151
|
Morra R, Lee BM, Shaw H, Tuma R, Mancini EJ. Concerted action of the PHD, chromo and motor domains regulates the human chromatin remodelling ATPase CHD4. FEBS Lett 2012; 586:2513-21. [PMID: 22749909 PMCID: PMC3476528 DOI: 10.1016/j.febslet.2012.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/11/2012] [Indexed: 01/01/2023]
Abstract
CHD4, the core subunit of the Nucleosome Remodelling and Deacetylase (NuRD) complex, is a chromatin remodelling ATPase that, in addition to a helicase domain, harbors tandem plant homeo finger and chromo domains. By using a panel of domain constructs we dissect their roles and demonstrate that DNA binding, histone binding and ATPase activities are allosterically regulated. Molecular shape reconstruction from small-angle X-ray scattering reveals extensive domain-domain interactions, which provide a structural explanation for the regulation of CHD4 activities by intramolecular domain communication. Our results demonstrate functional interdependency between domains within a chromatin remodeller.
Collapse
Affiliation(s)
- Rosa Morra
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Benjamin M. Lee
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Heather Shaw
- Ludwig Institute for Cancer Research Ltd., Oxford University, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology and Institute of Cellular and Molecular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Erika J. Mancini
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
152
|
Radman-Livaja M, Quan TK, Valenzuela L, Armstrong JA, van Welsem T, Kim T, Lee LJ, Buratowski S, van Leeuwen F, Rando OJ, Hartzog GA. A key role for Chd1 in histone H3 dynamics at the 3' ends of long genes in yeast. PLoS Genet 2012; 8:e1002811. [PMID: 22807688 PMCID: PMC3395613 DOI: 10.1371/journal.pgen.1002811] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/18/2012] [Indexed: 11/30/2022] Open
Abstract
Chd proteins are ATP–dependent chromatin remodeling enzymes implicated in biological functions from transcriptional elongation to control of pluripotency. Previous studies of the Chd1 subclass of these proteins have implicated them in diverse roles in gene expression including functions during initiation, elongation, and termination. Furthermore, some evidence has suggested a role for Chd1 in replication-independent histone exchange or assembly. Here, we examine roles of Chd1 in replication-independent dynamics of histone H3 in both Drosophila and yeast. We find evidence of a role for Chd1 in H3 dynamics in both organisms. Using genome-wide ChIP-on-chip analysis, we find that Chd1 influences histone turnover at the 5′ and 3′ ends of genes, accelerating H3 replacement at the 5′ ends of genes while protecting the 3′ ends of genes from excessive H3 turnover. Although consistent with a direct role for Chd1 in exchange, these results may indicate that Chd1 stabilizes nucleosomes perturbed by transcription. Curiously, we observe a strong effect of gene length on Chd1's effects on H3 turnover. Finally, we show that Chd1 also affects histone modification patterns over genes, likely as a consequence of its effects on histone replacement. Taken together, our results emphasize a role for Chd1 in histone replacement in both budding yeast and Drosophila melanogaster, and surprisingly they show that the major effects of Chd1 on turnover occur at the 3′ ends of genes. Nucleosomes prevent transcription by interfering with transcription factor binding at the beginning of genes and blocking elongating RNA polymerase II across the bodies of genes. To overcome this repression, regulatory proteins move, remove, or structurally alter nucleosomes, allowing the transcription machinery access to gene sequences. Over the body of a gene, it is important that nucleosome structure be restored after a polymerase has passed by; failure to do so may lead to activation of transcription from internal gene sequences. Interestingly, although nucleosomes constantly move on and off of promoters, they are relatively stable over the bodies of genes. Thus, the same nucleosomes that are removed to allow a polymerase to pass by must be reassembled in its wake. Here, we examine the role of an ATP–dependent chromatin remodeling protein, Chd1, in regulating nucleosome dynamics. We find that Chd1 is important for exchange of the histone H3 in both yeast and Drosophila and that, surprisingly, while it promotes exchange of histones at the beginning of genes, it prevents exchange at the ends of genes. Finally, we show that Chd1 helps determine the characteristic pattern of chemical modifications of histone H3 found over actively transcribed gene sequences.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tiffani K. Quan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Lourdes Valenzuela
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennifer A. Armstrong
- W. M. Keck Science Department, Scripps, Claremont McKenna, and Pitzer Colleges, Claremont, California, United States of America
