151
|
Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3-GENES GENOMES GENETICS 2014; 4:1339-46. [PMID: 24855317 PMCID: PMC4455782 DOI: 10.1534/g3.114.011825] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbial communities consist of mixed populations of organisms, including unknown species in unknown abundances. These communities are often studied through metagenomic shotgun sequencing, but standard library construction methods remove long-range contiguity information; thus, shotgun sequencing and de novo assembly of a metagenome typically yield a collection of contigs that cannot readily be grouped by species. Methods for generating chromatin-level contact probability maps, e.g., as generated by the Hi-C method, provide a signal of contiguity that is completely intracellular and contains both intrachromosomal and interchromosomal information. Here, we demonstrate how this signal can be exploited to reconstruct the individual genomes of microbial species present within a mixed sample. We apply this approach to two synthetic metagenome samples, successfully clustering the genome content of fungal, bacterial, and archaeal species with more than 99% agreement with published reference genomes. We also show that the Hi-C signal can secondarily be used to create scaffolded genome assemblies of individual eukaryotic species present within the microbial community, with higher levels of contiguity than some of the species’ published reference genomes.
Collapse
|
152
|
Nicodemi M, Pombo A. Models of chromosome structure. Curr Opin Cell Biol 2014; 28:90-5. [PMID: 24804566 DOI: 10.1016/j.ceb.2014.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
Understanding the mechanisms that control chromosome folding in the nucleus of eukaryotes and their contribution to gene regulation is a key open issue in molecular biology. Microscopy and chromatin-capture techniques have shown that chromatin has a complex organization, which dynamically changes across organisms and cell types. The need to make sense of such a fascinating complexity has prompted the development of quantitative models from physics, to find the principles of chromosome folding, its origin and function. Here, we concisely review recent advances in chromosome modeling, focusing on a recently proposed framework, the Strings & Binders Switch (SBS) model, which recapitulates key features of chromosome organization in space and time.
Collapse
Affiliation(s)
- Mario Nicodemi
- Universita' di Napoli "Federico II", Dipartimento di Fisica, INFN Sezione di Napoli, CNR-SPIN, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin-Buch, Germany.
| |
Collapse
|
153
|
Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J, Vert JP, Noble WS, Le Roch KG. Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res 2014; 24:974-88. [PMID: 24671853 PMCID: PMC4032861 DOI: 10.1101/gr.169417.113] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of the human malaria parasite Plasmodium falciparum is controlled by coordinated changes in gene expression throughout its complex life cycle, but the corresponding regulatory mechanisms are incompletely understood. To study the relationship between genome architecture and gene regulation in Plasmodium, we assayed the genome architecture of P. falciparum at three time points during its erythrocytic (asexual) cycle. Using chromosome conformation capture coupled with next-generation sequencing technology (Hi-C), we obtained high-resolution chromosomal contact maps, which we then used to construct a consensus three-dimensional genome structure for each time point. We observed strong clustering of centromeres, telomeres, ribosomal DNA, and virulence genes, resulting in a complex architecture that cannot be explained by a simple volume exclusion model. Internal virulence gene clusters exhibit domain-like structures in contact maps, suggesting that they play an important role in the genome architecture. Midway during the erythrocytic cycle, at the highly transcriptionally active trophozoite stage, the genome adopts a more open chromatin structure with increased chromosomal intermingling. In addition, we observed reduced expression of genes located in spatial proximity to the repressive subtelomeric center, and colocalization of distinct groups of parasite-specific genes with coordinated expression profiles. Overall, our results are indicative of a strong association between the P. falciparum spatial genome organization and gene expression. Understanding the molecular processes involved in genome conformation dynamics could contribute to the discovery of novel antimalarial strategies.
Collapse
Affiliation(s)
- Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Evelien M Bunnik
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | - Nelle Varoquaux
- Centre for Computational Biology, Mines ParisTech, Fontainebleau F-77300, France; Institut Curie, Paris F-75248, France; U900, INSERM, Paris F-75248, France
| | - Sebastiaan M Bol
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | - Jean-Philippe Vert
- Centre for Computational Biology, Mines ParisTech, Fontainebleau F-77300, France; Institut Curie, Paris F-75248, France; U900, INSERM, Paris F-75248, France
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| |
Collapse
|
154
|
Computational Models of Large-Scale Genome Architecture. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:275-349. [DOI: 10.1016/b978-0-12-800046-5.00009-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
155
|
Muskhelishvili G, Travers A. Integration of syntactic and semantic properties of the DNA code reveals chromosomes as thermodynamic machines converting energy into information. Cell Mol Life Sci 2013; 70:4555-67. [PMID: 23771629 PMCID: PMC11113758 DOI: 10.1007/s00018-013-1394-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 11/29/2022]
Abstract
Understanding genetic regulation is a problem of fundamental importance. Recent studies have made it increasingly evident that, whereas the cellular genetic regulation system embodies multiple disparate elements engaged in numerous interactions, the central issue is the genuine function of the DNA molecule as information carrier. Compelling evidence suggests that the DNA, in addition to the digital information of the linear genetic code (the semantics), encodes equally important continuous, or analog, information that specifies the structural dynamics and configuration (the syntax) of the polymer. These two DNA information types are intrinsically coupled in the primary sequence organisation, and this coupling is directly relevant to regulation of the genetic function. In this review, we emphasise the critical need of holistic integration of the DNA information as a prerequisite for understanding the organisational complexity of the genetic regulation system.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany,
| | | |
Collapse
|
156
|
Jin DJ, Cagliero C, Zhou YN. Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Chem Rev 2013; 113:8662-82. [PMID: 23941620 PMCID: PMC3830623 DOI: 10.1021/cr4001429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Yan Ning Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
157
|
Le TB, Imakaev MV, Mirny LA, Laub MT. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 2013; 342:731-4. [PMID: 24158908 PMCID: PMC3927313 DOI: 10.1126/science.1242059] [Citation(s) in RCA: 431] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chromosomes must be highly compacted and organized within cells, but how this is achieved in vivo remains poorly understood. We report the use of chromosome conformation capture coupled with deep sequencing (Hi-C) to map the structure of bacterial chromosomes. Analysis of Hi-C data and polymer modeling indicates that the Caulobacter crescentus chromosome consists of multiple, largely independent spatial domains that are probably composed of supercoiled plectonemes arrayed into a bottle brush-like fiber. These domains are stable throughout the cell cycle and are reestablished concomitantly with DNA replication. We provide evidence that domain boundaries are established by highly expressed genes and the formation of plectoneme-free regions, whereas the histone-like protein HU and SMC (structural maintenance of chromosomes) promote short-range compaction and the colinearity of chromosomal arms, respectively. Collectively, our results reveal general principles for the organization and structure of chromosomes in vivo.
