151
|
Sun M, Baker TL, Wilson CT, Brady RD, Yamakawa GR, Wright DK, Mychasiuk R, Vo A, Wilson T, Allen J, McDonald SJ, Shultz SR. Treatment with the vascular endothelial growth factor-A antibody, bevacizumab, has sex-specific effects in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:542-555. [PMID: 37933736 PMCID: PMC10981407 DOI: 10.1177/0271678x231212377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Mild traumatic brain injury (mTBI) involves damage to the cerebrovascular system. Vascular endothelial growth factor-A (VEGF-A) is an important modulator of vascular health and VEGF-A promotes the brain's ability to recover after more severe forms of brain injury; however, the role of VEGF-A in mTBI remains poorly understood. Bevacizumab (BEV) is a monoclonal antibody that binds to VEGF-A and neutralises its actions. To better understand the role of VEGF-A in mTBI recovery, this study examined how BEV treatment affected outcomes in rats given a mTBI. Adult Sprague-Dawley rats were assigned to sham-injury + vehicle treatment (VEH), sham-injury + BEV treatment, mTBI + VEH treatment, mTBI + BEV treatment groups. Treatment was administered intracerebroventricularly via a cannula beginning at the time of injury and continuing until the end of the study. Rats underwent behavioral testing after injury and were euthanized on day 11. In both females and males, BEV had a negative impact on cognitive function. mTBI and BEV treatment increased the expression of inflammatory markers in females. In males, BEV treatment altered markers related to hypoxia and vascular health. These novel findings of sex-specific responses to BEV and mTBI provide important insights into the role of VEGF-A in mTBI.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tamara L Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Campbell T Wilson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
| |
Collapse
|
152
|
Li L, Fu S, Wang J, Lu J, Tao Y, Zhao L, Fu B, Lu L, Xiang C, Sun X, Liu S, Wang D, Wang Z. SRT1720 inhibits bladder cancer cell progression by impairing autophagic flux. Biochem Pharmacol 2024; 222:116111. [PMID: 38458329 DOI: 10.1016/j.bcp.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Bladder cancer (BC) is the most common cancer of the urinary tract, with poor survival, high recurrence rates, and lacking of targeted drugs. In this study, we constructed a library to screen compounds inhibiting bladder cancer cells growth. Among them, SRT1720 was identified to inhibit bladder cancer cell proliferation in vitro and in vivo. SRT1720 treatment also suppressed bladder cancer cells migration, invasion and induced apoptosis. Mechanism studies shown that SRT1720 promoted autophagosomes accumulation by inducing early-stage autophagy but disturbed the late-stage of autophagy by blocking fusion of autophagosomes and lysosomes. SRT1720 appears to induce autophagy related proteins expression and alter autophagy-related proteins acetylation to impede the autophagy flux. LAMP2, an important lysosomal associated membrane protein, may mediate SRT1720-inhibited autophagy flux as SRT1720 treatment significantly deacetylated LAMP2 which may influence its activity. Taken together, our results demonstrated that SRT1720 mediated apoptosis and autophagy flux inhibition may be a novel therapeutic strategy for bladder cancer treatment.
Collapse
Affiliation(s)
- Lanlan Li
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Shengjun Fu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Jianliang Wang
- Department of Pharmacy, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730035, Gansu, China
| | - Jianzhong Lu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Yan Tao
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Liangtao Zhao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Beitang Fu
- The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi 830000, China
| | - Lanpeng Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Caifei Xiang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xince Sun
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shanhui Liu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Zhiping Wang
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China.
| |
Collapse
|
153
|
Yin X, He Z, Chen K, Ouyang K, Yang C, Li J, Tang H, Cai M. Unveiling the impact of CDK8 on tumor progression: mechanisms and therapeutic strategies. Front Pharmacol 2024; 15:1386929. [PMID: 38606172 PMCID: PMC11006979 DOI: 10.3389/fphar.2024.1386929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
CDK8 is an important member of the cyclin-dependent kinase family associated with transcription and acts as a key "molecular switch" in the Mediator complex. CDK8 regulates gene expression by phosphorylating transcription factors and can control the transcription process through Mediator complex. Previous studies confirmed that CDK8 is an important oncogenic factor, making it a potential tumor biomarker and a promising target for tumor therapy. However, CDK8 has also been confirmed to be a tumor suppressor, indicating that it not only promotes the development of tumors but may also be involved in tumor suppression. Therefore, the dual role of CDK8 in the process of tumor development is worth further exploration and summary. This comprehensive review delves into the intricate involvement of CDK8 in transcription-related processes, as well as its role in signaling pathways related to tumorigenesis, with a focus on its critical part in driving cancer progression.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhilong He
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kun Chen
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kai Ouyang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changxuan Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
154
|
Ruan H, Zhang Q, Zhang YP, Li SS, Ran X. Unraveling the role of HIF-1α in sepsis: from pathophysiology to potential therapeutics-a narrative review. Crit Care 2024; 28:100. [PMID: 38539163 PMCID: PMC10976824 DOI: 10.1186/s13054-024-04885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis is characterized by organ dysfunction resulting from a dysregulated inflammatory response triggered by infection, involving multifactorial and intricate molecular mechanisms. Hypoxia-inducible factor-1α (HIF-1α), a notable transcription factor, assumes a pivotal role in the onset and progression of sepsis. This review aims to furnish a comprehensive overview of HIF-1α's mechanism of action in sepsis, scrutinizing its involvement in inflammatory regulation, hypoxia adaptation, immune response, and organ dysfunction. The review encompasses an analysis of the structural features, regulatory activation, and downstream signaling pathways of HIF-1α, alongside its mechanism of action in the pathophysiological processes of sepsis. Furthermore, it will delve into the roles of HIF-1α in modulating the inflammatory response, including its association with inflammatory mediators, immune cell activation, and vasodilation. Additionally, attention will be directed toward the regulatory function of HIF-1α in hypoxic environments and its linkage with intracellular signaling, oxidative stress, and mitochondrial damage. Finally, the potential therapeutic value of HIF-1α as a targeted therapy and its significance in the clinical management of sepsis will be discussed, aiming to serve as a significant reference for an in-depth understanding of sepsis pathogenesis and potential therapeutic targets, as well as to establish a theoretical foundation for clinical applications.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - You-Ping Zhang
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Sheng Li
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
155
|
Guo C, Quan Z, Ke J, Zang H, Teng Q, Li X, Peng D, Wang P. Hypoxia-Inducible Factor-1 α Regulates High Phosphate-Induced Vascular Calcification via Type III Sodium-Dependent Phosphate Cotransporter 1. Cardiol Res Pract 2024; 2024:6346115. [PMID: 38566807 PMCID: PMC10987242 DOI: 10.1155/2024/6346115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Vascular calcification (VC) has a high incidence in patients with chronic kidney disease, which is a worldwide public health problem and presents a heavy burden to society. Hypoxia-inducible factor (HIF)-1α, the active subunit of HIF-1, has been reported to play a vital role in high phosphate-induced VC. However, the underlying mechanism is still undetermined, and effective treatment is unavailable. In the present study, human aortic smooth muscle cells (HASMCs) were cultured under normal or high phosphate media conditions. HIF-1α small interfering RNA and overexpression plasmids were employed to regulate HIF-1α expression. Phosphonoformic acid was employed to restrain the function of type III sodium-dependent phosphate cotransporter 1 (Pit-1). The expression levels of HIF-1α, Pit-1, runt-related transcription factor 2 (Runx2), and smooth muscle 22 alpha (SM22α) were evaluated, and the calcium contents were also examined. Cell growth was assessed using an MTT assay. High phosphate stimulation caused an upregulation in HIF-1α and Pit-1 expression levels and induced calcium depositions in HASMCs. Upregulation of Runx2 expression accompanied by downregulation of SM22α expression was observed in the high phosphate group. Following the suppression of HIF-1α expression, there was a concomitant attenuation in Pit-1 expression, calcium deposition, the alteration of phenotypic transition marker genes, and vice versa. The most serious calcium deposition was noted in HASMCs cultured under high phosphate conditions which were pretreated with a HIF-1α overexpression plasmid. However, when the biological functions of Pit-1 were restrained, the putative serious calcium deposition was not formed even in HASMCs transfected with a HIF-1α overexpression plasmid. The findings confirmed that HIF-1α regulated Pit-1 expression and exerted its pro-calcifying effect through Pit-1, which identified HIF-1α and Pit-1 as therapeutic targets for high phosphate-induced VC.
Collapse
Affiliation(s)
- Chengkun Guo
- Nephrology Department, Jingmen Central Hospital Affiliated to Hubei Minzu University, Jingmen, Hubei 448000, China
| | - Zhengli Quan
- Nephrology Department, Jingmen Central Hospital Affiliated to Hubei Minzu University, Jingmen, Hubei 448000, China
| | - Jingjing Ke
- Nephrology Department, Jingmen Central Hospital Affiliated to Hubei Minzu University, Jingmen, Hubei 448000, China
| | - Hualong Zang
- Nephrology Department, Jingmen Central Hospital Affiliated to Hubei Minzu University, Jingmen, Hubei 448000, China
| | - Qiuping Teng
- Nephrology Department, Jingmen Central Hospital Affiliated to Hubei Minzu University, Jingmen, Hubei 448000, China
| | - Xin Li
- Nephrology Department, Jingmen Central Hospital Affiliated to Hubei Minzu University, Jingmen, Hubei 448000, China
| | - Dan Peng
- Neonatology Department, Jingmen Central Hospital Affiliated to Hubei Minzu University, Jingmen, Hubei 448000, China
| | - Ping Wang
- Nephrology Department, Jingmen Central Hospital Affiliated to Hubei Minzu University, Jingmen, Hubei 448000, China
| |
Collapse
|
156
|
Yao T, Wei D, Tian X, Zhao L, Wan Q, Zhang X, Cai J, Li S, Diao B, Feng S, Shan B, Shao M, Wu Y. PDGFRβ + cell HIF2α is dispensable for white adipose tissue metabolic remodeling and hepatic lipid accumulation in obese mice. Lipids Health Dis 2024; 23:81. [PMID: 38509584 PMCID: PMC10953078 DOI: 10.1186/s12944-024-02069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Obesity is associated with extensive white adipose tissue (WAT) expansion and remodeling. Healthy WAT expansion contributes to the maintenance of energy balance in the liver, thereby ameliorating obesity-related hepatic steatosis. Tissue-resident mesenchymal stromal cell populations, including PDGFRβ + perivascular cells, are increasingly recognized pivotal as determinants of the manner in which WAT expands. However, the full array of regulatory factors controlling WAT stromal cell functions remains to be fully elucidated. Hypoxia-inducible factors (HIFs) are critical regulators in WAT stromal cell populations such as adipocyte precursor cells (APCs). It is revealed that HIF1α activation within PDGFRβ + stromal cells results in the suppression of de novo adipogenesis and the promotion of a pro-fibrogenic cellular program in obese animals. However, the role of HIF2α in PDGFRβ + cells remains undetermined in vivo. METHODS New genetic models were employed in which HIF1α (encoded by the Hif1a gene) and HIF2α (encoded by the Epas1 gene) are selectively inactivated in PDGFRβ + cells in an inducible manner using tamoxifen (TAM). With these models, both in vitro and in vivo functional analysis of PDGFRβ + cells lacking HIF proteins were performed. Additionally, comprehensive metabolic phenotyping in diet-induced mouse models were performed to investigate the roles of PDGFRβ + cell HIF proteins in WAT remodeling, liver energy balance and systemic metabolism. RESULTS Unlike HIF1α inactivation, the new findings in this study suggest that inducible ablation of HIF2α in PDGFRβ + cells does not cause apparent effects on WAT expansion induced by obesogenic diet. The adipogenic ability of PDGFRβ + APCs is not significantly altered by genetic HIF2α ablation. Moreover, no difference of key parameters associated with healthy WAT remodeling such as improvements of WAT insulin sensitivity, reduction in metabolic inflammation, as well as changes in liver fat accumulation or systemic glucose metabolism, is detected in PDGFRβ + cell Epas1-deficient mice. CONCLUSION The new findings in this study support that, in contrast to HIF1α, PDGFRβ + cell HIF2α appears dispensable for WAT metabolic remodeling and the resulting effects on liver metabolic homeostasis in diet-induced obesity, underscoring the isoform-specific roles of HIFα proteins in the regulation of adipose tissue biology.