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute and Netherlands Proteomics Centre, Amsterdam, The Netherlands
| | - TaeSoo Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Boston, Massachusetts, United States of America
| | - Laura J. Lee
- W. M. Keck Science Department, Scripps, Claremont McKenna, and Pitzer Colleges, Claremont, California, United States of America
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Boston, Massachusetts, United States of America
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute and Netherlands Proteomics Centre, Amsterdam, The Netherlands
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (GAH); (OJR)
| | - Grant A. Hartzog
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (GAH); (OJR)
| |
Collapse
|
153
|
Bergman JEH, Janssen N, van der Sloot AM, de Walle HEK, Schoots J, Rendtorff ND, Tranebjaerg L, Hoefsloot LH, van Ravenswaaij-Arts CMA, Hofstra RMW. A novel classification system to predict the pathogenic effects of CHD7 missense variants in CHARGE syndrome. Hum Mutat 2012; 33:1251-60. [PMID: 22539353 DOI: 10.1002/humu.22106] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 04/10/2012] [Indexed: 01/16/2023]
Abstract
CHARGE syndrome is characterized by the variable occurrence of multisensory impairment, congenital anomalies, and developmental delay, and is caused by heterozygous mutations in the CHD7 gene. Correct interpretation of CHD7 variants is essential for genetic counseling. This is particularly difficult for missense variants because most variants in the CHD7 gene are private and a functional assay is not yet available. We have therefore developed a novel classification system to predict the pathogenic effects of CHD7 missense variants that can be used in a diagnostic setting. Our classification system combines the results from two computational algorithms (PolyPhen-2 and Align-GVGD) and the prediction of a newly developed structural model of the chromo- and helicase domains of CHD7 with segregation and phenotypic data. The combination of different variables will lead to a more confident prediction of pathogenicity than was previously possible. We have used our system to classify 145 CHD7 missense variants. Our data show that pathogenic missense mutations are mainly present in the middle of the CHD7 gene, whereas benign variants are mainly clustered in the 5' and 3' regions. Finally, we show that CHD7 missense mutations are, in general, associated with a milder phenotype than truncating mutations.
Collapse
Affiliation(s)
- Jorieke E H Bergman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Hopfner KP, Gerhold CB, Lakomek K, Wollmann P. Swi2/Snf2 remodelers: hybrid views on hybrid molecular machines. Curr Opin Struct Biol 2012; 22:225-33. [PMID: 22445226 DOI: 10.1016/j.sbi.2012.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/26/2012] [Indexed: 12/14/2022]
Abstract
Swi2/Snf2 (switch/sucrose non-fermentable) enzymes form a large and diverse class of proteins and multiprotein assemblies that remodel nucleic acid:protein complexes, using the energy of ATP hydrolysis. The core Swi2/Snf2 type ATPase domain belongs to the 'helicase and NTP driven nucleic acid translocase' superfamily 2 (SF2). It serves as a motor that functionally and structurally interacts with different targeting domains and functional modules to drive a plethora of remodeling activities in chromatin structure and dynamics, transcription regulation and DNA repair. Recent progress on the interaction of Swi2/Snf2 enzymes and multiprotein assemblies with their substrate nucleic acids and proteins, using hybrid structural biology methods, illuminates mechanisms for complex chemo-mechanical remodeling reactions. For Mot1, a hybrid mechanism of remodeler and chaperone emerged.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department of Biochemistry at the Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| | | | | | | |
Collapse
|
155
|
Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 2012; 22:148-55. [PMID: 22440480 DOI: 10.1016/j.gde.2012.02.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/14/2012] [Accepted: 02/23/2012] [Indexed: 12/25/2022]
Abstract
Covalent modifications of histone proteins play key roles in transcription, DNA repair, recombination, and other such processes. Over a hundred histone modifications have been described, and a popular idea in the field is that the function of a single histone mark cannot be understood without understanding its combinatorial co-occurrence with other marks, an idea generally called the 'histone code hypothesis.' This idea is hotly debated, with increasing biochemical evidence for chromatin regulatory factors that bind to specific histone modification combinations, but functional and localization studies finding minimal combinatorial complexity in histone modification patterns. This review will focus on these contrasting results, and will briefly touch on possible ways to reconcile these conflicting views.