Collapse
Affiliation(s)
- Tung B.K. Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maxim V. Imakaev
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leonid A. Mirny
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T. Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
158
|
Saha RP, Lou Z, Meng L, Harshey RM. Transposable prophage Mu is organized as a stable chromosomal domain of E. coli. PLoS Genet 2013; 9:e1003902. [PMID: 24244182 PMCID: PMC3820752 DOI: 10.1371/journal.pgen.1003902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022] Open
Abstract
The E. coli chromosome is compacted by segregation into 400–500 supercoiled domains by both active and passive mechanisms, for example, transcription and DNA-protein association. We find that prophage Mu is organized as a stable domain bounded by the proximal location of Mu termini L and R, which are 37 kbp apart on the Mu genome. Formation/maintenance of the Mu ‘domain’ configuration, reported by Cre-loxP recombination and 3C (chromosome conformation capture), is dependent on a strong gyrase site (SGS) at the center of Mu, the Mu L end and MuB protein, and the E. coli nucleoid proteins IHF, Fis and HU. The Mu domain was observed at two different chromosomal locations tested. By contrast, prophage λ does not form an independent domain. The establishment/maintenance of the Mu domain was promoted by low-level transcription from two phage promoters, one of which was domain dependent. We propose that the domain confers transposition readiness to Mu by fostering topological requirements of the reaction and the proximity of Mu ends. The potential benefits to the host cell from a subset of proteins expressed by the prophage may in turn help its long-term stability. A majority of sequenced bacterial genomes harbor prophage sequences. Some prophages are viable, while others have decayed from accumulating mutations and genome rearrangements. Prophages, including defective ones, can contribute important biological properties such as antibiotic resistance, toxins, and serum resistance that increase the survival and ecological range of their hosts. We show in this study that the 37 kbp transposable prophage Mu exists in a unique configuration we call the ‘Mu domain’, where its two ends are paired, segregating the Mu sequences from those of the host chromosome. This is the largest stable chromosomal domain in E. coli mapped to date. The Mu domain configuration promotes low-level transcription from an early prophage promoter, which controls the expression of several genes, not all essential for phage growth. Some non-essential genes include DNA repair functions. We suggest that the Mu domain provides long-term survival benefits to both the prophage and the host: to the prophage in bestowing transposition-ready topological properties unique to the Mu reaction, and to the host in contributing extraneous DNA housekeeping functions.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Zheng Lou
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Luke Meng
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Rasika M. Harshey
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
159
|
Junier I, Boccard F, Espéli O. Polymer modeling of the E. coli genome reveals the involvement of locus positioning and macrodomain structuring for the control of chromosome conformation and segregation. Nucleic Acids Res 2013; 42:1461-73. [PMID: 24194594 PMCID: PMC3919569 DOI: 10.1093/nar/gkt1005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that control chromosome conformation and segregation in bacteria have not yet been elucidated. In Escherichia coli, the mere presence of an active process remains an open question. Here, we investigate the conformation and segregation pattern of the E. coli genome by performing numerical simulations on a polymer model of the chromosome. We analyze the roles of the intrinsic structuring of chromosomes and the forced localization of specific loci, which are observed in vivo. Specifically, we examine the segregation pattern of a chromosome that is divided into four structured macrodomains (MDs) and two non-structured regions. We find that strong osmotic-like organizational forces, which stem from the differential condensation levels of the chromosome regions, dictate the cellular disposition of the chromosome. Strikingly, the comparison of our in silico results with fluorescent imaging of the chromosome choreography in vivo reveals that in the presence of MDs the targeting of the origin and terminus regions to specific positions are sufficient to generate a segregation pattern that is indistinguishable from experimentally observed patterns.
Collapse
Affiliation(s)
- Ivan Junier
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain, CGM-CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France and CIRB - Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
160
|
O'Sullivan JM, Hendy MD, Pichugina T, Wake GC, Langowski J. The statistical-mechanics of chromosome conformation capture. Nucleus 2013; 4:390-8. [PMID: 24051548 PMCID: PMC3899129 DOI: 10.4161/nucl.26513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Since Jacob and Monod’s characterization of the role of DNA elements in gene control, it has been recognized that the linear organization of genome structure is important for the regulation of gene transcription and hence the manifestation of phenotypes. Similarly, it has long been hypothesized that the spatial organization (in three dimensions evolving through time), as part of the epigenome, makes a significant contribution to the genotype-phenotype transition. Proximity ligation assays commonly known as chromosome conformation capture (3C) and 3C based methodologies (e.g., GCC, HiC, and ChIA-Pet) are increasingly being incorporated into empirical studies to investigate the role that three-dimensional genome structure plays in the regulation of phenotype. The apparent simplicity of these methodologies—crosslink chromatin, digest, dilute, ligate, detect interactions—belies the complexity of the data and the considerations that should be taken into account to ensure the generation and accurate interpretation of reliable data. Here we discuss the probabilistic nature of these methodologies and how this contributes to their endogenous limitations.
Collapse
Affiliation(s)
- Justin M O'Sullivan
- Liggins Institute; University of Auckland; Auckland, New Zealand; Mathematics and Statistics; University of Otago; Dunedin, New Zealand; Institute of Natural and Mathematical Sciences; Massey University; Auckland, New Zealand; Deutsches Krebsforschungszentrum; Biophysics of Macromolecules; Heidelberg, Germany
| | | | | | | | | |
Collapse
|
161
|
Abstract
How much information is encoded in the DNA sequence of an organism? We argue that the informational, mechanical and topological properties of DNA are interdependent and act together to specify the primary characteristics of genetic organization and chromatin structures. Superhelicity generated in vivo, in part by the action of DNA translocases, can be transmitted to topologically sensitive regions encoded by less stable DNA sequences.