Collapse
Affiliation(s)
- Tao Yao
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Danni Wei
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Tian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lin Zhao
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Qiangyou Wan
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Zhang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Juan Cai
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Siqi Li
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Diao
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Suihan Feng
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bo Shan
- Cancer Center, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Mengle Shao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Ying Wu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
157
|
Liu S, Huang J, Zhou J, Chen S, Zheng W, Liu C, Lin Q, Zhang P, Wu D, He S, Ye J, Liu S, Zhou K, Li B, Qu L, Yang J. NAP-seq reveals multiple classes of structured noncoding RNAs with regulatory functions. Nat Commun 2024; 15:2425. [PMID: 38499544 PMCID: PMC10948791 DOI: 10.1038/s41467-024-46596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Up to 80% of the human genome produces "dark matter" RNAs, most of which are noncapped RNAs (napRNAs) that frequently act as noncoding RNAs (ncRNAs) to modulate gene expression. Here, by developing a method, NAP-seq, to globally profile the full-length sequences of napRNAs with various terminal modifications at single-nucleotide resolution, we reveal diverse classes of structured ncRNAs. We discover stably expressed linear intron RNAs (sliRNAs), a class of snoRNA-intron RNAs (snotrons), a class of RNAs embedded in miRNA spacers (misRNAs) and thousands of previously uncharacterized structured napRNAs in humans and mice. These napRNAs undergo dynamic changes in response to various stimuli and differentiation stages. Importantly, we show that a structured napRNA regulates myoblast differentiation and a napRNA DINAP interacts with dyskerin pseudouridine synthase 1 (DKC1) to promote cell proliferation by maintaining DKC1 protein stability. Our approach establishes a paradigm for discovering various classes of ncRNAs with regulatory functions.
Collapse
Affiliation(s)
- Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Junhong Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Jie Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Siyan Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Wujian Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Chang Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiao Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Ping Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Di Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Simeng He
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Jiayi Ye
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China.
| |
Collapse
|
158
|
Jiang W, Jin WL, Xu AM. Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities. Int J Biol Sci 2024; 20:2044-2071. [PMID: 38617549 PMCID: PMC11008265 DOI: 10.7150/ijbs.92274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- Anhui Public Health Clinical Center, Hefei 230022, P. R. China
| |
Collapse
|
159
|
Zhang R, Ma Z, Wang J, Fan C. HIF signaling overactivation inhibits lateral line neuromast development through Wnt in zebrafish. Gene 2024; 898:148077. [PMID: 38097093 DOI: 10.1016/j.gene.2023.148077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
The lateral line is critical for prey detection, predator avoidance, schooling, and rheotaxis behavior in fish. As similar to hair cells in the mammalian inner ear, the lateral line sensory organ called neuromasts is a popular model for hair cell regeneration. However, the mechanism of lateral line development has not been fully understood. In this study, we showed for the first time that hypoxia-inducible factor (HIF) signaling is involved in lateral line development in zebrafish. hif1ab and epas1b were highly expressed in neuromasts during lateral line development. Hypoxia response induced by a prolyl hydroxylase domain-containing proteins (PHD) inhibitor treatment or vhl gene knockout significantly reduced hair cells and support cells in neuromast during lateral line development. In addition, inhibition of Hif-1α or Epas1 could partially rescue hair cells in the larvae with increased HIF activity, respectively. Moreover, the support cell proliferation and the expression of Wnt target genes decreased in vhl mutants which suggests that Wnt signaling mediated the role of HIF signaling in lateral line development. Collectively, our results demonstrate that HIF signaling overactivation inhibits lateral line development in zebrafish and suggest that inhibition of HIF signaling might be a potential therapeutic method for hair cell death.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ziyue Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Chunxin Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Marine Biomedical Science and Technology Innovation Platform of Lingang New Area, Shanghai, China.
| |
Collapse
|
160
|
Sun L, Hui F, Tang GY, Shen HL, Cao XL, Gao JX, Li LF. Selective degradation of PL2L60 by metabolic stresses‑induced autophagy suppresses multi‑cancer growth. Oncol Rep 2024; 51:41. [PMID: 38624021 PMCID: PMC10823339 DOI: 10.3892/or.2024.8700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/08/2023] [Indexed: 04/17/2024] Open
Abstract
It has been reported that PL2L60 proteins, a product of PIWIL2 gene which might be activated by an intragenic promoter, could mediate a common pathway specifically for tumorigenesis. In the present study, it was further identified by using western blot assay that the PL2L60 proteins could be degraded in cancer cells through a mechanism of selective autophagy in response to oxidative stress. The PL2L60 was downregulated in various types of cancer cells under the hypoxic condition independently of HIF‑1α, resulting in apoptosis of cancer cells. Inhibition of autophagy by small interfering RNA targeting of either Beclin‑1 (BECN1) or Atg5 resulted in restoration of PL2L60 expression in hypoxic cancer cell. The hypoxic degradation of PL2L60 was also blocked by the attenuation of the autophagosome membrane protein Atg8/microtubule‑associated protein 1 light chain 3 (LC3) or autophagy cargo protein p62 expression. Surprisingly, Immunofluorescence analysis demonstrated that LC3 could be directly bound to PL2L60 and was required for the transport of PL2L60 from the nucleus to the cytoplasm for lysosomal flux under basal or activated autophagy in cancer cells. Moreover, flow cytometric analysis displayed that knocking down of PL2L60 mRNA but not PIWIL2 mRNA effectively inhibited cancer cell proliferation and promoted apoptosis of cancer cells. The similar results were obtained from in vivo tumorigenic experiment, in which PL2L60 downregulation in necroptosis areas was confirmed by immunohistochemistry. These results suggested that various cancer could be suppressed by promoting autophagy. The present study revealed a key role of autophagic degradation of PL2L60 in hypoxia‑induced cancer cell death, which could be used as a novel therapeutic target of cancer.
Collapse
Affiliation(s)
- Lei Sun
- The State Key Laboratory of Oncogenes and Related Genes, and The Laboratory of Tumorigenesis and Immunity, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, PuDong, Shanghai 200127, P.R. China
- Department of Oncology, First Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Fu Hui
- Department of Oncology, First Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Gao-Yan Tang
- Department of Oncology, First Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Hai-Lian Shen
- Sam and Ann Barshop Institute for Longevity of Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78292, USA
| | - Xue-Lei Cao
- Department of Clinical Laboratory, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jian-Xin Gao
- The State Key Laboratory of Oncogenes and Related Genes, and The Laboratory of Tumorigenesis and Immunity, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, PuDong, Shanghai 200127, P.R. China
| | - Lin-Feng Li
- The State Key Laboratory of Oncogenes and Related Genes, and The Laboratory of Tumorigenesis and Immunity, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, PuDong, Shanghai 200127, P.R. China
| |
Collapse
|
161
|
Dymerska D, Marusiak AA. Drivers of cancer metastasis - Arise early and remain present. Biochim Biophys Acta Rev Cancer 2024; 1879:189060. [PMID: 38151195 DOI: 10.1016/j.bbcan.2023.189060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Cancer and its metastases arise from mutations of genes, drivers that promote a tumor's growth. Analyses of driver events provide insights into cancer cell history and may lead to a better understanding of oncogenesis. We reviewed 27 metastatic research studies, including pan-cancer studies, individual cancer studies, and phylogenetic analyses, and summarized our current knowledge of metastatic drivers. All of the analyzed studies had a high level of consistency of driver mutations between primary tumors and metastasis, indicating that most drivers appear early in cancer progression and are maintained in metastatic cells. Additionally, we reviewed data from around 50,000 metastatic cancer patients and compiled a list of genes altered in metastatic lesions. We performed Gene Ontology analysis and confirmed that the most significantly enriched processes in metastatic lesions were the epigenetic regulation of gene expression, signal transduction, cell cycle, programmed cell death, DNA damage, hypoxia and EMT. In this review, we explore the most recent discoveries regarding genetic factors in the advancement of cancer, specifically those that drive metastasis.
