacent enzymatically remodeled glycan. Only if both elements are present will the substrate be targeted to the ERAD pathway for degradation.
Collapse
Affiliation(s)
- Wei Xie
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | | | | | |
Collapse
|
187
|
Abstract
As proteins travel through the endoplasmic reticulum (ER), a quality-control system retains newly synthesized polypeptides and supports their maturation. Only properly folded proteins are released to their designated destinations. Proteins that cannot mature are left to accumulate, impairing the function of the ER. To maintain homeostasis, the protein-quality-control system singles out aberrant polypeptides and delivers them to the cytosol, where they are destroyed by the proteasome. The importance of this pathway is evident from the growing list of pathologies associated with quality-control defects in the ER.
Collapse
|
188
|
Sakoh-Nakatogawa M, Nishikawa SI, Endo T. Roles of protein-disulfide isomerase-mediated disulfide bond formation of yeast Mnl1p in endoplasmic reticulum-associated degradation. J Biol Chem 2009; 284:11815-25. [PMID: 19279007 PMCID: PMC2673250 DOI: 10.1074/jbc.m900813200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/09/2009] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) has a strict protein quality control system. Misfolded proteins generated in the ER are degraded by the ER-associated degradation (ERAD). Yeast Mnl1p consists of an N-terminal mannosidase homology domain and a less conserved C-terminal domain and facilitates the ERAD of glycoproteins. We found that Mnl1p is an ER luminal protein with a cleavable signal sequence and stably interacts with a protein-disulfide isomerase (PDI). Analyses of a series of Mnl1p mutants revealed that interactions between the C-terminal domain of Mnl1p and PDI, which include an intermolecular disulfide bond, are essential for subsequent introduction of a disulfide bond into the mannosidase homology domain of Mnl1p by PDI. This disulfide bond is essential for the ERAD activity of Mnl1p and in turn stabilizes the prolonged association of PDI with Mnl1p. Close interdependence between Mnl1p and PDI suggests that these two proteins form a functional unit in the ERAD pathway.
Collapse
Affiliation(s)
- Machiko Sakoh-Nakatogawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
189
|
|
190
|
Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M. Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. ACTA ACUST UNITED AC 2009; 184:159-72. [PMID: 19124653 PMCID: PMC2615083 DOI: 10.1083/jcb.200809198] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To maintain protein homeostasis in secretory compartments, eukaryotic cells harbor a quality control system that monitors protein folding and protein complex assembly in the endoplasmic reticulum (ER). Proteins that do not fold properly or integrate into cognate complexes are degraded by ER-associated degradation (ERAD) involving retrotranslocation to the cytoplasm and proteasomal peptide hydrolysis. N-linked glycans are essential in glycoprotein ERAD; the covalent oligosaccharide structure is used as a signal to display the folding status of the host protein. In this study, we define the function of the Htm1 protein as an alpha1,2-specific exomannosidase that generates the Man(7)GlcNAc(2) oligosaccharide with a terminal alpha1,6-linked mannosyl residue on degradation substrates. This oligosaccharide signal is decoded by the ER-localized lectin Yos9p that in conjunction with Hrd3p triggers the ubiquitin-proteasome-dependent hydrolysis of these glycoproteins. The Htm1p exomannosidase activity requires processing of the N-glycan by glucosidase I, glucosidase II, and mannosidase I, resulting in a sequential order of specific N-glycan structures that reflect the folding status of the glycoprotein.
Collapse
Affiliation(s)
- Simone Clerc
- Department of Biology, Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|