Collapse
|
156
|
Structural biology of the chromodomain: form and function. Gene 2012; 496:69-78. [PMID: 22285924 DOI: 10.1016/j.gene.2012.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/23/2011] [Accepted: 01/05/2012] [Indexed: 11/20/2022]
Abstract
The chromodomain motif is found among certain chromosomal proteins of all eukaryotes. The chromodomain fold - three beta strands packed against a C-terminal alpha helix - mediates protein-protein and/or protein-nucleic acid interactions. In some cases, the affinity of chromodomain binding is regulated by lysine methylation, which appears to target chromodomain proteins and associated complexes to specific sites in chromatin. In this review, our current knowledge of chromodomain structure and function is summarized.
Collapse
|
157
|
Forné I, Ludwigsen J, Imhof A, Becker PB, Mueller-Planitz F. Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Mol Cell Proteomics 2011; 11:M111.012088. [PMID: 22167269 DOI: 10.1074/mcp.m111.012088] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present a strategy for rapidly gaining structural information about a protein from crosslinks formed by genetically encoded unnatural amino acids. We applied it to ISWI, a chromatin remodeling enzyme involved in chromatin assembly, DNA replication and transcription. ISWI is part of the vast Snf2 family of helicase-related proteins, many of which constitute the catalytic cores of chromatin remodeling complexes. Structural information about this family is scarce, hampering our mechanistic understanding of chromatin remodeling. Making use of cells that harbor a special tRNA/aminoacyl-tRNA synthetase pair, several residues within the ATPase domain of ISWI were individually substituted with the UV-reactive unnatural amino acid p-benzoyl-p-phenylalanine. Intramolecular crosslinks could be mapped with amino acid precision by high resolution tandem mass spectrometry and the novel bioinformatic tool "Crossfinder." Most crosslinks were fully consistent with published crystal structures of ISWI-related ATPases. A subset of crosslinks, however, disagreed with the conformations previously captured in crystal structures. We built a structural model using the distance information obtained from the crosslinks and the structure of the closest crystallized relative, Chd1. The model shows the ATPase lobes strongly rotated against each other, a movement postulated earlier to be necessary to achieve a catalytically competent state. The minimal requirements for solubility and protein amounts make our approach ideal for studying structures and conformations of proteins that are not amenable to conventional structural techniques.
Collapse
Affiliation(s)
- Ignasi Forné
- Protein Analysis Unit, Adolf-Butenandt Institute and Center for Integrated Protein Science, Ludwig Maximilian University, Munich, Germany
| | | | | | | | | |
Collapse
|
158
|
Crisucci EM, Arndt KM. The Roles of the Paf1 Complex and Associated Histone Modifications in Regulating Gene Expression. GENETICS RESEARCH INTERNATIONAL 2011; 2011. [PMID: 22408743 PMCID: PMC3296560 DOI: 10.4061/2011/707641] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The conserved Paf1 complex (Paf1C) carries out multiple functions during transcription by RNA polymerase (pol) II, and these functions are required for the proper expression of numerous genes in yeast and metazoans. In the elongation stage of the transcription cycle, the Paf1C associates with RNA pol II, interacts with other transcription elongation factors, and facilitates modifications to the chromatin template. At the end of elongation, the Paf1C plays an important role in the termination of RNA pol II transcripts and the recruitment of proteins required for proper RNA 3′ end formation. Significantly, defects in the Paf1C are associated with several human diseases. In this paper, we summarize current knowledge on the roles of the Paf1C in RNA pol II transcription.
Collapse
Affiliation(s)
- Elia M Crisucci
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
159
|
Patel A, McKnight JN, Genzor P, Bowman GD. Identification of residues in chromodomain helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding. J Biol Chem 2011; 286:43984-43993. [PMID: 22039057 DOI: 10.1074/jbc.m111.282970] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Chromatin remodelers are ATP-dependent machines responsible for directionally shifting nucleosomes along DNA. We are interested in defining which elements of the chromodomain helicase DNA-binding protein 1 (Chd1) remodeler are necessary and sufficient for sliding nucleosomes. This work focuses on the polypeptide segment that joins the ATPase motor to the C-terminal DNA-binding domain. We identify amino acid positions outside the ATPase motor that, when altered, dramatically reduce nucleosome sliding ability and yet have only ∼3-fold reduction in ATPase stimulation by nucleosomes. These residues therefore appear to play a role in functionally coupling ATP hydrolysis to nucleosome sliding, and suggest that the ATPase motor requires cooperation with external elements to slide DNA past the histone core.