Collapse
Affiliation(s)
- Dagmara Dymerska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
162
|
Zhang Y, Tian XL, Li JQ, Wu DS, Li Q, Chen B. Mitochondrial dysfunction affects hepatic immune and metabolic remodeling in patients with hepatitis B virus-related acute-on-chronic liver failure. World J Gastroenterol 2024; 30:881-900. [PMID: 38516248 PMCID: PMC10950637 DOI: 10.3748/wjg.v30.i8.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Immune dysregulation and metabolic derangement have been recognized as key factors that contribute to the progression of hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). However, the mechanisms underlying immune and metabolic derangement in patients with advanced HBV-ACLF are unclear. AIM To identify the bioenergetic alterations in the liver of patients with HBV-ACLF causing hepatic immune dysregulation and metabolic disorders. METHODS Liver samples were collected from 16 healthy donors (HDs) and 17 advanced HBV-ACLF patients who were eligible for liver transplantation. The mitochondrial ultrastructure, metabolic characteristics, and immune microenvironment of the liver were assessed. More focus was given to organic acid metabolism as well as the function and subpopulations of macrophages in patients with HBV-ACLF. RESULTS Compared with HDs, there was extensive hepatocyte necrosis, immune cell infiltration, and ductular reaction in patients with ACLF. In patients, the liver suffered severe hypoxia, as evidenced by increased expression of hypoxia-inducible factor-1α. Swollen mitochondria and cristae were observed in the liver of patients. The number, length, width, and area of mitochondria were adaptively increased in hepatocytes. Targeted metabolomics analysis revealed that mitochondrial oxidative phosphorylation decreased, while anaerobic glycolysis was enhanced in patients with HBV-ACLF. These findings suggested that, to a greater extent, hepa-tocytes used the extra-mitochondrial glycolytic pathway as an energy source. Patients with HBV-ACLF had elevated levels of chemokine C-C motif ligand 2 in the liver homogenate, which stimulates peripheral monocyte infiltration into the liver. Characterization and functional analysis of macrophage subsets revealed that patients with ACLF had a high abundance of CD68+ HLA-DR+ macrophages and elevated levels of both interleukin-1β and transforming growth factor-β1 in their livers. The abundance of CD206+ CD163+ macrophages and expression of interleukin-10 decreased. The correlation analysis revealed that hepatic organic acid metabolites were closely associated with macrophage-derived cytokines/chemokines. CONCLUSION The results indicated that bioenergetic alteration driven by hypoxia and mitochondrial dysfunction affects hepatic immune and metabolic remodeling, leading to advanced HBV-ACLF. These findings highlight a new therapeutic target for improving the treatment of HBV-ACLF.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Xiao-Ling Tian
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Jie-Qun Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Dong-Sheng Wu
- Department of Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Qiang Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Bin Chen
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| |
Collapse
|
163
|
Wu X, Cap AP, Bynum JA, Chance TC, Darlington DN, Meledeo MA. Prolyl hydroxylase domain inhibitor is an effective pre-hospital pharmaceutical intervention for trauma and hemorrhagic shock. Sci Rep 2024; 14:3874. [PMID: 38365865 PMCID: PMC10873291 DOI: 10.1038/s41598-024-53945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Pre-hospital potentially preventable trauma related deaths are mainly due to hypoperfusion-induced tissue hypoxia leading to irreversible organ dysfunction at or near the point of injury or during transportation prior to receiving definitive therapy. The prolyl hydroxylase domain (PHD) is an oxygen sensor that regulates tissue adaptation to hypoxia by stabilizing hypoxia inducible factor (HIF). The benefit of PHD inhibitors (PHDi) in the treatment of anemia and lactatemia arises from HIF stabilization, which stimulates endogenous production of erythropoietin and activates lactate recycling through gluconeogenesis. The results of this study provide insight into the therapeutic roles of MK-8617, a pan-inhibitor of PHD-1, 2, and 3, in the mitigation of lactatemia in anesthetized rats with polytrauma and hemorrhagic shock. Additionally, in an anesthetized rat model of lethal decompensated hemorrhagic shock, acute administration of MK-8617 significantly improves one-hour survival and maintains survival at least until 4 h following limited resuscitation with whole blood (20% EBV) at one hour after hemorrhage. This study suggests that pharmaceutical interventions to inhibit prolyl hydroxylase activity can be used as a potential pre-hospital countermeasure for trauma and hemorrhage at or near the point of injury.
Collapse
Affiliation(s)
- Xiaowu Wu
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA.
| | - Andrew P Cap
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - James A Bynum
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tiffani C Chance
- Department of Health and Human Services, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniel N Darlington
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - Michael A Meledeo
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| |
Collapse
|
164
|
Zhang W, Xia CL, Qu YD, Li JX, Liu JB, Ou SJ, Yang Y, Qi Y, Xu CP. MicroRNA-18a regulates the Pyroptosis, Apoptosis, and Necroptosis (PANoptosis) of osteoblasts induced by tumor necrosis factor-α via hypoxia-inducible factor-1α. Int Immunopharmacol 2024; 128:111453. [PMID: 38241841 DOI: 10.1016/j.intimp.2023.111453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Tumor necrosis factor-α (TNF-α) is involved in inflammatory responses and promotes cell death and the inhibition of osteogenic differentiation. MicroRNA (miRNA) plays a crucial role in the infected bone diseases, however, the biological role of miRNAs in inflammation-induced impaired osteogenic differentiation remains unclear. This study aimed to explore the role of miRNA-18a-5p (miR-18a) in regulating PANoptosis and osteogenic differentiation in an inflammatory environment via hypoxia-inducible factor-1α (HIF1-α). METHODS The expression of miR-18a in MC3T3-E1 cells was analyzed using quantitative reverse transcription-polymerase chain reaction in an inflammatory environment induced by TNF-α. The expression of HIF1-α and NLRP3 in LV-miR-18a or sh-miR-18a cells was analyzed using western blotting. Fluorescence imaging for cell death, flow cytometry, and alkaline phosphatase activity analysis were used to analyze the role of miR-18a in TNF-α-induced PANoptosis and the inhibition of osteogenic differentiation. An animal model of infectious bone defect was established to validate the regulatory role of miR-18a in an inflammatory environment. RESULTS The expression of miRNA-18a in the MC3T3-E1 cell line was significantly lower under TNF-α stimulation than in the normal environment. miR-18a significantly inhibited the expression of HIF1-α and NLRP3, and inhibition of HIF1-α expression further inhibited NLRP3 expression. Furthermore, inhibition of miR-18a expression promoted the TNF-α-induced PANoptosis and inhibition of osteogenic differentiation, whereas miR-18a overexpression and the inhibition of both HIF1-α and NLRP3 reduced the effects of TNF-α. These findings are consistent with those of the animal experiments. CONCLUSION miRNA-18a negatively affects HIF1-α/NLRP3 expression, inhibits inflammation-induced PANoptosis, and impairs osteogenic differentiation. Thus, it is a potential therapeutic candidate for developing anti-inflammatory strategies for infected bone diseases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University.
| | - Chang-Liang Xia
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - Yu-Dun Qu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University.
| | - Jia-Xuan Li
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - Jia-Bao Liu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - Shuan-Ji Ou
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - Yang Yang
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - Yong Qi
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University.
| | - Chang-Peng Xu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University.
| |
Collapse
|
165
|
Warden A, Mayfield RD, Gurol KC, Hutchens S, Liu C, Mukhopadhyay S. Loss of SLC30A10 manganese transporter alters expression of neurotransmission genes and activates hypoxia-inducible factor signaling in mice. Metallomics 2024; 16:mfae007. [PMID: 38285613 PMCID: PMC10883138 DOI: 10.1093/mtomcs/mfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
The essential metal manganese (Mn) induces neuromotor disease at elevated levels. The manganese efflux transporter SLC30A10 regulates brain Mn levels. Homozygous loss-of-function mutations in SLC30A10 induce hereditary Mn neurotoxicity in humans. Our prior characterization of Slc30a10 knockout mice recapitulated the high brain Mn levels and neuromotor deficits reported in humans. But, mechanisms of Mn-induced motor deficits due to SLC30A10 mutations or elevated Mn exposure are unclear. To gain insights into this issue, we characterized changes in gene expression in the basal ganglia, the main brain region targeted by Mn, of Slc30a10 knockout mice using unbiased transcriptomics. Compared with littermates, >1000 genes were upregulated or downregulated in the basal ganglia sub-regions (i.e. caudate putamen, globus pallidus, and substantia nigra) of the knockouts. Pathway analyses revealed notable changes in genes regulating synaptic transmission and neurotransmitter function in the knockouts that may contribute to the motor phenotype. Expression changes in the knockouts were essentially normalized by a reduced Mn chow, establishing that changes were Mn dependent. Upstream regulator analyses identified hypoxia-inducible factor (HIF) signaling, which we recently characterized to be a primary cellular response to elevated Mn, as a critical mediator of the transcriptomic changes in the basal ganglia of the knockout mice. HIF activation was also evident in the liver of the knockout mice. These results: (i) enhance understanding of the pathobiology of Mn-induced motor disease; (ii) identify specific target genes/pathways for future mechanistic analyses; and (iii) independently corroborate the importance of the HIF pathway in Mn homeostasis and toxicity.
Collapse
Affiliation(s)
- Anna Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kerem C Gurol
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven Hutchens
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chunyi Liu
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
166
|
Longden TA, Lederer WJ. Electro-metabolic signaling. J Gen Physiol 2024; 156:e202313451. [PMID: 38197953 PMCID: PMC10783436 DOI: 10.1085/jgp.202313451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Precise matching of energy substrate delivery to local metabolic needs is essential for the health and function of all tissues. Here, we outline a mechanistic framework for understanding this critical process, which we refer to as electro-metabolic signaling (EMS). All tissues exhibit changes in metabolism over varying spatiotemporal scales and have widely varying energetic needs and reserves. We propose that across tissues, common signatures of elevated metabolism or increases in energy substrate usage that exceed key local thresholds rapidly engage mechanisms that generate hyperpolarizing electrical signals in capillaries that then relax contractile elements throughout the vasculature to quickly adjust blood flow to meet changing needs. The attendant increase in energy substrate delivery serves to meet local metabolic requirements and thus avoids a mismatch in supply and demand and prevents metabolic stress. We discuss in detail key examples of EMS that our laboratories have discovered in the brain and the heart, and we outline potential further EMS mechanisms operating in tissues such as skeletal muscle, pancreas, and kidney. We suggest that the energy imbalance evoked by EMS uncoupling may be central to cellular dysfunction from which the hallmarks of aging and metabolic diseases emerge and may lead to generalized organ failure states-such as diverse flavors of heart failure and dementia. Understanding and manipulating EMS may be key to preventing or reversing these dysfunctions.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W. Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
167
|
Ma Q, Xu H, Wei Y, Liang M. Effects of acute hypoxia on nutrient metabolism and physiological function in turbot, Scophthalmus maximus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:367-383. [PMID: 36609890 DOI: 10.1007/s10695-022-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Acute hypoxia is a common stress in aquaculture, and causes energy deficiency, oxidative damage and death in fish. Many studies have confirmed that acute hypoxia activated hif1α expression, anaerobic glycolysis and antioxidant system in fish, but the effects of acute hypoxia on lipid and protein metabolism, organelle damage, and the functions of hif2α and hif3α in economic fishes have not been well evaluated. In the present study, turbot was exposed to acute hypoxia (2.0 ± 0.5 mg/L) for 6 h, 12 h, and 24 h, respectively. Then, the contents of hemoglobin (HB), metabolite, gene expressions of hifα isoforms, energy homeostasis, endoplasmic reticulum (ER) stress, and apoptosis were measured. The results suggested that turbot is intolerant to acute hypoxia and the asphyxiation point is about 1.5 mg/L. Acute hypoxia induced perk-mediated ER stress, and increased lipid peroxidation and liver injury in turbot. The blood HB level and liver vegfab expression were increased under hypoxia, which enhances oxygen transport. At hypoxia stress, hif3α, anaerobic glycolysis-related genes expression, and lactate content were increased in the liver, and glycogen was broken down to ensure ATP supply. Meanwhile, hif2α, lipid synthesis-related genes expression, and TG content were increased in the liver, but the lipid catabolism and protein synthesis were suppressed during hypoxia, which reduced the oxygen consumption and ROS generation. Our results systematically illustrate the metabolic and physiological changes under acute hypoxia in turbot, and provide important guidance to improve hypoxia tolerance in fish.