Collapse
|
162
|
Topoisomerase I (TopA) is recruited to ParB complexes and is required for proper chromosome organization during Streptomyces coelicolor sporulation. J Bacteriol 2013; 195:4445-55. [PMID: 23913317 DOI: 10.1128/jb.00798-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptomyces species are bacteria that resemble filamentous fungi in their hyphal mode of growth and sporulation. In Streptomyces coelicolor, the conversion of multigenomic aerial hyphae into chains of unigenomic spores requires synchronized septation accompanied by segregation of tens of chromosomes into prespore compartments. The chromosome segregation is dependent on ParB protein, which assembles into an array of nucleoprotein complexes in the aerial hyphae. Here, we report that nucleoprotein ParB complexes are bound in vitro and in vivo by topoisomerase I, TopA, which is the only topoisomerase I homolog found in S. coelicolor. TopA cannot be eliminated, and its depletion inhibits growth and blocks sporulation. Surprisingly, sporulation in the TopA-depleted strain could be partially restored by deletion of parB. Furthermore, the formation of regularly spaced ParB complexes, which is a prerequisite for proper chromosome segregation and septation during the development of aerial hyphae, has been found to depend on TopA. We hypothesize that TopA is recruited to ParB complexes during sporulation, and its activity is required to resolve segregating chromosomes.
Collapse
|
163
|
Hensel Z, Weng X, Lagda AC, Xiao J. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells. PLoS Biol 2013; 11:e1001591. [PMID: 23853547 PMCID: PMC3708714 DOI: 10.1371/journal.pbio.1001591] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 05/09/2013] [Indexed: 11/19/2022] Open
Abstract
DNA looping mediated by transcription factors plays critical roles in prokaryotic gene regulation. The "genetic switch" of bacteriophage λ determines whether a prophage stays incorporated in the E. coli chromosome or enters the lytic cycle of phage propagation and cell lysis. Past studies have shown that long-range DNA interactions between the operator sequences O(R) and O(L) (separated by 2.3 kb), mediated by the λ repressor CI (accession number P03034), play key roles in regulating the λ switch. In vitro, it was demonstrated that DNA segments harboring the operator sequences formed loops in the presence of CI, but CI-mediated DNA looping has not been directly visualized in vivo, hindering a deep understanding of the corresponding dynamics in realistic cellular environments. We report a high-resolution, single-molecule imaging method to probe CI-mediated DNA looping in live E. coli cells. We labeled two DNA loci with differently colored fluorescent fusion proteins and tracked their separations in real time with ∼40 nm accuracy, enabling the first direct analysis of transcription-factor-mediated DNA looping in live cells. Combining looping measurements with measurements of CI expression levels in different operator mutants, we show quantitatively that DNA looping activates transcription and enhances repression. Further, we estimated the upper bound of the rate of conformational change from the unlooped to the looped state, and discuss how chromosome compaction may impact looping kinetics. Our results provide insights into transcription-factor-mediated DNA looping in a variety of operator and CI mutant backgrounds in vivo, and our methodology can be applied to a broad range of questions regarding chromosome conformations in prokaryotes and higher organisms.
Collapse
Affiliation(s)
- Zach Hensel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arvin Cesar Lagda
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
164
|
Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 2013; 14:390-403. [PMID: 23657480 DOI: 10.1038/nrg3454] [Citation(s) in RCA: 773] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How DNA is organized in three dimensions inside the cell nucleus and how this affects the ways in which cells access, read and interpret genetic information are among the longest standing questions in cell biology. Using newly developed molecular, genomic and computational approaches based on the chromosome conformation capture technology (such as 3C, 4C, 5C and Hi-C), the spatial organization of genomes is being explored at unprecedented resolution. Interpreting the increasingly large chromatin interaction data sets is now posing novel challenges. Here we describe several types of statistical and computational approaches that have recently been developed to analyse chromatin interaction data.
Collapse
|
165
|
Gibcus JH, Dekker J. The hierarchy of the 3D genome. Mol Cell 2013; 49:773-82. [PMID: 23473598 DOI: 10.1016/j.molcel.2013.02.011] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/17/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Mammalian genomes encode genetic information in their linear sequence, but appropriate expression of their genes requires chromosomes to fold into complex three-dimensional structures. Transcriptional control involves the establishment of physical connections among genes and regulatory elements, both along and between chromosomes. Recent technological innovations in probing the folding of chromosomes are providing new insights into the spatial organization of genomes and its role in gene regulation. It is emerging that folding of large complex chromosomes involves a hierarchy of structures, from chromatin loops that connect genes and enhancers to larger chromosomal domains and nuclear compartments. The larger these structures are along this hierarchy, the more stable they are within cells, while becoming more stochastic between cells. Here, we review the experimental and theoretical data on this hierarchy of structures and propose a key role for the recently discovered topologically associating domains.
Collapse
Affiliation(s)
- Johan H Gibcus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
| | | |
Collapse
|
166
|
Abstract
The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.
Collapse
|
167
|
Cagliero C, Grand RS, Jones MB, Jin DJ, O'Sullivan JM. Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res 2013; 41:6058-71. [PMID: 23632166 PMCID: PMC3695519 DOI: 10.1093/nar/gkt325] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To fit within the confines of the cell, bacterial chromosomes are highly condensed into a structure called the nucleoid. Despite the high degree of compaction in the nucleoid, the genome remains accessible to essential biological processes, such as replication and transcription. Here, we present the first high-resolution chromosome conformation capture-based molecular analysis of the spatial organization of the Escherichia coli nucleoid during rapid growth in rich medium and following an induced amino acid starvation that promotes the stringent response. Our analyses identify the presence of origin and terminus domains in exponentially growing cells. Moreover, we observe an increased number of interactions within the origin domain and significant clustering of SeqA-binding sequences, suggesting a role for SeqA in clustering of newly replicated chromosomes. By contrast, ‘histone-like’ protein (i.e. Fis, IHF and H-NS) -binding sites did not cluster, and their role in global nucleoid organization does not manifest through the mediation of chromosomal contacts. Finally, genes that were downregulated after induction of the stringent response were spatially clustered, indicating that transcription in E. coli occurs at transcription foci.