Collapse
Affiliation(s)
- Ashok Patel
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218-2685
| | - Jeffrey N McKnight
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218-2685
| | - Pavol Genzor
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218-2685
| | - Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218-2685.
| |
Collapse
|
160
|
Abstract
The chromatin organization modifier domain (chromodomain) was first identified as a motif associated with chromatin silencing in Drosophila. There is growing evidence that chromodomains are evolutionary conserved across different eukaryotic species to control diverse aspects of epigenetic regulation. Although originally reported as histone H3 methyllysine readers, the chromodomain functions have now expanded to recognition of other histone and non-histone partners as well as interaction with nucleic acids. Chromodomain binding to a diverse group of targets is mediated by a conserved substructure called the chromobox homology region. This motif can be used to predict methyllysine binding and distinguish chromodomains from related Tudor "Royal" family members. In this review, we discuss and classify various chromodomains according to their context, structure and the mechanism of target recognition.
Collapse
Affiliation(s)
- Bartlomiej J Blus
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, USA
| | | | | |
Collapse
|
161
|
Hauk G, Bowman GD. Structural insights into regulation and action of SWI2/SNF2 ATPases. Curr Opin Struct Biol 2011; 21:719-27. [PMID: 21996440 DOI: 10.1016/j.sbi.2011.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/13/2011] [Indexed: 01/08/2023]
Abstract
This review focuses on recent structural insights into regulation and nucleic acid binding of Superfamily 2 (SF2)-type helicases as they relate to chromatin remodelers. We review structural features of the Chd1 chromatin remodeler regarding regulation of the ATPase motor, and discuss related strategies observed for other SF2 ATPases. Since no SWI2/SNF2 ATPases have yet been captured bound to DNA in a state competent for ATP hydrolysis, we turn to structural examples from the DEAD-box RNA helicase family, and suggest that SWI2/SNF2-specific inserts may be poised to alter canonical duplex DNA structure.
Collapse
Affiliation(s)
- Glenn Hauk
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218-2685, USA
| | | |
Collapse
|
162
|
Abstract
Chromatin remodelling is the ATP-dependent change in nucleosome organisation driven by Snf2 family ATPases. The biochemistry of this process depends on the behaviours of ATP-dependent motor proteins and their dynamic nucleosome substrates, which brings significant technical and conceptual challenges. Steady progress has been made in characterising the polypeptides of which these enzymes are comprised. Divergence in the sequences of different subfamilies of Snf2-related proteins suggests that the motors are adapted for different functions. Recently, structural insights have suggested that the Snf2 ATPase acts as a context-sensitive DNA translocase. This may have arisen as a means to enable efficient access to DNA in the high density of the eukaryotic nucleus. How the enzymes engage nucleosomes and how the network of noncovalent interactions within the nucleosome respond to the force applied remains unclear, and it remains prudent to recognise the potential for both DNA distortions and dynamics within the underlying histone octamer structure.
Collapse
Affiliation(s)
- Andrew Flaus
- Centre for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | | |
Collapse
|
163
|
Ryan DP, Owen-Hughes T. Snf2-family proteins: chromatin remodellers for any occasion. Curr Opin Chem Biol 2011; 15:649-56. [PMID: 21862382 PMCID: PMC4162295 DOI: 10.1016/j.cbpa.2011.07.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
Chromatin facilitates the housing of eukaryotic DNA within the nucleus and restricts access to the underlying sequences. Thus, the regulation of chromatin structure provides an excellent platform for regulating processes that require information stored within genomic DNA. Snf2 proteins are a family of helicase-like proteins that direct energy derived from ATP hydrolysis into the mechanical remodelling of chromatin structure. Here, we highlight some of the recent discoveries regarding this family of proteins and show Snf2 proteins have roles in many aspects of genetic metabolism. Recent developments include new insights into the mechanism for nucleosome spacing and histone dimer exchange; together with growing evidence for the involvement of Snf2 proteins in DNA repair.