Collapse
Affiliation(s)
- Qiang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
168
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
169
|
Nguyen CB, Oh E, Bahar P, Vaishampayan UN, Else T, Alva AS. Novel Approaches with HIF-2α Targeted Therapies in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2024; 16:601. [PMID: 38339352 PMCID: PMC10854987 DOI: 10.3390/cancers16030601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Germline inactivation of the Von Hippel-Lindau (VHL) tumor suppressor is the defining hallmark in hereditary VHL disease and VHL-associated renal cell carcinoma (RCC). However, somatic VHL mutations are also observed in patients with sporadic RCC. Loss of function VHL mutations result in constitutive activation of hypoxia-inducible factor-2 alpha (HIF-2α), which leads to increased expression of HIF target genes that promote angiogenesis and tumor growth. As of 2023, belzutifan is currently the only approved HIF-2α inhibitor for both VHL-associated and sporadic metastatic RCC (mRCC). However, there is potential for resistance with HIF-2α inhibitors which warrants novel HIF-2α-targeting strategies. In this review, we discuss the potential resistance mechanisms with belzutifan and current clinical trials evaluating novel combinations of belzutifan with other targeted therapies and immune checkpoint inhibitors which may enhance the efficacy of HIF-2α targeting. Lastly, we also discuss newer generation HIF-2α inhibitors that are currently under early investigation and outline future directions and challenges with HIF-2α inhibitors for mRCC.
Collapse
Affiliation(s)
- Charles B. Nguyen
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (U.N.V.); (T.E.); (A.S.A.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eugene Oh
- University of Michigan Medical School, Ann Arbor, MI 48109, USA; (E.O.); (P.B.)
| | - Piroz Bahar
- University of Michigan Medical School, Ann Arbor, MI 48109, USA; (E.O.); (P.B.)
| | - Ulka N. Vaishampayan
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (U.N.V.); (T.E.); (A.S.A.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tobias Else
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (U.N.V.); (T.E.); (A.S.A.)
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ajjai S. Alva
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (U.N.V.); (T.E.); (A.S.A.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
170
|
Lambrescu IM, Gaina GF, Ceafalan LC, Hinescu ME. Inside anticancer therapy resistance and metastasis. Focus on CD36. J Cancer 2024; 15:1675-1686. [PMID: 38370376 PMCID: PMC10869978 DOI: 10.7150/jca.90457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 02/20/2024] Open
Abstract
Despite recent advances in targeted cancer therapies, drug resistance remains an important setback in tumor control. Understanding the complex mechanisms involved in both innate and acquired drug resistance represents the first step in discovering novel therapeutic agents. Because of its importance in tumorigenesis, progression, and metastasis, lipid metabolism is increasingly garnering attention. CD36 is a membrane receptor at the top of the signaling cascade that transports lipids. Its expression has been repeatedly presented as an unfavorable prognostic factor for various tumor types, raising the question: could CD36 be a critical factor in cancer treatment resistance? In our review, we set out to explore the most prominent studies on the implication of CD36 in resistance to platinum-based drugs and other adjuvant cancer therapies in solid and haematological neoplasia. Moreover, we provide an overview of the latest anti-CD36 cancer therapies, thus opening new perspectives for future personalized medicine.
Collapse
Affiliation(s)
- Ioana M. Lambrescu
- Cell Biology, Neurosciences, and Experimental Myology Laboratory, Victor Babeș Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Gisela F. Gaina
- Cell Biology, Neurosciences, and Experimental Myology Laboratory, Victor Babeș Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura C. Ceafalan
- Cell Biology, Neurosciences, and Experimental Myology Laboratory, Victor Babeș Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihail E. Hinescu
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute of Pathology "Victor Babes," 050096 Bucharest, Romania
| |
Collapse
|
171
|
Pan J, Zhang L, Li D, Li Y, Lu M, Hu Y, Sun B, Zhang Z, Li C. Hypoxia-inducible factor-1: Regulatory mechanisms and drug therapy in myocardial infarction. Eur J Pharmacol 2024; 963:176277. [PMID: 38123007 DOI: 10.1016/j.ejphar.2023.176277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Myocardial infarction (MI), an acute cardiovascular disease characterized by coronary artery blockage, inadequate blood supply, and subsequent ischemic necrosis of the myocardium, is one of the leading causes of death. The cellular, physiological, and pathological responses following MI are complex, involving multiple intertwined pathological mechanisms. Hypoxia-inducible factor-1 (HIF-1), a crucial regulator of hypoxia, plays a significant role in of the development of MI by modulating the behavior of various cells such as cardiomyocytes, endothelial cells, macrophages, and fibroblasts under hypoxic conditions. HIF-1 regulates various post-MI adaptive reactions to acute ischemia and hypoxia through various mechanisms. These mechanisms include angiogenesis, energy metabolism, oxidative stress, inflammatory response, and ventricular remodeling. With its crucial role in MI, HIF-1 is expected to significantly influence the treatment of MI. However, the drugs available for the treatment of MI targeting HIF-1 are currently limited, and most contain natural compounds. The development of precision-targeted drugs modulating HIF-1 has therapeutic potential for advancing MI treatment research and development. This study aimed to summarize the regulatory role of HIF-1 in the pathological responses of various cells following MI, the diverse mechanisms of action of HIF-1 in MI, and the potential drugs targeting HIF-1 for treating MI, thus providing the theoretical foundations for potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongxiao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanlong Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bowen Sun
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, 266000, China.
| |
Collapse
|
172
|
Liu J, Jiang Y, Chen L, Qian Z, Zhang Y. Associations between HIFs and tumor immune checkpoints: mechanism and therapy. Discov Oncol 2024; 15:2. [PMID: 38165484 PMCID: PMC10761656 DOI: 10.1007/s12672-023-00836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Hypoxia, which activates a variety of signaling pathways to enhance tumor cell growth and metabolism, is among the primary features of tumor cells. Hypoxia-inducible factors (HIFs) have a substantial impact on a variety of facets of tumor biology, such as epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and improved radiation resistance. HIFs induce hypoxia-adaptive responses in tumor cells. Many academics have presented preclinical and clinical research targeting HIFs in tumor therapy, highlighting the potential applicability of targeted HIFs. In recent years, the discovery of numerous pharmacological drugs targeting the regulatory mechanisms of HIFs has garnered substantial attention. Additionally, HIF inhibitors have attained positive results when used in conjunction with traditional oncology radiation and/or chemotherapy, as well as with the very promising addition of tumor immunotherapy. Immune checkpoint inhibitors (CPIs), which are employed in a range of cancer treatments over the past decades, are essential in tumor immunotherapy. Nevertheless, the use of immunotherapy has been severely hampered by tumor resistance and treatment-related toxicity. According to research, HIF inhibitors paired with CPIs may be game changers for multiple malignancies, decreasing malignant cell plasticity and cancer therapy resistance, among other things, and opening up substantial new pathways for immunotherapy drug development. The structure, activation mechanisms, and pharmacological sites of action of the HIF family are briefly reviewed in this work. This review further explores the interactions between HIF inhibitors and other tumor immunotherapy components and covers the potential clinical use of HIF inhibitors in combination with CPIs.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China.
| |
Collapse
|
173
|
Oza HH, Gilkes DM. Multiplex Immunofluorescence Staining Protocol for the Dual Imaging of Hypoxia-Inducible Factors 1 and 2 on Formalin-Fixed Paraffin-Embedded Samples. Methods Mol Biol 2024; 2755:167-178. [PMID: 38319577 DOI: 10.1007/978-1-0716-3633-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Hypoxia is a common condition in rapidly proliferating tumors and occurs when oxygen delivery to the tissue is scarce. It is a prevalent feature in ~90% of solid tumors. The family of HIF (hypoxia-inducible factor) proteins-HIF1α and HIF2α-are the main transcription factors that regulate the response to hypoxia. These transcription factors regulate numerous downstream gene targets that promote the aggressiveness of tumors and therefore have been linked to worse prognosis in patients. This makes them a potential biomarker to be tested in the clinical setting to predict patient outcomes. However, HIFs have been notoriously challenging to immunolabel, in part due to their fast turnover under normal oxygen conditions. In this work, we developed a multiplexed immunofluorescence (mIF) staining protocol for the simultaneous detection of HIF1α and HIF2α in the same formalin-fixed paraffin-embedded (FFPE) tissue section.
Collapse
Affiliation(s)
- Harsh H Oza
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
174
|
Lee FS. Hypoxia Inducible Factor pathway proteins in high-altitude mammals. Trends Biochem Sci 2024; 49:79-92. [PMID: 38036336 PMCID: PMC10841901 DOI: 10.1016/j.tibs.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Humans and other mammals inhabit hypoxic high-altitude locales. In many of these species, genes under positive selection include ones in the Hypoxia Inducible Factor (HIF) pathway. One is PHD2 (EGLN1), which encodes for a key oxygen sensor. Another is HIF2A (EPAS1), which encodes for a PHD2-regulated transcription factor. Recent studies have provided insights into mechanisms for these high-altitude alleles. These studies have (i) shown that selection can occur on nonconserved, unstructured regions of proteins, (ii) revealed that high altitude-associated amino acid substitutions can have differential effects on protein-protein interactions, (iii) provided evidence for convergent evolution by different molecular mechanisms, and (iv) suggested that mutations in different genes can complement one another to produce a set of adaptive phenotypes.
Collapse
Affiliation(s)
- Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
175
|
Cakici C, Daylan B, Unluer RS, Emekli-Alturfan E, Ayla S, Gozel HE, Yigit P, Dokgoz EY, Yigitbasi T. LDH-A Inhibitor as a Remedy to Potentiate the Anticancer Effect of Docetaxel in Prostate Cancer. J Cancer 2024; 15:590-602. [PMID: 38213726 PMCID: PMC10777035 DOI: 10.7150/jca.86283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Increased LDH-A activity promotes tumor growth, migration, invasion, and metastasis. This study aimed to investigate the effects of the combination of LDH-A inhibitor and Docetaxel on apoptosis and epithelial-mesenchymal transition (EMT) in the murine prostate cancer (PCa) model. The prostate cancer murine model was developed subcutaneously in 50 male B57CL/6 mice using the Tramp-C2 prostate cancer cell line. From the tumor tissue samples, apoptosis analysis was performed using TUNEL staining, and EMT was investigated using western blot and qPCR. Hematoxylin-eosin staining (HE) and Periodic acid-Schiff staining were used to histopathologically examine liver and kidney tissues. Lactate levels revealed that the Warburg effect was reversed with the LDH-A inhibitor. Both serum and tumor tissue apoptosis increased, and tumor sizes reduced in PCa+LDH-A inhibitor + Docetaxel treatment groups (p<0.05). The combination of LDH-A inhibitor and Docetaxel inhibited EMT mechanism by causing a decrease in Snail, Slug, Twist, and HIF-1α expressions as well as a decrease in N-cadherin and an increase in E-cadherin levels. Reprogramming glucose metabolism with an LDH-A inhibitor can increase the effectiveness of Docetaxel on apoptosis and metastasis mechanisms in PCa.