Collapse
Affiliation(s)
- Cedric Cagliero
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
168
|
Fisher JK, Bourniquel A, Witz G, Weiner B, Prentiss M, Kleckner N. Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 2013; 153:882-95. [PMID: 23623305 DOI: 10.1016/j.cell.2013.04.006] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/06/2013] [Accepted: 03/27/2013] [Indexed: 11/30/2022]
Abstract
Visualization of living E. coli nucleoids, defined by HupA-mCherry, reveals a discrete, dynamic helical ellipsoid. Three basic features emerge. (1) Nucleoid density coalesces into longitudinal bundles, giving a stiff, low-DNA-density ellipsoid. (2) This ellipsoid is radially confined within the cell cylinder. Radial confinement gives helical shape and directs global nucleoid dynamics, including sister segregation. (3) Longitudinal density waves flux back and forth along the nucleoid, with 5%-10% of density shifting within 5 s, enhancing internal nucleoid mobility. Furthermore, sisters separate end-to-end in sequential discontinuous pulses, each elongating the nucleoid by 5%-15%. Pulses occur at 20 min intervals, at defined cell-cycle times. This progression includes sequential installation and release of programmed tethers, implying cyclic accumulation and relief of intranucleoid mechanical stress. These effects could comprise a chromosome-based cell-cycle engine. Overall, the presented results suggest a general conceptual framework for bacterial nucleoid morphogenesis and dynamics.
Collapse
Affiliation(s)
- Jay K Fisher
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
169
|
Genome architecture and global gene regulation in bacteria: making progress towards a unified model? Nat Rev Microbiol 2013; 11:349-55. [DOI: 10.1038/nrmicro3007] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
170
|
Duggal G, Patro R, Sefer E, Wang H, Filippova D, Khuller S, Kingsford C. Resolving spatial inconsistencies in chromosome conformation measurements. Algorithms Mol Biol 2013; 8:8. [PMID: 23497444 PMCID: PMC3655033 DOI: 10.1186/1748-7188-8-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/06/2013] [Indexed: 01/02/2023] Open
Abstract
Background Chromosome structure is closely related to its function and Chromosome Conformation Capture (3C) is a widely used technique for exploring spatial properties of chromosomes. 3C interaction frequencies are usually associated with spatial distances. However, the raw data from 3C experiments is an aggregation of interactions from many cells, and the spatial distances of any given interaction are uncertain. Results We introduce a new method for filtering 3C interactions that selects subsets of interactions that obey metric constraints of various strictness. We demonstrate that, although the problem is computationally hard, near-optimal results are often attainable in practice using well-designed heuristics and approximation algorithms. Further, we show that, compared with a standard technique, this metric filtering approach leads to (a) subgraphs with higher statistical significance, (b) lower embedding error, (c) lower sensitivity to initial conditions of the embedding algorithm, and (d) structures with better agreement with light microscopy measurements. Our filtering scheme is applicable for a strict frequency-to-distance mapping and a more relaxed mapping from frequency to a range of distances. Conclusions Our filtering method for 3C data considers both metric consistency and statistical confidence simultaneously resulting in lower-error embeddings that are biologically more plausible.
Collapse
|
171
|
Hensel Z, Xiao J. Single-molecule methods for studying gene regulation in vivo. Pflugers Arch 2013; 465:383-95. [PMID: 23430319 PMCID: PMC3595547 DOI: 10.1007/s00424-013-1243-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 01/25/2023]
Abstract
The recent emergence of new experimental tools employing sensitive fluorescence detection in vivo has made it possible to visualize various aspects of gene regulation at the single-molecule level in the native, intracellular context. In this review, we will first describe general considerations for in vivo, single-molecule fluorescence detection of DNA, mRNA, and protein molecules involved in gene regulation. We will then give an overview of the rapidly evolving suite of molecular tools available for observing gene regulation in vivo and discuss new insights they have brought into gene regulation.
Collapse
Affiliation(s)
- Zach Hensel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
| | | |
Collapse
|
172
|
Wang X, Montero Llopis P, Rudner DZ. Organization and segregation of bacterial chromosomes. Nat Rev Genet 2013; 14:191-203. [PMID: 23400100 DOI: 10.1038/nrg3375] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial chromosome must be compacted more than 1,000-fold to fit into the compartment in which it resides. How it is condensed, organized and ultimately segregated has been a puzzle for over half a century. Recent advances in live-cell imaging and genome-scale analyses have led to new insights into these problems. We argue that the key feature of compaction is the orderly folding of DNA along adjacent segments and that this organization provides easy and efficient access for protein-DNA transactions and has a central role in driving segregation. Similar principles and common proteins are used in eukaryotes to condense and to resolve sister chromatids at metaphase.
Collapse
Affiliation(s)
- Xindan Wang
- Harvard Medical School, Department of Microbiology and Immunobiology, HIM 1025, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
173
|
Cellular organization of the transfer of genetic information. Curr Opin Microbiol 2013; 16:171-6. [PMID: 23395479 DOI: 10.1016/j.mib.2013.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/22/2022]
Abstract
Each step involved in the transfer of genetic information is spatially regulated in eukaryotic cells, as transcription, translation and mRNA degradation mostly occur in distinct functional compartments (e.g., nucleus, cytoplasm and P-bodies). At first glance in bacteria, these processes seem to take place in the same compartment - the cytoplasm - because of the conspicuous absence of membrane-enclosed organelles. However, it is becoming increasingly evident that mRNA-related processes are also spatially organized inside bacterial cells, and that this organization affects cellular function. The aims of this review are to summarize the current knowledge about this organization and to consider the mechanisms and forces shaping the cell interior. The field stands at an exciting point where new technologies are making long-standing questions amenable to experimentation.
Collapse
|
174
|
Abstract
Under dilute in vitro conditions transcription factors rapidly locate their target sequence on DNA by using the facilitated diffusion mechanism. However, whether this strategy of alternating between three-dimensional bulk diffusion and one-dimensional sliding along the DNA contour is still beneficial in the crowded interior of cells is highly disputed. Here we use a simple model for the bacterial genome inside the cell and present a semi-analytical model for the in vivo target search of transcription factors within the facilitated diffusion framework. Without having to resort to extensive simulations we determine the mean search time of a lac repressor in a living E. coli cell by including parameters deduced from experimental measurements. The results agree very well with experimental findings, and thus the facilitated diffusion picture emerges as a quantitative approach to gene regulation in living bacteria cells. Furthermore we see that the search time is not very sensitive to the parameters characterizing the DNA configuration and that the cell seems to operate very close to optimal conditions for target localization. Local searches as implied by the colocalization mechanism are only found to mildly accelerate the mean search time within our model.
