151
|
Mackeh R, Perdiz D, Lorin S, Codogno P, Poüs C. Autophagy and microtubules - new story, old players. J Cell Sci 2013; 126:1071-80. [PMID: 23620510 DOI: 10.1242/jcs.115626] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Both at a basal level and after induction (especially in response to nutrient starvation), the function of autophagy is to allow cells to degrade and recycle damaged organelles, proteins and other biological constituents. Here, we focus on the role microtubules have in autophagosome formation, autophagosome transport across the cytoplasm and in the formation of autolysosomes. Recent insights into the exact relationship between autophagy and microtubules now point to the importance of microtubule dynamics, tubulin post-translational modifications and microtubule motors in the autophagy process. Such factors regulate signaling pathways that converge to stimulate autophagosome formation. They also orchestrate the movements of pre-autophagosomal structures and autophagosomes or more globally organize and localize immature and mature autophagosomes and lysosomes. Most of the factors that now appear to link microtubules to autophagosome formation or to autophagosome dynamics and fate were identified initially without the notion that sequestration, recruitment and/or interaction with microtubules contribute to their function. Spatial and temporal coordination of many stages in the life of autophagosomes thus underlines the integrative role of microtubules and progressively reveals hidden parts of the autophagy machinery.
Collapse
Affiliation(s)
- Rafah Mackeh
- UPRES EA4530, Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
152
|
Affiliation(s)
- Monica Delgado
- Chronic Obstructive Pulmonary Disease Program; Lovelace Respiratory Research Institute; Albuquerque, NM USA
| | | |
Collapse
|
153
|
Wirth M, Joachim J, Tooze SA. Autophagosome formation--the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol 2013; 23:301-9. [PMID: 23727157 DOI: 10.1016/j.semcancer.2013.05.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/01/2013] [Accepted: 05/21/2013] [Indexed: 12/18/2022]
Abstract
Autophagy is a conserved and highly regulated degradative membrane trafficking pathway, maintaining energy homeostasis and protein synthesis during nutrient stress. Our understanding of how the autophagy machinery is regulated has expanded greatly over recent years. The ULK and Beclin1-PI3KC3 complexes are key signaling complexes required for autophagosome formation. The nutrient and energy sensors mTORC1 and AMPK signal directly to the ULK complex and affect its activity. Formation and activation of distinct Beclin1-PI3KC3 complexes produces PI3P, a signaling lipid required for the recruitment of autophagy effectors. In this review we discuss how the mammalian ULK1 and Beclin1 complexes are controlled by post-translational modifications and protein-protein interactions and we highlight data linking these complexes together.
Collapse
Affiliation(s)
- Martina Wirth
- London Research Institute, Cancer Research UK, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | | | | |
Collapse
|
154
|
Lorin S, Hamaï A, Mehrpour M, Codogno P. Autophagy regulation and its role in cancer. Semin Cancer Biol 2013; 23:361-79. [DOI: 10.1016/j.semcancer.2013.06.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/11/2022]
|
155
|
Mofarrahi M, Guo Y, Haspel JA, Choi AMK, Davis EC, Gouspillou G, Hepple RT, Godin R, Burelle Y, Hussain SNA. Autophagic flux and oxidative capacity of skeletal muscles during acute starvation. Autophagy 2013; 9:1604-20. [PMID: 23955121 DOI: 10.4161/auto.25955] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Autophagy is an important proteolytic pathway in skeletal muscles. The roles of muscle fiber type composition and oxidative capacity remain unknown in relation to autophagy. The diaphragm (DIA) is a fast-twitch muscle fiber with high oxidative capacity, the tibialis anterior (TA) muscle is a fast-twitch muscle fiber with low oxidative capacity, and the soleus muscle (SOL) is a slow-twitch muscle with high oxidative capacity. We hypothesized that oxidative capacity is a major determinant of autophagy in skeletal muscles. Following acute (24 h) starvation of adult C57/Bl6 mice, each muscle was assessed for autophagy and compared with controls. Autophagy was measured by monitoring autophagic flux following leupeptin (20 mg/kg) or colchicine (0.4 mg/kg/day) injection. Oxidative capacity was measured by monitoring citrate synthase activity. In control mice, autophagic flux values were significantly greater in the TA than in the DIA and SOL. In acutely starved mice, autophagic flux increased, most markedly in the TA, and several key autophagy-related genes were significantly induced. In both control and starved mice, there was a negative linear correlation of autophagic flux with citrate synthase activity. Starvation significantly induced AMPK phosphorylation and inhibited AKT and RPS6KB1 phosphorylation, again most markedly in the TA. Starvation induced Foxo1, Foxo3, and Foxo4 expression and attenuated the phosphorylation of their gene products. We conclude that both basal and starvation-induced autophagic flux are greater in skeletal muscles with low oxidative capacity as compared with those with high oxidative capacity and that this difference is mediated through selective activation of the AMPK pathway and inhibition of the AKT-MTOR pathways.