Collapse
Affiliation(s)
- Cagri Cakici
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey, 34815
| | - Benay Daylan
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey, 34815
| | - Ruveyde Safiye Unluer
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey, 34815
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey, 34857
| | - Sule Ayla
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey, 34720
| | - Hilal Eren Gozel
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Okan University, Istanbul, Turkey, 34959
| | - Pakize Yigit
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey, 34815
| | - Elif Yavuz Dokgoz
- Department of Biochemistry, Faculty of Pharmacy, Istinye University, Istanbul, Turkey, 34010
| | - Turkan Yigitbasi
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey, 34815
| |
Collapse
|
176
|
Wang R, Cai X, Li X, Li J, Liu X, Wang J, Xiao W. USP38 promotes deubiquitination of K11-linked polyubiquitination of HIF1α at Lys769 to enhance hypoxia signaling. J Biol Chem 2024; 300:105532. [PMID: 38072059 PMCID: PMC10805703 DOI: 10.1016/j.jbc.2023.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 01/02/2024] Open
Abstract
HIF1α is one of the master regulators of the hypoxia signaling pathway and its activation is regulated by multiple post-translational modifications (PTMs). Deubiquitination mediated by deubiquitylating enzymes (DUBs) is an essential PTM that mainly modulates the stability of target proteins. USP38 belongs to the ubiquitin-specific proteases (USPs). However, whether USP38 can affect hypoxia signaling is still unknown. In this study, we used quantitative real-time PCR assays to identify USPs that can influence hypoxia-responsive gene expression. We found that overexpression of USP38 increased hypoxia-responsive gene expression, but knockout of USP38 suppressed hypoxia-responsive gene expression under hypoxia. Mechanistically, USP38 interacts with HIF1α to deubiquitinate K11-linked polyubiquitination of HIF1α at Lys769, resulting in stabilization and subsequent activation of HIF1α. In addition, we show that USP38 attenuates cellular ROS and suppresses cell apoptosis under hypoxia. Thus, we reveal a novel role for USP38 in the regulation of hypoxia signaling.
Collapse
Affiliation(s)
- Rui Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, P. R. China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
177
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
178
|
Huang B, Chen N, Chen Z, Shen J, Zhang H, Wang C, Sun Y. HIF-1α Contributes to Hypoxia-induced VSMC Proliferation and Migration by Regulating Autophagy in Type A Aortic Dissection. Adv Biol (Weinh) 2024; 8:e2300292. [PMID: 37786269 DOI: 10.1002/adbi.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Indexed: 10/04/2023]
Abstract
Type A aortic dissection (AD) is a catastrophic cardiovascular disease. Hypoxia-inducible factor-1α (HIF-1α) and autophagy are reported to be upregulated in the AD specimens. However, the interaction between HIF-1α and autophagy in the pathogenesis of AD remains to be explored. HIF-1α and LC3 levels are evaluated in 10 AD and 10 normal aortic specimens. MDC staining, autophagic vacuoles, and autophagic flux are detected in human aortic smooth muscle cells (HASMCs) under hypoxia treatment. CCK-8, transwell, and wound healing assay are used to identify proliferation and migration under hypoxia treatment. Furthermore, 3-MA is used to inhibit autophagy in hypoxia-treated HASMCs. This study reveals that AD tissues highly express HIF-1α and the LC3. Autophagy is induced under hypoxia in a time-dependent manner, and autophagy is positively related to HIF-1α in HASMCs. Moreover, the proliferation and migration of HASMCs are enhanced by hypoxia, whereas the knockdown of HIF-1α attenuates this effect. Additionally, inhibiting autophagy with 3-MA ameliorates hypoxia-induced proliferation and migration of HASMCs. In summary, the above results indicate that HIF-1α facilitates HASMC proliferation and migration by upregulating autophagy in a hypoxic microenvironment. Thus, inhibition of autophagy may be a novel therapeutic target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Ben Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Nan Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zhenhang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Jinqiang Shen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Hao Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| |
Collapse
|
179
|
Semenova NY, Zinserling VA, Artyukhina ZE, Marichev AO, Radovsky AM, Bautin AE. [Clinical, laboratory and morphological comparisons in cellular alteration under conditions of hypoxia]. Arkh Patol 2024; 86:42-52. [PMID: 39434526 DOI: 10.17116/patol20248605142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
OBJECTIVE To compare structural changes in tissues with clinical and laboratory parameters and immunohistochemical determination of proteins HIF1α, HIF2α, caspase-3 during cellular alteration under conditions of hypoxia in the liver and kidneys in an experiment on pigs. MATERIAL AND METHODS Laboratory parameters related to the state of gas exchange (decrease in partial pressure of arterial blood oxygen (PaO2), arterial blood saturation, lactate level, kidney function (creatinine, urea) and liver (ALT, AST, bilirubin) in 18 animals were analyzed in comparison with the results of a morphological study. Histological examination evaluated alterative and inflammatory tissue changes of varying severity, and also determined the expression of transcription factors HIF1α and HIF2α and a marker of apoptosis - caspase-3. The ratio between laboratory parameters and structural changes was assessed individually for each animal. RESULTS In the liver, a statistically significant dependence of the content of HIF2α protein in cells on the severity of dystrophic changes and serum lactate levels was revealed. A statistically significant correlation was shown between an increase in transaminase and bilirubin levels and the severity of alterative changes in liver tissue. However, there was no significant relationship between the number of caspase-3 positive cells and the severity of dystrophic changes. A statistically significant correlation was found between creatinine and urea levels and the severity of alterative changes in kidney tissues. With significant dystrophic changes, a statistically significant dependence of the expression of HIF2α and caspase-3 proteins and a very high correlation of caspase-3 - lactate indicators were revealed. CONCLUSION A significant correlation was shown between histological changes in tissues and clinical and laboratory parameters. Severe hypoxia with lactate accumulation directly affects the integrity and function of cells, which manifests itself in structural changes. Based on the results of a comparative study, it can be concluded that the assessment of alterative changes in liver and kidney tissues is important.
Collapse
Affiliation(s)
- N Yu Semenova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - V A Zinserling
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Z E Artyukhina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A O Marichev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A M Radovsky
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A E Bautin
- Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
180
|
Khakshour E, Bahreyni-Toossi MT, Anvari K, Shahram MA, Vaziri-Nezamdoust F, Azimian H. Evaluation of the effects of simulated hypoxia by CoCl 2 on radioresistance and change of hypoxia-inducible factors in human glioblastoma U87 tumor cell line. Mutat Res 2024; 828:111848. [PMID: 38154290 DOI: 10.1016/j.mrfmmm.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
PURPOSE Glioblastoma (GBM) is considered the most common and lethal type of brain tumor with a poor prognosis. GBM treatment has challenges due to its aggressive nature, which often causes treatment failure and recurrence. Hypoxia is one of the characteristics of glioblastoma tumors that contribute to radioresistance and malignant phenotypes of GBM. In this study, we aimed to determine the effects of hypoxia on the radiosensitivity of U87 GBM cells by the hypoxia-mimicking model. METHODS Following the treatment of cells with different concentrations of CoCl2, an MTT assay was used to evaluate the cytotoxicity of CoCl2. To understand the effects of Ionizing radiation on CoCl2-treated groups, cells were exposed to irradiation after pretreating with 100 μM CoCl2, and a clonogenic survival assay was performed to determine the radiosensitivity of U87 cells. Also, the intracellular Reactive oxygen level was measured by 2',7'-dichlorofluorescein diacetate (DCFDA) probe staining. Additionally, the expression of hypoxia-associated genes, including HIF-1α, HIF-2α, and their target genes (GLUT-1), was monitored by reverse transcription polymerase chain reaction (RT-PCR). RESULTS Our study revealed that the cell viability of CoCl2-treated cells was decreased in a concentration-dependent manner. Also, CoCl2 did not cause any cytotoxicity on U87 cells at a concentration of 100 μM after treatment for 24 h. Colony formation assay showed that CoCl2 pretreatment induced radioresistance of tumor cells compared to non-treated cells. Also, CoCl2 can protect cells against irradiation by the clearance of ROS. Moreover, Real-time results showed that the mRNA expression of HIF-1α and GLUT-1 were significantly upregulated following hypoxia induction and/or irradiation condition. However, the level of HIF-2α mRNA did not change significantly in hypoxia or irradiation alone conditions, but it increased significantly only in hypoxia + irradiation conditions. CONCLUSION Taken together, our results indicated that simulating hypoxia by CoCl2 can effectively increase hypoxia-associated genes, specially HIF-1α and GLUT-1, but did not affect HIF-2α gene expression. Also, it can increase the clearance of ROS, respectively, and it leads to inducing radioresistance of U87 cells.
Collapse
Affiliation(s)
- Elham Khakshour
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Bahreyni-Toossi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Shahram
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
181
|
Nakai A, Lee D, Shoda C, Negishi K, Nakashizuka H, Yamagami S, Kurihara T. Modulation of Hypoxia-Inducible Factors and Vascular Endothelial Growth Factor Expressions by Superfood Camu-Camu ( Myrciaria dubia) Treatment in ARPE-19 and Fetal Human RPE Cells. J Ophthalmol 2023; 2023:6617981. [PMID: 38187496 PMCID: PMC10771337 DOI: 10.1155/2023/6617981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Background Anti-vascular endothelial growth factor (anti-VEGF) therapy via intravitreal injection is an effective treatment for patients with abnormal ocular neovascularization, such as age-related macular degeneration (AMD) and diabetic macular edema (DME). However, prolonged and frequent anti-VEGF treatment is associated with a risk of local and systemic adverse events, including geographic atrophy, cerebrovascular disease, and death. Furthermore, some patients do not adequately respond to anti-VEGF therapy. Hypoxia-inducible factor (HIF) is a transcription factor that controls the expression of hypoxia-responsive genes involved in angiogenesis, inflammation, and metabolism. The HIF/VEGF pathway plays an important role in neovascularization, and the inhibition of HIF activation could be an effective biomolecular target for neovascular diseases. The demand for disease prevention or treatment using functional foods such as superfoods has increased in recent years. Few reports to date have focused on the antineovascular effects of superfoods in the retinal pigment epithelium (RPE). In light of the growing demand for functional foods, we aimed to find novel HIF inhibitors from superfoods worked in RPE cells, which could be an adjuvant for anti-VEGF therapy. Methods Seven superfoods were examined to identify novel HIF inhibitor candidates using luciferase assay screening. We used the human RPE cell line ARPE-19 and fetal human RPE (fhRPE) to investigate the biomolecular actions of novel HIF inhibitors using quantitative PCR and western blotting. Results Under CoCl2-induced pseudohypoxic condition and 1% oxygen hypoxic incubation, camu-camu (Myrciaria dubia) showed HIF inhibitory effects determined by luciferase assays. Camu-camu downregulated HIF-1α and VEGFA mRNA expressions in a concentration-dependent manner. Camu-camu also inhibited HIF-1α protein expressions, and its inhibitory effect was greater than that of vitamin C, which is present at high levels in camu-camu. Conclusion The camu-camu extract suppressed the activation of HIF and VEGF in RPE cells. This could assist anti-VEGF therapy in patients with abnormal ocular neovascularization.