Collapse
Affiliation(s)
- Maximilian Bauer
- Institute of Physics and Astronomy, Potsdam University, Potsdam-Golm, Germany
- Physics Department, Technical University of Munich, Garching, Germany
| | - Ralf Metzler
- Institute of Physics and Astronomy, Potsdam University, Potsdam-Golm, Germany
- Physics Department, Tampere University of Technology, Tampere, Finland
- * E-mail:
| |
Collapse
|
175
|
Marcellin E, Mercer TR, Licona-Cassani C, Palfreyman RW, Dinger ME, Steen JA, Mattick JS, Nielsen LK. Saccharopolyspora erythraea's genome is organised in high-order transcriptional regions mediated by targeted degradation at the metabolic switch. BMC Genomics 2013; 14:15. [PMID: 23324121 PMCID: PMC3610266 DOI: 10.1186/1471-2164-14-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/20/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Actinobacteria form a major bacterial phylum that includes numerous human pathogens. Actinobacteria are primary contributors to carbon cycling and also represent a primary source of industrial high value products such as antibiotics and biopesticides. Consistent with other members of the actinobacterial phylum, Saccharopolyspora erythraea undergo a transitional switch. This switch is characterized by numerous metabolic and morphological changes. RESULTS We performed RNA sequencing to analyze the transcriptional changes that occur during growth of Saccharopolyspora erythraea in batch culture. By sequencing RNA across the fermentation time course, at a mean coverage of 4000X, we found the vast majority of genes to be prominently expressed, showing that we attained close to saturating sequencing coverage of the transcriptome. During the metabolic switch, global changes in gene expression influence the metabolic machinery of Saccharopolyspora erythraea, resetting an entirely novel gene expression program. After the switch, global changes include the broad repression of half the genes regulated by complex transcriptional mechanisms. Paralogous transposon clusters, delineate these transcriptional programs. The new transcriptional program is orchestrated by a bottleneck event during which mRNA levels are severely restricted by targeted mRNA degradation. CONCLUSIONS Our results, which attained close to saturating sequencing coverage of the transcriptome, revealed unanticipated transcriptional complexity with almost one third of transcriptional content originating from un-annotated sequences. We showed that the metabolic switch is a sophisticated mechanism of transcriptional regulation capable of resetting and re-synchronizing gene expression programs at extraordinary speed and scale.
Collapse
Affiliation(s)
- Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Transcriptional regulation is at the heart of biological functions such as adaptation to a changing environment or to new carbon sources. One of the mechanisms which has been found to modulate transcription, either positively (activation) or negatively (repression), involves the formation of DNA loops. A DNA loop occurs when a protein or a complex of proteins simultaneously binds to two different sites on DNA with looping out of the intervening DNA. This simple mechanism is central to the regulation of several operons in the genome of the bacterium Escherichia coli, like the lac operon, one of the paradigms of genetic regulation. The aim of this review is to gather and discuss concepts and ideas from experimental biology and theoretical physics concerning DNA looping in genetic regulation. We first describe experimental techniques designed to show the formation of a DNA loop. We then present the benefits that can or could be derived from a mechanism involving DNA looping. Some of these are already experimentally proven, but others are theoretical predictions and merit experimental investigation. Then, we try to identify other genetic systems that could be regulated by a DNA looping mechanism in the genome of Escherichia coli. We found many operons that, according to our set of criteria, have a good chance to be regulated with a DNA loop. Finally, we discuss the proposition recently made by both biologists and physicists that this mechanism could also act at the genomic scale and play a crucial role in the spatial organization of genomes.
Collapse
|
177
|
Cao Y, Xie J, Liu B, Han L, Che S. Synthesis and characterization of multi-helical DNA–silica fibers. Chem Commun (Camb) 2013; 49:1097-9. [DOI: 10.1039/c2cc37470f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
178
|
Qian S, Dean R, Urban VS, Chaudhuri BN. The internal organization of mycobacterial partition assembly: does the DNA wrap a protein core? PLoS One 2012; 7:e52690. [PMID: 23285150 PMCID: PMC3527565 DOI: 10.1371/journal.pone.0052690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022] Open
Abstract
Before cell division in many bacteria, the ParBs spread on a large segment of DNA encompassing the origin-proximal parS site(s) to form the partition assembly that participates in chromosome segregation. Little is known about the structural organization of chromosomal partition assembly. We report solution X-ray and neutron scattering data characterizing the size parameters and internal organization of a nucleoprotein assembly formed by the mycobacterial chromosomal ParB and a 120-meric DNA containing a parS-encompassing region from the mycobacterial genome. The cross-sectional radii of gyration and linear mass density describing the rod-like ParB-DNA assembly were determined from solution scattering. A "DNA outside, protein inside" mode of partition assembly organization consistent with the neutron scattering hydrogen/deuterium contrast variation data is discussed. In this organization, the high scattering DNA is positioned towards the outer region of the partition assembly. The new results presented here provide a basis for understanding how ParBs organize the parS-proximal chromosome, thus setting the stage for further interactions with the DNA condensins, the origin tethering factors and the ParA.
Collapse
Affiliation(s)
- Shuo Qian
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Rebecca Dean
- Hauptman Woodward Institute, Buffalo, New York, United States of America
| | - Volker S. Urban
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Barnali N. Chaudhuri
- Hauptman Woodward Institute, Buffalo, New York, United States of America
- Department of Structural Biology, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
179
|
Ptacin JL, Shapiro L. Chromosome architecture is a key element of bacterial cellular organization. Cell Microbiol 2012; 15:45-52. [PMID: 23078580 DOI: 10.1111/cmi.12049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022]
Abstract
The bacterial chromosome encodes information at multiple levels. Beyond direct protein coding, genomes encode regulatory information required to orchestrate the proper timing and levels of gene expression and protein synthesis, and contain binding sites and regulatory sequences to co-ordinate the activities of proteins involved in chromosome repair and maintenance. In addition, it is becoming increasingly clear that yet another level of information is encoded by the bacterial chromosome - the three-dimensional packaging of the chromosomal DNA molecule itself and its positioning relative to the cell. This vast structural blueprint of specific positional information is manifested in various ways, directing chromosome compaction, accessibility, attachment to the cell envelope, supercoiling, and general architecture and arrangement of the chromosome relative to the cell body. Recent studies have begun to identify and characterize novel systems that utilize the three-dimensional spatial information encoded by chromosomal architecture to co-ordinate and direct fundamental cellular processes within the cytoplasm, providing large-scale order within the complex clutter of the cytoplasmic compartment.