Collapse
Affiliation(s)
- Daniel P Ryan
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, UK.
| | | |
Collapse
|
164
|
Viswanathan R, Auble DT. One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:488-96. [PMID: 21658482 PMCID: PMC3171519 DOI: 10.1016/j.bbagrm.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/14/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
The TATA-binding protein (TBP) is a major target for transcriptional regulation. Mot1, a Swi2/Snf2-related ATPase, dissociates TBP from DNA in an ATP dependent process. The experimental advantages of this relatively simple reaction have been exploited to learn more about how Swi2/Snf2 ATPases function biochemically. However, many unanswered questions remain and fundamental aspects of the Mot1 mechanism are still under debate. Here, we review the available data and integrate the results with structural and biochemical studies of related enzymes to derive a model for Mot1's catalytic action consistent with the broad literature on enzymes in this family. We propose that the Mot1 ATPase domain is tethered to TBP by a flexible, spring-like linker of alpha helical hairpins. The linker juxtaposes the ATPase domain such that it can engage duplex DNA on one side of the TBP-DNA complex. This allows the ATPase to employ short-range, nonprocessive ATP-driven DNA tracking to pull or push TBP off its DNA site. DNA translocation is a conserved property of ATPases in the broader enzyme family. As such, the model explains how a structurally and functionally conserved ATPase domain has been put to use in a very different context than other enzymes in the Swi2/Snf2 family. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, Box 800733 Jordan Hall, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
165
|
Hota SK, Bartholomew B. Diversity of operation in ATP-dependent chromatin remodelers. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:476-87. [PMID: 21616185 PMCID: PMC3171594 DOI: 10.1016/j.bbagrm.2011.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
Chromatin is actively restructured by a group of proteins that belong to the family of ATP-dependent DNA translocases. These chromatin remodelers can assemble, relocate or remove nucleosomes, the fundamental building blocks of chromatin. The family of ATP-dependent chromatin remodelers has many properties in common, but there are also important differences that may account for their varying roles in the cell. Some of the important characteristics of these complexes have begun to be revealed such as their interactions with chromatin and their mechanism of operation. The different domains of chromatin remodelers are discussed in terms of their targets and functional roles in mobilizing nucleosomes. The techniques that have driven these findings are discussed and how these have helped develop the current models for how nucleosomes are remodeled. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
| | - Blaine Bartholomew
- Department of Biochemistry & Molecular Biology, 1245 Lincoln Drive Rm 229C, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413
| |
Collapse
|
166
|
Erdel F, Krug J, Längst G, Rippe K. Targeting chromatin remodelers: signals and search mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:497-508. [PMID: 21704204 DOI: 10.1016/j.bbagrm.2011.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 12/26/2022]
Abstract
Chromatin remodeling complexes are ATP-driven molecular machines that change chromatin structure by translocating nucleosomes along the DNA, evicting nucleosomes, or changing the nucleosomal histone composition. They are highly abundant in the cell and numerous different complexes exist that display distinct activity patterns. Here we review chromatin-associated signals that are recognized by remodelers. It is discussed how these regulate the remodeling reaction via changing the nucleosome substrate/product binding affinity or the catalytic translocation rate. Finally, we address the question of how chromatin remodelers operate in the cell nucleus to find specifically marked nucleosome substrates via a diffusion driven target location mechanism, and estimate the search times of this process. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Fabian Erdel
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
167
|
Ryan DP, Sundaramoorthy R, Martin D, Singh V, Owen-Hughes T. The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J 2011; 30:2596-609. [PMID: 21623345 PMCID: PMC3155300 DOI: 10.1038/emboj.2011.166] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/21/2011] [Indexed: 12/15/2022] Open
Abstract
The ATP-dependent chromatin-remodelling enzyme Chd1 is a 168-kDa protein consisting of a double chromodomain, Snf2-related ATPase domain, and a C-terminal DNA-binding domain. Here, we show the DNA-binding domain is required for Saccharomyces cerevisiae Chd1 to bind and remodel nucleosomes. The crystal structure of this domain reveals the presence of structural homology to SANT and SLIDE domains previously identified in ISWI remodelling enzymes. The presence of these domains in ISWI and Chd1 chromatin-remodelling enzymes may provide a means of efficiently harnessing the action of the Snf2-related ATPase domain for the purpose of nucleosome spacing and provide an explanation for partial redundancy between these proteins. Site directed mutagenesis was used to identify residues important for DNA binding and generate a model describing the interaction of this domain with DNA. Through inclusion of Chd1 sequences in homology searches SLIDE domains were identified in CHD6-9 proteins. Point mutations to conserved amino acids within the human CHD7 SLIDE domain have been identified in patients with CHARGE syndrome.