Collapse
Affiliation(s)
- Ayaka Nakai
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuno Negishi
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | - Satoru Yamagami
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
182
|
Liu W, Liu T, Zhao Q, Ma J, Jiang J, Shi H. Adipose Tissue-Derived Extracellular Vesicles: A Promising Biomarker and Therapeutic Strategy for Metabolic Disorders. Stem Cells Int 2023; 2023:9517826. [PMID: 38169960 PMCID: PMC10761228 DOI: 10.1155/2023/9517826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Adipose tissue plays an important role in systemic energy metabolism, and its dysfunction can lead to severe metabolic disorders. Various cells in adipose tissue communicate with each other to maintain metabolic homeostasis. Extracellular vesicles (EVs) are recognized as novel medium for remote intercellular communication by transferring various bioactive molecules from parental cells to distant target cells. Increasing evidence suggests that the endocrine functions of adipose tissue and even the metabolic homeostasis are largely affected by different cell-derived EVs, such as insulin signaling, lipolysis, and metabolically triggered inflammation regulations. Here, we provide an overview focused on the role of EVs released by different cell types of adipose tissue in metabolic diseases and their possible molecular mechanisms and highlight the potential applications of EVs as biomarkers and therapeutic targets. Moreover, the current EVs-based therapeutic strategies have also been discussed. This trial is registered with NCT05475418.
Collapse
Affiliation(s)
- Wenhui Liu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Tianyan Liu
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Qingyu Zhao
- Department of Nephrology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Junqiu Ma
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
183
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
184
|
Li M, Li L, Cheng X, Li L, Tu K. Hypoxia promotes the growth and metastasis of ovarian cancer cells by suppressing ferroptosis via upregulating SLC2A12. Exp Cell Res 2023; 433:113851. [PMID: 37940066 DOI: 10.1016/j.yexcr.2023.113851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Ovarian cancer has been a worldwide health burden for women and its progression is highly hypoxia-independent. Here, we investigated the exact mechanisms by which hypoxia contributes to the malignant progression of ovarian cancer. METHOD MTT, transwell, colony formation, and scratch wound healing assays were carried out for cellular functions. The underlying mechanism by which hypoxia functions was explored by RNA-seq, enrichment analysis, western blotting, qRT-PCR, flow cytometry, ChIP, luciferase reporter, and ELISA. Finally, animal experiments including the xenograft model and tumor metastasis model were constructed to validate the role of SLC2A12 in vivo. RESULTS Hypoxia treatment promoted the cell proliferation, mobility, and colony growth abilities of the two ovarian cancer cell lines HO-8910 and A2780. RNA-seq and enrichment analysis showed that SLC2A12 was hyper-expressed under hypoxia condition and it may be related to glutathione and lipid metabolism. Besides, the expression of SLC2A12 was negatively correlated with overall survival. Hypoxia suppressed ferroptosis by SLC2A12 because silencing SLC2A12 declined the cell viability of HO-8910 and A2780 cells under hypoxia conditions, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) breached that result and upregulated the expression of glutathione peroxidase 4 (GPX4). Moreover, hypoxia increased the expression of hypoxia inducible factor 1 A (HIF-1A), and the accumulated HIF-1A binds to hypoxia inducible factor 1 B (HIF1B) to form HIF-1 complex, then promoted the binding of hypoxic response elements (HRE) to SLC2A12 promoter by HIF-1/HRE signal. Subsequently, SLC2A12 regulated glutathione metabolism and in turn inhibited ferroptosis. The animal experiments indicated that silencing SLC2A12 could significantly inhibit tumor growth and metastasis in vivo. CONCLUSION Hypoxia promoted ovarian cancer progression by upregulating SLC2A12 and then regulating glutathione metabolism to inhibit ferroptosis.
Collapse
Affiliation(s)
- Mingmei Li
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China
| | - Li Li
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China
| | - Xiaoxiao Cheng
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China
| | - Longyu Li
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China.
| | - Kaijia Tu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, No. 508 Xizhan Street, Nanchang, Jiangxi, China.
| |
Collapse
|
185
|
Murphy TE, Harris JC, Rees BB. Hypoxia-inducible factor 1 alpha protein increases without changes in mRNA during acute hypoxic exposure of the Gulf killifish, Fundulus grandis. Biol Open 2023; 12:bio060167. [PMID: 38116983 PMCID: PMC10805151 DOI: 10.1242/bio.060167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023] Open
Abstract
The hypoxia inducible factor 1 (HIF1) is a central regulator of the molecular responses of animals to low oxygen. While the hypoxia-responsiveness of HIF1 is generally attributed to the stabilization of the alpha protein subunit (HIF1α) at low oxygen, several studies on fish report increased tissue levels of HIF1A mRNA during hypoxia, suggesting transcriptional regulation. In the current study, HIF1α protein and HIF1A mRNA were determined in parallel in tissues of Gulf killifish, Fundulus grandis, exposed to short-term hypoxia (24 h at 1 mg O2 l-1). HIF1α protein was higher in brain, ovary, and skeletal muscle from fish exposed to hypoxia compared with normoxic controls by 6 h, and it remained elevated in brain and ovary at 24 h. In contrast, HIF1A mRNA levels were unaffected by hypoxia in any tissue. Moreover, HIF1α protein and HIF1A mRNA levels in the same tissues were not correlated with one another during either normoxia or hypoxia. Hence, an increase in HIF1α protein does not depend upon an increase in HIF1A mRNA during acute exposure to low oxygen in this species. The results support the widely accepted mechanism of post-translational protein stabilization, rather than new transcription, during the initial response of fish to hypoxia.
Collapse
Affiliation(s)
- Taylor E. Murphy
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| | - Jasmine C. Harris
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| | - Bernard B. Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| |
Collapse
|
186
|
Tanaka N, Okada H, Yamaguchi K, Seki M, Matsubara D, Gotoh N, Suzuki Y, Furukawa Y, Yamashita T, Inoue JI, Kaneko S, Sakamoto T. Mint3-depletion-induced energy stress sensitizes triple-negative breast cancer to chemotherapy via HSF1 inactivation. Cell Death Dis 2023; 14:815. [PMID: 38081808 PMCID: PMC10713533 DOI: 10.1038/s41419-023-06352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Given the lack of therapeutic targets, the conventional approach for managing triple-negative breast cancer (TNBC) involves the utilization of cytotoxic chemotherapeutic agents. However, most TNBCs acquire resistance to chemotherapy, thereby lowering the therapeutic outcome. In addition to oncogenic mutations in TNBC, microenvironment-induced mechanisms render chemoresistance more complex and robust in vivo. Here, we aimed to analyze whether depletion of Munc18-1 interacting protein 3 (Mint3), which activates hypoxia-inducible factor 1 (HIF-1) during normoxia, sensitizes TNBC to chemotherapy. We found that Mint3 promotes the chemoresistance of TNBC in vivo. Mint3 depletion did not affect the sensitivity of human TNBC cell lines to doxorubicin and paclitaxel in vitro but sensitized tumors of these cells to chemotherapy in vivo. Transcriptome analyses revealed that the Mint3-HIF-1 axis enhanced heat shock protein 70 (HSP70) expression in tumors of TNBC cells. Administering an HSP70 inhibitor enhanced the antitumor activity of doxorubicin in TNBC tumors, similar to Mint3 depletion. Mint3 expression was also correlated with HSP70 expression in human TNBC specimens. Mechanistically, Mint3 depletion induces glycolytic maladaptation to the tumor microenvironment in TNBC tumors, resulting in energy stress. This energy stress by Mint3 depletion inactivated heat shock factor 1 (HSF-1), the master regulator of HSP expression, via the AMP-activated protein kinase/mechanistic target of the rapamycin pathway following attenuated HSP70 expression. In conclusion, Mint3 is a unique regulator of TNBC chemoresistance in vivo via metabolic adaptation to the tumor microenvironment, and a combination of Mint3 inhibition and chemotherapy may be a good strategy for TNBC treatment.
Collapse
Affiliation(s)
- Noritaka Tanaka
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Hikari Okada
- Information-Based Medicine Development, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | | | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taro Yamashita
- Department of System Biology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Jun-Ichiro Inoue
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - Shuichi Kaneko
- Information-Based Medicine Development, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
- Department of System Biology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
187
|
Chen X, Haribowo AG, Baik AH, Fossati A, Stevenson E, Chen YR, Reyes NS, Peng T, Matthay MA, Traglia M, Pico AR, Jarosz DF, Buchwalter A, Ghaemmaghami S, Swaney DL, Jain IH. In vivo protein turnover rates in varying oxygen tensions nominate MYBBP1A as a mediator of the hyperoxia response. SCIENCE ADVANCES 2023; 9:eadj4884. [PMID: 38064566 PMCID: PMC10708181 DOI: 10.1126/sciadv.adj4884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator, particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.
Collapse
Affiliation(s)
- Xuewen Chen
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Augustinus G. Haribowo
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alan H. Baik
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Fossati
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Erica Stevenson
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Yiwen R. Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Nabora S. Reyes
- Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tien Peng
- Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Michela Traglia
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Alexander R. Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Danielle L. Swaney
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Isha H. Jain
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
188
|
Xu J, Tian Z, Li Z, Du X, Cui Y, Wang J, Gao M, Hou Y. Puerarin-Tanshinone IIA Suppresses atherosclerosis inflammatory plaque via targeting succinate/HIF-1α/IL-1β axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116675. [PMID: 37257708 DOI: 10.1016/j.jep.2023.116675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory injury is an important pathological factor for the formation of atherosclerotic plaque. It is well known that Puerarin and Tanshinone IIA (Pue-Tan) can significantly reduce interleukin-1β (IL-1β) levels and delay the atherosclerosis (AS) process clinically in China. Previous evidence has shown that the Succinate/HIF-1α/IL-1β inflammatory signaling axis (Succinate axis) promotes the progression of atherosclerotic inflammatory plaques. It is not clear whether Pue-Tan inhibits inflammatory plaques by reducing the level of IL-1β through the succinate signaling axis. AIM OF STUDY Find out the interaction between Pue-Tan targets and the succinate axis by means of network pharmacology and bioinformatics analysis and to further confirm whether Pue-Tan can inhibit vascular inflammation and delay the formation of atherosclerotic inflammatory plaques by targeting the succinate signaling axis. MATERIALS AND METHODS Firstly, animal experiments were conducted to verify the changing relationship between Succinate and IL-1β under Pue-Tan intervention. Secondly, network pharmacology approach was employed to uncover the specific targets of Pue-Tan in the intervention of AS from multiple levels of components, proteins, and pathways, and at the same time, the target must be a key factor of the succinate signaling axis. Autodock vina1.5.6 was applied to molecular docking for Pue-Tan and target protein. Subsequently, cells experiment and animal experiment were performed to verify Pue-Tan inhibiting the inflammatory progression of atherosclerosis by targeting succinate signaling axis. RESULTS Firstly, we first found that the reduction of IL-1β was positively correlated with succinate in the serum of Pue-Tan-treated mice. Secondly, network pharmacology compared with molecular docking showed that hypoxia-induced factor-1α (HIF-1α) was the key target of Pue-Tan and the key node of succinate singling axis. Finally, in vitro study, Pue-Tan significantly reduced the factors of succinate axis just as HIF-1α siRNA; in vivo study, we confirmed a decreased expression of succinate axis and ICAM-1 in the aorta of ApoE-/- mice under Pue-Tan intervention, which was consistent with the in vitro results. CONCLUSION This study confirmed that Pue-Tan blocked the succinate axis by targeting HIF-1α to prevent the formation of atherosclerotic inflammatory plaques and delay the pathological process of AS. Network Pharmacology, Bioinformatics of Molecular Docking, and Molecular Biology Validation can be used as a effective way to discover and verify the pharmacological mechanism of TCM.