Collapse
Affiliation(s)
- Jerod L Ptacin
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
180
|
|
181
|
Studying genomic processes at the single-molecule level: introducing the tools and applications. Nat Rev Genet 2012; 14:9-22. [DOI: 10.1038/nrg3316] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
182
|
Le Chat L, Espéli O. Let's get 'Fisical' with bacterial nucleoid. Mol Microbiol 2012; 86:1285-90. [PMID: 23078263 DOI: 10.1111/mmi.12073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2012] [Indexed: 01/01/2023]
Abstract
The mechanisms driving bacterial chromosome segregation remain poorly characterized. While a number of factors influencing chromosome segregation have been described in recent years, none of them appeared to play an essential role in the process comparable to the eukaryotic centromere/spindle complex. The research community involved in bacterial chromosome was becoming familiar with the fact that bacteria have selected multiple redundant systems to ensure correct chromosome segregation. Over the past few years a new perspective came out that entropic forces generated by the confinement of the chromosome in the crowded nucleoid shell could be sufficient to segregate the chromosome. The segregating factors would only be required to create adequate conditions for entropy to do its job. In the article by Yazdi et al. (2012) in this issue of Molecular Microbiology, this model was challenged experimentally in live Escherichia coli cells. A Fis-GFP fusion was used to follow nucleoid choreography and analyse it from a polymer physics perspective. Their results suggest strongly that E. coli nucleoids behave as self-adherent polymers. Such a structuring and the specific segregation patterns observed do not support an entropic like segregation model. Are we back to the pre-entropic era?
Collapse
Affiliation(s)
- Ludovic Le Chat
- Centre de Génétique Moléculaire, CGM, CNRS, UPR3404, Université Paris, Sud. 1 Avenue de la terrasse, 91198 Gif sur Yvette, France
| | | |
Collapse
|
183
|
Abstract
Condensins are multisubunit protein complexes that play a fundamental role in the structural and functional organization of chromosomes in the three domains of life. Most eukaryotic species have two different types of condensin complexes, known as condensins I and II, that fulfill nonoverlapping functions and are subjected to differential regulation during mitosis and meiosis. Recent studies revealed that the two complexes contribute to a wide variety of interphase chromosome functions, such as gene regulation, recombination, and repair. Also emerging are their cell type- and tissue-specific functions and relevance to human disease. Biochemical and structural analyses of eukaryotic and bacterial condensins steadily uncover the mechanisms of action of this class of highly sophisticated molecular machines. Future studies on condensins will not only enhance our understanding of chromosome architecture and dynamics, but also help address a previously underappreciated yet profound set of questions in chromosome biology.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
184
|
Dame RT, Espéli O, Grainger DC, Wiggins PA. Multidisciplinary perspectives on bacterial genome organization and dynamics. Mol Microbiol 2012; 86:1023-30. [DOI: 10.1111/mmi.12055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Olivier Espéli
- CNRS; Centre de Génétique Moléculaire; Gif-sur-yvette Cedex; France
| | - David C. Grainger
- School of Biosciences; University of Birmingham; Edgbaston; Birmingham; B15 2TT; UK
| | - Paul A. Wiggins
- Department of Physics; University of Washington; Seattle; WA; USA
| |
Collapse
|
185
|
Graph rigidity reveals well-constrained regions of chromosome conformation embeddings. BMC Bioinformatics 2012; 13:241. [PMID: 22998471 PMCID: PMC3577487 DOI: 10.1186/1471-2105-13-241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosome conformation capture experiments result in pairwise proximity measurements between chromosome locations in a genome, and they have been used to construct three-dimensional models of genomic regions, chromosomes, and entire genomes. These models can be used to understand long-range gene regulation, chromosome rearrangements, and the relationships between sequence and spatial location. However, it is unclear whether these pairwise distance constraints provide sufficient information to embed chromatin in three dimensions. A priori, it is possible that an infinite number of embeddings are consistent with the measurements due to a lack of constraints between some regions. It is therefore necessary to separate regions of the chromatin structure that are sufficiently constrained from regions with measurements that do not provide enough information to reconstruct the embedding. RESULTS We present a new method based on graph rigidity to assess the suitability of experiments for constructing plausible three-dimensional models of chromatin structure. Underlying this analysis is a new, efficient, and accurate algorithm for finding sufficiently constrained (rigid) collections of constraints in three dimensions, a problem for which there is no known efficient algorithm. Applying the method to four recent chromosome conformation experiments, we find that, for even stringently filtered constraints, a large rigid component spans most of the measured region. Filtering highlights higher-confidence regions, and we find that the organization of these regions depends crucially on short-range interactions. CONCLUSIONS Without performing an embedding or creating a frequency-to-distance mapping, our proposed approach establishes which substructures are supported by a sufficient framework of interactions. It also establishes that interactions from recent highly filtered genome-wide chromosome conformation experiments provide an adequate set of constraints for embedding. Pre-processing experimentally observed interactions with this method before relating chromatin structure to biological phenomena will ensure that hypothesized correlations are not driven by the arbitrary choice of a particular unconstrained embedding. The software for identifying rigid components is GPL-Licensed and available for download at http://cbcb.umd.edu/kingsford-group/starfish.