Collapse
Affiliation(s)
- Daniel P Ryan
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, UK
| | | | - David Martin
- Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | - Vijender Singh
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, UK
| | - Tom Owen-Hughes
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
168
|
Morettini S, Tribus M, Zeilner A, Sebald J, Campo-Fernandez B, Scheran G, Wörle H, Podhraski V, Fyodorov DV, Lusser A. The chromodomains of CHD1 are critical for enzymatic activity but less important for chromatin localization. Nucleic Acids Res 2011; 39:3103-15. [PMID: 21177652 PMCID: PMC3082874 DOI: 10.1093/nar/gkq1298] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/28/2010] [Accepted: 12/03/2010] [Indexed: 11/12/2022] Open
Abstract
The molecular motor protein CHD1 has been implicated in the regulation of transcription and in the transcription-independent genome-wide incorporation of H3.3 into paternal chromatin in Drosophila melanogaster. A key feature of CHD1 is the presence of two chromodomains, which can bind to histone H3 methylated at lysine 4 and thus might serve to recruit and/or maintain CHD1 at the chromatin. Here, we describe genetic and biochemical approaches to the study of the Drosophila CHD1 chromodomains. We found that overall localization of CHD1 on polytene chromosomes does not appreciably change in chromodomain-mutant flies. In contrast, the chromodomains are important for transcription-independent activities of CHD1 during early embryonic development as well as for transcriptional regulation of several heat shock genes. However, neither CHD1 nor its chromodomains are needed for RNA polymerase II localization and H3K4 methylation but loss of CHD1 decreases transcription-induced histone eviction at the Hsp70 gene in vivo. Chromodomain mutations negatively affect the chromatin assembly activities of CHD1 in vitro, and they appear to be involved in linking the ATP-dependent motor to the chromatin assembly function of CHD1.
Collapse
Affiliation(s)
- Stefano Morettini
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Martin Tribus
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Anette Zeilner
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Johanna Sebald
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Beatriz Campo-Fernandez
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Gabriele Scheran
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Hildegard Wörle
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Valerie Podhraski
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Dmitry V. Fyodorov
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| |
Collapse
|
169
|
Yap KL, Zhou MM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry 2011; 50:1966-80. [PMID: 21288002 PMCID: PMC3062707 DOI: 10.1021/bi101885m] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone methylation recognition is accomplished by a number of evolutionarily conserved protein domains, including those belonging to the methylated lysine-binding Royal family of structural folds. One well-known member of the Royal family, the chromodomain, is found in the HP1/chromobox and CHD subfamilies of proteins, in addition to a small number of other proteins that are involved in chromatin remodeling and gene transcriptional silencing. Here we discuss the structure and function of the chromodomain within these proteins as methylated histone lysine binders and how the functions of these chromodomains can be modulated by additional post-translational modifications or binding to nucleic acids.
Collapse
Affiliation(s)
- Kyoko L. Yap
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine One Gustave L. Levy Place, Box 1677, New York, NY 10065, USA
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine One Gustave L. Levy Place, Box 1677, New York, NY 10065, USA
| |
Collapse
|
170
|
Glatt S, Alfieri C, Müller CW. Recognizing and remodeling the nucleosome. Curr Opin Struct Biol 2011; 21:335-41. [PMID: 21377352 DOI: 10.1016/j.sbi.2011.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/19/2022]
Abstract
The X-ray structure of the nucleosome core particle (NCP) has been a major milestone in the structural biology of chromatin. Since, our understanding how NCPs interact with multiple partners has been extending from single chromatin-binding domains recognizing post-translational modifications (PTMs) in histone tails towards the recognition of higher-order chromatin structure by multi-subunit chromatin remodeling complexes. The current review summarizes recent progress in the structural biology of nucleosome-recognition from chromatin-binding domains to multi-protein remodeling complexes.
Collapse
Affiliation(s)
- Sebastian Glatt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany
| | | | | |
Collapse
|