Collapse
Affiliation(s)
- Jingwen Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenhua Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Xiaoshi Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yansong Cui
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiangrong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Mei Gao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
189
|
Chi W, Fu J, Martyniuk CJ, Wang J, Zhou L. Post-Subfunctionalization Functions of HIF-1αA and HIF-1αB in Cyprinid Fish: Fine-Tuning Mitophagy and Apoptosis Regulation Under Hypoxic Stress. J Mol Evol 2023; 91:780-792. [PMID: 37924420 DOI: 10.1007/s00239-023-10138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a crucial transcriptional factor that can restore oxygen balance in the body by regulating multiple vital activities. Two HIF-1α copies were retained in cyprinid fish after experiencing a teleost-specific genome duplication. How the "divergent collaboration" of HIF-1αA and HIF-1αB proceeds in regulating mitophagy and apoptosis under hypoxic stress in cells of cyprinid fish remains unclear. In this study, zebrafish HIF-1αA/B expression plasmids were constructed and transfected into the epithelioma papulosum cyprini cells and were subjected to hypoxic stress. HIF-1αA induced apoptosis through promoting ROS generation and mitochondrial depolarization when cells were subjected to oxygen deficiency. Conversely, HIF-1αB was primarily responsible for mitophagy induction, prompting ATP production to mitigate apoptosis. HIF-1αA did not induce mitophagy in the mitochondria and lysosomes co-localization assay but it was involved in the regulation of different mitophagy pathways. Over-expression of HIF-1αA increased the expression of bnip3, fundc1, Beclin1, and foxo3, suggesting it has a dual role in mitochondrial autophagy and cell death. Each duplicated copy also experienced functional divergence and target shifting in the regulation of complexes in the mitochondrial electron transport chain (ETC). Our findings shed light on the post-subfunctionalization function of HIF-1αA and HIF-1αB in zebrafish to fine-tune regulation of mitophagy and apoptosis following hypoxia exposure.
Collapse
Affiliation(s)
- Wei Chi
- School of Life Sciences, Huizhou University, Huizhou, 510607, China.
| | | | - Chris J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jiangyong Wang
- School of Life Sciences, Huizhou University, Huizhou, 510607, China
| | - Libin Zhou
- School of Life Sciences, Huizhou University, Huizhou, 510607, China
| |
Collapse
|
190
|
Golijanin B, Malshy K, Khaleel S, Lagos G, Amin A, Cheng L, Golijanin D, Mega A. Evolution of the HIF targeted therapy in clear cell renal cell carcinoma. Cancer Treat Rev 2023; 121:102645. [PMID: 37879247 DOI: 10.1016/j.ctrv.2023.102645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer, affecting hundreds of thousands of people worldwide and can affect people of any age. The pathogenesis of ccRCC is most commonly due to biallelic loss of the tumor suppressor gene VHL. VHL is the recognition subunit of an E3-ubiquitin-ligase-complex essential for degradation of the hypoxia-inducible factors (HIF) 1α and 2α. Dysfunctional degradation of HIF results in overaccumulation, which is particularly concerning with the HIF2α subunit. This leads to nuclear translocation, dimerization, and transactivation of numerous HIF-regulated genes responsible for cell survival and proliferation in ccRCC. FDA-approved therapies for RCC have primarily focused on targeting downstream effectors of HIF, then incorporated immunotherapeutics, and now, novel approaches are moving back to HIF with a focus on interfering with upstream targets. This review summarizes the role of HIF in the pathogenesis of ccRCC, novel HIF2α-focused therapeutic approaches, and opportunities for ccRCC treatment.
Collapse
Affiliation(s)
- Borivoj Golijanin
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States.
| | - Kamil Malshy
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Sari Khaleel
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Galina Lagos
- Lifespan Cancer Institute, Department of Hematology and Oncology, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Dragan Golijanin
- The Minimally Invasive Urology Institute at The Miriam Hospital, Division of Urology, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| | - Anthony Mega
- Lifespan Cancer Institute, Department of Hematology and Oncology, The Miriam Hospital, Lifespan Academic Medical Center, The Legorreta Cancer Center at Brown University, Warren Alpert Medical School of Brown University, Providence, RI 02906, United States
| |
Collapse
|
191
|
Zhu X, Liu X, Liu T, Ren X, Bai X. Sex differences in antioxidant ability and energy metabolism level resulting in the difference of hypoxia tolerance in red swamp crayfish (Procambarus clarkii). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101136. [PMID: 37683360 DOI: 10.1016/j.cbd.2023.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Sexual dimorphism widely exists in crustaceans. However, sex differences in the hypoxia tolerance of crayfish have rarely been reported. In this study, the differences in hypoxia tolerance between the two sexes of crayfish were assessed according to mortality, pathological features of hepatopancreas, antioxidant enzyme activity and differentially expressed genes (DEGs) analysis using transcriptome. The results showed that male crayfish displayed significantly higher mortality than the female under hypoxia stress (p < 0.05). Furthermore, female crayfish demonstrated higher levels of antioxidant enzyme activity. Hematoxylin-eosin staining analysis revealed that the damage of hepatopancreas was more severe in the male crayfish compared to the female crayfish. Additionally, there was higher expression level of the DEGs in hypoxia-inducible factor (HIF) pathway and higher energy metabolism level in the female compared to the male. Together, these findings suggest that the female crayfish with higher antioxidant ability and energy metabolism level exhibits stronger hypoxia tolerance than the male crayfish, providing the theoretical support for investigating sex differences in hypoxia tolerance among crustaceans.
Collapse
Affiliation(s)
- Xintao Zhu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuewei Liu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Liu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Ren
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
192
|
Rosell-Garcia T, Rivas-Muñoz S, Kin K, Romero-Albillo V, Alcaraz S, Fernandez-Tornero C, Rodriguez-Pascual F. Multimerization of HIF enhances transcription of target genes containing the hypoxia ancillary sequence. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194963. [PMID: 37499936 DOI: 10.1016/j.bbagrm.2023.194963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Transcriptional activity of the hypoxia inducible factor (HIF) relies on the formation of a heterodimer composed of an oxygen-regulated α-subunit and a stably expressed β-subunit. Heterodimeric HIF activates expression by binding to RCGTG motifs within promoters of hypoxia-activated genes. Some hypoxia targets also possess an adjacent HIF ancillary sequence (HAS) reported to increase transcription but whose function remains obscure. Here, we investigate the contribution of the HAS element to the hypoxia response and its mechanism of action, using the HAS-containing prolyl 4-hydroxylase subunit α1 (P4HA1) as a gene model in NIH/3T3 mouse embryonic fibroblasts and HEK293 human embryonic kidney cells. Our HIF overexpression experiments demonstrate that the HAS motif is essential for full induction by hypoxia and that the presence of the tandem HAS/HIF, as opposed to HIF-only sequences, provides HIF proteins with the capacity to form complexes of stoichiometry beyond the classical heterodimer, likely tetramers, to cooperatively potentiate hypoxia-induced transcription. We also provide evidence of the crucial role played by the Fα helix of the PAS-B domain of the HIF1β subunit to support the interaction between heterodimers. Functional analysis showed that human genes containing the HAS/HIF motifs are better responders to hypoxia, and their promoters are enriched for specific transcription factor binding sites. Gene ontology enrichment revealed a predominance of HAS/HIF in genes primarily related to tissue formation and development. Our findings add an extra level of regulation of the hypoxia/HIF signaling through multimerization of HIF proteins on regulatory elements containing the HAS/HIF motifs.
Collapse
Affiliation(s)
- Tamara Rosell-Garcia
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (C.S.I.C.)-Universidad Autónoma de Madrid (U.A.M.), Madrid, Spain
| | - Sergio Rivas-Muñoz
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (C.S.I.C.)-Universidad Autónoma de Madrid (U.A.M.), Madrid, Spain
| | - Koryu Kin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Verónica Romero-Albillo
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (C.S.I.C.)-Universidad Autónoma de Madrid (U.A.M.), Madrid, Spain
| | - Silvia Alcaraz
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (C.S.I.C.)-Universidad Autónoma de Madrid (U.A.M.), Madrid, Spain
| | | | - Fernando Rodriguez-Pascual
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (C.S.I.C.)-Universidad Autónoma de Madrid (U.A.M.), Madrid, Spain.
| |
Collapse
|
193
|
Lin S, Marvidou AM, Novak R, Moreinos D, Abbott PV, Rotstein I. Pathogenesis of non-infection related inflammatory root resorption in permanent teeth: A narrative review. Int Endod J 2023; 56:1432-1445. [PMID: 37712904 DOI: 10.1111/iej.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The mechanism of action of root resorption in a permanent tooth can be classified as infection-related (e.g., microbial infection) or non-infection-related (e.g., sterile damage). Infection induced root resorption occurs due to bacterial invasion. Non-infection-related root resorption stimulates the immune system through a different mechanism. OBJECTIVES The aim of this narrative review is to describe the pathophysiologic process of non-infection-related inflammatory processes involved in root resorption of permanent teeth. METHODS A literature search on root resorption was conducted using Scopus (PubMed and Medline) and Google Scholar databases to highlight the pathophysiology of bone and root resorption in non-infection-related situations. The search included key words covering the relevant category. It included in vitro and in vivo studies, systematic reviews, case series, reviews, and textbooks in English. Conference proceedings, lectures and letters to the editor were excluded. RESULTS Three types of root resorption are related to the non-infection mechanism of action, which includes surface resorption due to either trauma or excessive orthodontic forces, external replacement resorption and external cervical resorption. The triggers are usually damage associated molecular patterns and hypoxia conditions. During this phase macrophages and clastic cells act to eliminate the damaged tissue and bone, eventually enabling root resorption and bone repair as part of wound healing. DISCUSSION The resorption of the root occurs during the inflammatory phase of wound healing. In this phase, damaged tissues are recognized by macrophages and neutrophiles that secrete interlaukines such as TNF-α, IL-1, IL-6, IL-8. Together with the hypoxia condition that accelarates the secretion of growth factors, the repair of the damaged perioduntiom, including damaged bone, is initiated. If the precementum and cementoblast are injured, root resorption can occur. CONCLUSIONS Wound healing exhibits different patterns of action that involves immune stimulation in a bio-physiological activity, that occurs in the proper sequence, with overlapping phases. Two pathologic conditions, DAMPs and hypoxia, can activate the immune cells including clastic cells, eliminating damaged tissue and bone. Under certain conditions, root resorption occurs as a side effect.