Collapse
|
186
|
Tavita K, Mikkel K, Tark-Dame M, Jerabek H, Teras R, Sidorenko J, Tegova R, Tover A, Dame RT, Kivisaar M. Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target. Mutat Res 2012; 737:12-24. [PMID: 22917545 DOI: 10.1016/j.mrfmmm.2012.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
Homologous recombination (HR) has a major impact in bacterial evolution. Most of the knowledge about the mechanisms and control of HR in bacteria has been obtained in fast growing bacteria. However, in their natural environment bacteria frequently meet adverse conditions which restrict the growth of cells. We have constructed a test system to investigate HR between a plasmid and a chromosome in carbon-starved populations of the soil bacterium Pseudomonas putida restoring the expression of phenol monooxygenase gene pheA. Our results show that prolonged starvation of P. putida in the presence of phenol stimulates HR. The emergence of recombinants on selective plates containing phenol as an only carbon source for the growth of recombinants is facilitated by reactive oxygen species and suppressed by DNA mismatch repair enzymes. Importantly, the chromosomal location of the HR target influences the frequency and dynamics of HR events. In silico analysis of binding sites of nucleoid-associated proteins (NAPs) revealed that chromosomal DNA regions which flank the test system in bacteria exhibiting a lower HR frequency are enriched in binding sites for a subset of NAPs compared to those which express a higher frequency of HR. We hypothesize that the binding of these proteins imposes differences in local structural organization of the genome that could affect the accessibility of the chromosomal DNA to HR processes and thereby the frequency of HR.
Collapse
Affiliation(s)
- Kairi Tavita
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
In dividing cells, chromosome duplication once per generation must be coordinated with faithful segregation of newly replicated chromosomes and with cell growth and division. Many of the mechanistic details of bacterial replication elongation are well established. However, an understanding of the complexities of how replication initiation is controlled and coordinated with other cellular processes is emerging only slowly. In contrast to eukaryotes, in which replication and segregation are separate in time, the segregation of most newly replicated bacterial genetic loci occurs sequentially soon after replication. We compare the strategies used by chromosomes and plasmids to ensure their accurate duplication and segregation and discuss how these processes are coordinated spatially and temporally with growth and cell division. We also describe what is known about the three conserved families of ATP-binding proteins that contribute to chromosome segregation and discuss their inter-relationships in a range of disparate bacteria.
Collapse
|
188
|
Jackson D, Wang X, Rudner DZ. Spatio-temporal organization of replication in bacteria and eukaryotes (nucleoids and nuclei). Cold Spring Harb Perspect Biol 2012; 4:a010389. [PMID: 22855726 DOI: 10.1101/cshperspect.a010389] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we discuss the spatio-temporal organization of replication in eubacteria and eukaryotes. Although there are significant differences in how replication is organized in cells that contain nuclei from those that do not, you will see that organization of replication in all organisms is principally dictated by the structured arrangement of the chromosome. We will begin with how replication is organized in eubacteria with particular emphasis on three well studied model organisms. We will then discuss spatial and temporal organization of replication in eukaryotes highlighting the similarities and differences between these two domains of life.
Collapse
Affiliation(s)
- Dean Jackson
- University of Manchester, Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
189
|
Finan K, Torella JP, Kapanidis AN, Cook PR. T7 RNA polymerase functions in vitro without clustering. PLoS One 2012; 7:e40207. [PMID: 22768341 PMCID: PMC3388079 DOI: 10.1371/journal.pone.0040207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/06/2012] [Indexed: 11/18/2022] Open
Abstract
Many nucleic acid polymerases function in clusters known as factories. We investigate whether the RNA polymerase (RNAP) of phage T7 also clusters when active. Using ‘pulldowns’ and fluorescence correlation spectroscopy we find that elongation complexes do not interact in vitro with a Kd<1 µM. Chromosome conformation capture also reveals that genes located 100 kb apart on the E. coli chromosome do not associate more frequently when transcribed by T7 RNAP. We conclude that if clustering does occur in vivo, it must be driven by weak interactions, or mediated by a phage-encoded protein.
Collapse
Affiliation(s)
- Kieran Finan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Joseph P. Torella
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Achillefs N. Kapanidis
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Peter R. Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
190
|
Chromosome conformation capture assays in bacteria. Methods 2012; 58:212-20. [PMID: 22776362 DOI: 10.1016/j.ymeth.2012.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 01/17/2023] Open
Abstract
Bacterial chromosomes must be compacted by three-orders of magnitude to fit within the cell. While such compaction could in theory yield disordered structures, it is becoming increasingly clear that bacterial chromosomes are in fact arranged in regular and reproducible fashions and that their configurations are tightly connected to fundamental processes such as chromosome segregation. Nonetheless, due to throughput and resolution limitations associated with traditional assays, many question regarding bacterial chromosome structure and its relation to genome function remain. Here, I review the related technologies, chromosome conformation capture (3C) and chromosome conformation capture carbon copy (5C), which my collaborators and I recently introduced as tools to probe the high-resolution folding of entire bacterial genomes. These technologies utilize covalent cross-linking and proximity ligation to facilitate the measurement of the spatial positioning of hundreds of genomic loci, thereby opening the door to high-throughput studies of bacterial chromosome structure. Hence, 3C and 5C represent powerful new tools for assaying the three-dimensional architecture of bacterial genomes.
Collapse
|
191
|
Ross BC, Wiggins PA. Measuring chromosome conformation with degenerate labels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:011918. [PMID: 23005463 DOI: 10.1103/physreve.86.011918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/18/2012] [Indexed: 06/01/2023]
Abstract
Although DNA conformation plays an integral role in all genetic processes from transcription to chromosome segregation, there is as yet no tractable method for capturing the in vivo conformation of a chromosome at high resolution. Labeling and fluorescently imaging thousands of loci along the chromosome would readily yield a conformation if each locus could be uniquely distinguished in the image, but this would unrealistically require thousands of distinguishable labels and a tedious experimental process. Here we present a computational method for extracting conformations when the total number of labels far exceeds the number of distinguishable labels. We evaluate our technique using simulated conformations with lengths ranging from 10 to 100 kilobases, and discuss the prospects for an experiment.
Collapse
Affiliation(s)
- Brian C Ross
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
192
|
Benza VG, Bassetti B, Dorfman KD, Scolari VF, Bromek K, Cicuta P, Lagomarsino MC. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:076602. [PMID: 22790781 DOI: 10.1088/0034-4885/75/7/076602] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.