Collapse
Affiliation(s)
- Shaul Lin
- The Israeli National Center for Trauma & Emergency Medicine Research, Gertner Institute, Tel Hashomer, Israel
- Department of Endodontics, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Athina M Marvidou
- Department of Endodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - Rostislav Novak
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Orthopedic Department, Orthopedic Oncology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Daniel Moreinos
- Endodontic Department, Galilee Medical Center, Nahariya, Israel
| | - Paul Vincent Abbott
- UWA Dental School, The University of Western Australia, Western Australia, Nedlands, Australia
| | - Ilan Rotstein
- University of Southern California, California, Los Angeles, USA
| |
Collapse
|
194
|
Xie L, He J, Mao J, Zhang Q, Bo H, Li L. The interplay between H19 and HIF-1α in mitochondrial dysfunction in myocardial infarction. Cell Signal 2023; 112:110919. [PMID: 37848100 DOI: 10.1016/j.cellsig.2023.110919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Myocardial infarction(MI) causes prolonged ischemia of infarcted myocardial tissue, which triggers a wide range of hypoxia cellular responses in cardiomyocytes. Emerging evidence has indicated the critical roles of long non-coding RNAs(lncRNAs) in cardiovascular diseases, including MI. The purpose of this study was to investigate the roles of lncRNA H19 and H19/HIF-1α pathway during MI. Results showed that cell injury and mitochondrial dysfunction were induced in hypoxia-treated H9c2 cells, accompanied by an increase in the expression of H19. H19 silencing remarkably diminishes cell injury, inhibits the dysfunctional degree of mitochondria, and decreases the injury of MI rats. Bioinformatics analysis and dual-luciferase assays revealed that H19 was the hypoxia-responsive lncRNA, and HIF-1α induced H19 transcription through direct binding to the H19 promoter. Moreover, H19 participates in the HIF-1α pathway by stabilizing the HIF-1α protein. These results indicated that H19 might be a potential biomarker and therapeutic target for myocardial infarction.
Collapse
Affiliation(s)
- Luhan Xie
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiabei He
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jun Mao
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hongchen Bo
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
195
|
Chen Z, Chen C, Xiao L, Tu R, Yu M, Wang D, Kang W, Han M, Huang H, Liu H, Zhao B, Qing G. HILPS, a long noncoding RNA essential for global oxygen sensing in humans. SCIENCE ADVANCES 2023; 9:eadi1867. [PMID: 37992175 PMCID: PMC10664984 DOI: 10.1126/sciadv.adi1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Adaptation to low levels of oxygen (hypoxia) is a universal biological feature across metazoans. However, the unique mechanisms how different species sense oxygen deprivation remain unresolved. Here, we functionally characterize a novel long noncoding RNA (lncRNA), LOC105369301, which we termed hypoxia-induced lncRNA for polo-like kinase 1 (PLK1) stabilization (HILPS). HILPS exhibits appreciable basal expression exclusively in a wide variety of human normal and cancer cells and is robustly induced by hypoxia-inducible factor 1α (HIF1α). HILPS binds to PLK1 and sequesters it from proteasomal degradation. Stabilized PLK1 directly phosphorylates HIF1α and enhances its stability, constituting a positive feed-forward circuit that reinforces oxygen sensing by HIF1α. HILPS depletion triggers catastrophic adaptation defect during hypoxia in both normal and cancer cells. These findings introduce a mechanism that underlies the HIF1α identity deeply interconnected with PLK1 integrity and identify the HILPS-PLK1-HIF1α pathway as a unique oxygen-sensing axis in the regulation of human physiological and pathogenic processes.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Chan Chen
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Lei Xiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Rongfu Tu
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Miaomiao Yu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Donghai Wang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Wenqian Kang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Meng Han
- Protein Chemistry and Proteomics Facility, Tsinghua University Technology Center for Protein Research, Beijing 100084, China
| | - Hao Huang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Hudan Liu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guoliang Qing
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
196
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
197
|
Pal C. Small-molecule redox modulators with anticancer activity: A comprehensive mechanistic update. Free Radic Biol Med 2023; 209:211-227. [PMID: 37898387 DOI: 10.1016/j.freeradbiomed.2023.10.406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pursuit of effective anticancer therapies has led to a burgeoning interest in the realm of redox modulation. This review provides a comprehensive exploration of the intricate mechanisms by which diverse anticancer molecules leverage redox pathways for therapeutic intervention. Redox modulation, encompassing the fine balance of oxidation-reduction processes within cells, has emerged as a pivotal player in cancer treatment. This review delves into the multifaceted mechanisms of action employed by various anticancer compounds, including small molecules and natural products, to disrupt cancer cell proliferation and survival. Beginning with an examination of the role of redox signaling in cancer development and resistance, the review highlights how aberrant redox dynamics can fuel tumorigenesis. It then meticulously dissects the strategies employed by anticancer agents to induce oxidative stress, perturb redox equilibrium, and trigger apoptosis within cancer cells. Furthermore, the review explores the challenges and potential side effects associated with redox-based treatments, along with the development of novel redox-targeted agents. In summary, this review offers a profound understanding of the dynamic interplay between redox modulation and anticancer molecules, presenting promising avenues to revolutionize cancer therapy and enhance patient outcomes.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
198
|
Li C, Yang D, Yang W, Wang Y, Li D, Li Y, Xiao B, Zhang H, Zhao H, Dong H, Zhang J, Chu G, Wang A, Jin Y, Liu Y, Chen H. Hypoxia activation attenuates progesterone synthesis in goat trophoblast cells via NR1D1 inhibition of StAR expression†. Biol Reprod 2023; 109:720-735. [PMID: 37552055 DOI: 10.1093/biolre/ioad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023] Open
Abstract
Trophoblast plays a crucial role in gestation maintenance and embryo implantation, partly due to the synthesis of progesterone. It has been demonstrated that hypoxia regulates invasion, proliferation, and differentiation of trophoblast cells. Additionally, human trophoblasts display rhythmic expression of circadian clock genes. However, it remains unclear if the circadian clock system is present in goat trophoblast cells (GTCs), and its involvement in hypoxia regulation of steroid hormone synthesis remains elusive. In this study, immunofluorescence staining revealed that both BMAL1 and NR1D1 (two circadian clock components) were highly expressed in GTCs. Quantitative real-time PCR analysis showed that several circadian clock genes were rhythmically expressed in forskolin-synchronized GTCs. To mimic hypoxia, GTCs were treated with hypoxia-inducing reagents (CoCl2 or DMOG). Quantitative real-time PCR results demonstrated that hypoxia perturbed the mRNA expression of circadian clock genes and StAR. Notably, the increased expression of NR1D1 and the reduction of StAR expression in hypoxic GTCs were also detected by western blotting. In addition, progesterone secretion exhibited a notable decline in hypoxic GTCs. SR9009, an NR1D1 agonist, significantly decreased StAR expression at both the mRNA and protein levels and markedly inhibited progesterone secretion in GTCs. Moreover, SR8278, an NR1D1 antagonist, partially reversed the inhibitory effect of CoCl2 on mRNA and protein expression levels of StAR and progesterone synthesis in GTCs. Our results demonstrate that hypoxia reduces StAR expression via the activation of NR1D1 signaling in GTCs, thus inhibiting progesterone synthesis. These findings provide new insights into the NR1D1 regulation of progesterone synthesis in GTCs under hypoxic conditions.
Collapse
Affiliation(s)
- Chao Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanghao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiqun Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yating Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Bonan Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiyan Chu
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Genetics Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingqiu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
199
|
Hunt LC, Pagala V, Stephan A, Xie B, Kodali K, Kavdia K, Wang YD, Shirinifard A, Curley M, Graca FA, Fu Y, Poudel S, Li Y, Wang X, Tan H, Peng J, Demontis F. An adaptive stress response that confers cellular resilience to decreased ubiquitination. Nat Commun 2023; 14:7348. [PMID: 37963875 PMCID: PMC10646096 DOI: 10.1038/s41467-023-43262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Department of Biology, Rhodes College, 2000 North Pkwy, Memphis, TN, 38112, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
200
|
Jiang Y, Liu L, Deng YX, Zhang J, Ye AH, Ye FL, He BC. MMP13 promotes the osteogenic potential of BMP9 by enhancing Wnt/β-catenin signaling via HIF-1α upregulation in mouse embryonic fibroblasts. Int J Biochem Cell Biol 2023; 164:106476. [PMID: 37802385 DOI: 10.1016/j.biocel.2023.106476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Bone morphogenetic protein 9 (BMP9) has been validated as one of the most potent osteoinduction factors, but its underlying mechanism remains unclear. As a member of the matrix metalloproteinase (MMP) family, MMP13 may be involved in regulating the lineage-specific differentiation of mouse embryonic fibroblasts (MEFs). The goal of this study was to determine whether MMP13 regulates the osteoinduction potential of BMP9 in MEFs, which are multipotent progenitor cells widely used for stem cell biology research. In vitro and in vivo experiments showed that BMP9-induced osteogenic markers and/or bone were enhanced by exogenous MMP13 in MEFs, but were reduced by MMP13 knockdown or inhibition. The expression of hypoxia inducible factor 1 alpha (HIF-1α) was induced by BMP9, which was enhanced by MMP13. The protein expression of β-catenin and phosphorylation level of glycogen synthase kinase-3 beta (GSK-3β) were increased by BMP9 in MEFs, as was the translocation of β-catenin from the cytoplasm to the nucleus; all these effects of BMP9 were enhanced by MMP13. Furthermore, the MMP13 effects of increasing BMP9-induced β-catenin protein expression and GSK-3β phosphorylation level were partially reversed by HIF-1α knockdown. These results suggest that MMP13 can enhance the osteoinduction potential of BMP9, which may be mediated, at least in part, through the HIF-1α/β-catenin axis. Our findings demonstrate a novel role of MMP13 in the lineage decision of progenitor cells and provide a promising strategy to speed up bone regeneration.
Collapse
Affiliation(s)
- Yue Jiang
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lu Liu
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yi-Xuan Deng
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jie Zhang
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ai-Hua Ye
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fang-Lin Ye
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Bai-Cheng He
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|