Collapse
Affiliation(s)
- Vincenzo G Benza
- Dipartimento di Fisica e Matematica, Università dell'Insubria, Como, Italy
| | | | | | | | | | | | | |
Collapse
|
193
|
The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication. J Bacteriol 2012; 194:4669-76. [PMID: 22753058 DOI: 10.1128/jb.00957-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes function ubiquitously in organizing and maintaining chromosomes. Functional fluorescent derivatives of the Escherichia coli SMC complex, MukBEF, form foci that associate with the replication origin region (ori). MukBEF impairment results in mispositioning of ori and other loci in steady-state cells. These observations led to an earlier proposal that MukBEF positions new replicated sister oris. We show here that MukBEF generates and maintains the cellular positioning of chromosome loci independently of DNA replication. Rapid impairment of MukBEF function by depleting a Muk component in the absence of DNA replication leads to loss of MukBEF foci as well as mispositioning of ori and other loci, while rapid Muk synthesis leads to rapid MukBEF focus formation but slow restoration of normal chromosomal locus positioning.
Collapse
|
194
|
Hövel I, Louwers M, Stam M. 3C Technologies in plants. Methods 2012; 58:204-11. [PMID: 22728034 DOI: 10.1016/j.ymeth.2012.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022] Open
Abstract
Chromosome conformation capture (3C) and 3C-based technology have revolutionized studies on chromosomal interactions and their role in gene regulation and chromosome organization. 3C allows the in vivo identification of physical interactions between chromosomal regions. Such interactions are shown to play a role in various aspects of gene regulation, for example transcriptional activation of genes by remote enhancer sequences, or the silencing by Polycomb-group complexes. The last few years the number of publications involving chromosomal interactions increased significantly. Until now, however, the vast majority of the studies reported are performed in yeast or animal systems. So far, studies on plant systems are extremely limited, possibly due to the plant-specific characteristics that hamper the implementation of the 3C technique. In this paper we provide a plant-specific 3C protocol, optimized for maize tissue, and an extensive discussion on (i) plant-specific adjustments to the protocol, and (ii) solutions to problems that may arise when optimizing the protocol for the tissue or plant of interest. Together, this paper should facilitate the application of 3C technology to plant tissue and stimulate studies on the 3D conformation of chromosomal regions and chromosomes in plants.
Collapse
Affiliation(s)
- Iris Hövel
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
195
|
Membrane protein expression triggers chromosomal locus repositioning in bacteria. Proc Natl Acad Sci U S A 2012; 109:7445-50. [PMID: 22529375 DOI: 10.1073/pnas.1109479109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has long been hypothesized that subcellular positioning of chromosomal loci in bacteria may be influenced by gene function and expression state. Here we provide direct evidence that membrane protein expression affects the position of chromosomal loci in Escherichia coli. For two different membrane proteins, we observed a dramatic shift of their genetic loci toward the membrane upon induction. In related systems in which a cytoplasmic protein was produced, or translation was eliminated by mutating the start codon, a shift was not observed. Antibiotics that block transcription and translation similarly prevented locus repositioning toward the membrane. We also found that repositioning is relatively rapid and can be detected at positions that are a considerable distance on the chromosome from the gene encoding the membrane protein (>90 kb). Given that membrane protein-encoding genes are distributed throughout the chromosome, their expression may be an important mechanism for maintaining the bacterial chromosome in an expanded and dynamic state.
Collapse
|
196
|
Affiliation(s)
- Ofir Hakim
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
197
|
Baù D, Marti-Renom MA. Genome structure determination via 3C-based data integration by the Integrative Modeling Platform. Methods 2012; 58:300-6. [PMID: 22522224 DOI: 10.1016/j.ymeth.2012.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 11/26/2022] Open
Abstract
The three-dimensional (3D) architecture of a genome determines the spatial localization of regulatory elements and the genes they regulate. Thus, elucidating the 3D structure of a genome may result in significant insights about how genes are regulated. The current state-of-the art in experimental methods, including light microscopy and cell/molecular biology, are now able to provide detailed information on the position of genes and their interacting partners. However, such methods by themselves are not able to determine the high-resolution 3D structure of genomes or genomic domains. Here we describe a computational module of the Integrative Modeling Platform (IMP, http://www.integrativemodeling.org) that uses chromosome conformation capture data to determine the 3D architecture of genomic domains and entire genomes at unprecedented resolutions. This approach, through the visualization of looping interactions between distal regulatory elements, allows characterizing global chromatin features and their relation to gene expression. We illustrate our work by outlining the determination of the 3D architecture of the α-globin domain in the human genome.
Collapse
Affiliation(s)
- Davide Baù
- Structural Genomics Team, Genome Biology Group, National Center for Genomic Analysis-CNAG, Barcelona, Spain
| | | |
Collapse
|
198
|
Kim J, Yu J. Interrogating genomic and epigenomic data to understand prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1825:186-96. [PMID: 22240201 PMCID: PMC3307852 DOI: 10.1016/j.bbcan.2011.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/23/2011] [Accepted: 12/25/2011] [Indexed: 12/31/2022]
Abstract
Major breakthroughs at the beginning of this century in high-throughput technologies have profoundly transformed biological research. Significant knowledge has been gained regarding our biological system and its disease such as malignant transformation. In this review, we summarize leading discoveries in prostate cancer research derived from the use of high-throughput approaches powered by microarrays and massively parallel next-generation sequencing (NGS). These include the seminal discovery of chromosomal translocations such as TMPRSS2-ERG gene fusions as well as the identification of critical oncogenes exemplified by the polycomb group protein EZH2. We then demonstrate the power of interrogating genomic and epigenomic data in understanding the plethora of mechanisms of transcriptional regulation. As an example, we review how androgen receptor (AR) binding events are mediated at multiple levels through protein-DNA interaction, histone and DNA modifications, as well as high-order chromatin structural changes.
Collapse
Affiliation(s)
- Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
199
|
Affiliation(s)
- Guilhem Chalancon
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Kai Kruse
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
200
|
Fudenberg G, Mirny LA. Higher-order chromatin structure: bridging physics and biology. Curr Opin Genet Dev 2012; 22:115-24. [PMID: 22360992 DOI: 10.1016/j.gde.2012.01.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 12/11/2022]
Abstract
Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization.
Collapse
Affiliation(s)
- Geoffrey Fudenberg
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, United States
| | | |
Collapse
|