Collapse
Affiliation(s)
- Mahroo Mofarrahi
- Department of Critical Care Medicine; McGill University Health Centre and Meakins-Christie Laboratories; Department of Medicine; McGill University; Montréal, Québec, Canada
| | - Yeting Guo
- Department of Critical Care Medicine; McGill University Health Centre and Meakins-Christie Laboratories; Department of Medicine; McGill University; Montréal, Québec, Canada
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine; Department of Medicine; Brigham and Women's Hospital; Boston, MA USA
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine; Department of Medicine; Brigham and Women's Hospital; Boston, MA USA
| | - Elaine C Davis
- Department of Anatomy and Cell Biology; McGill University; Montréal, Québec, Canada
| | - Gilles Gouspillou
- Department of Critical Care Medicine; McGill University Health Centre and Meakins-Christie Laboratories; Department of Medicine; McGill University; Montréal, Québec, Canada
| | - Russell T Hepple
- Department of Critical Care Medicine; McGill University Health Centre and Meakins-Christie Laboratories; Department of Medicine; McGill University; Montréal, Québec, Canada
| | - Richard Godin
- Faculty of Pharmacy; Université de Montréal; Montréal, Québec, Canada
| | - Yan Burelle
- Faculty of Pharmacy; Université de Montréal; Montréal, Québec, Canada
| | - Sabah N A Hussain
- Department of Critical Care Medicine; McGill University Health Centre and Meakins-Christie Laboratories; Department of Medicine; McGill University; Montréal, Québec, Canada
| |
Collapse
|
156
|
Zheng Z, Yang J, Zhao D, Gao D, Yan X, Yao Z, Liu Z, Ma Z. Downregulated adaptor protein p66(Shc) mitigates autophagy process by low nutrient and enhances apoptotic resistance in human lung adenocarcinoma A549 cells. FEBS J 2013; 280:4522-30. [PMID: 23815759 DOI: 10.1111/febs.12416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/11/2013] [Accepted: 06/25/2013] [Indexed: 12/31/2022]
Abstract
Macroautophagy or autophagy is a lysosome-dependent process in which enzymatic degradation and recycling of cytosolic components occur in stressful contexts. The mechanisms underlying the signaling from starvation to the regulation of autophagy are not fully understood. We previously showed that the Src family member p66(Shc) (focal adhesion-associated 66 kDa isoform of the Src homology and collagen) promotes anoikis and suppresses tumor metastasis via k-Ras-dependent control of proliferation and survival. However, the role of p66(Shc) in low-nutrient-induced autophagy-related pathways remains elusive. In this work, human lung adenocarcinoma A549 cells were used to further investigate the biological effects of p66(Shc) on autophagy and apoptotic resistance. Here, we show that deficiency of p66(Shc) mitigates the low-nutrient-induced autophagy process in the levels of microtubule-associated protein 1A light chain protein 3B (LC3B) conversion, in the number of autophagic vacuoles and in p62/sequestosome 1 protein degradation. However, autophagy-related protein Beclin 1 was not significantly changed during low-nutrient treatment. Furthermore, we found that prolonged phosphorylation of extracellular signaling-regulated kinase (Erk)1/2, but not phosphorylation of Akt is significantly sustained when p66(Shc) expression is inhibited by shRNA. In addition, cleavage of caspase 7 and poly(ADP-ribose) polymerase, but not caspase 6 and 9 are retarded with this effect compared to the shRNA control cells. Together, these findings suggest the possibility that p66(Shc) plays a pivotal role in coordinately regulating autophagy process and apoptotic resistance in A549 cells under nutrient-limited conditions.
Collapse
Affiliation(s)
- Zhichao Zheng
- Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Rubinstein AD, Kimchi A. Life in the balance - a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 2013; 125:5259-68. [PMID: 23377657 DOI: 10.1242/jcs.115865] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular stress triggers a fascinating decision-making process in cells; they can either attempt to survive until the stress is resolved through the activation of cytoprotective pathways, such as autophagy, or can commit suicide by apoptosis in order to prevent further damage to surrounding healthy cells. Although autophagy and apoptosis constitute distinct cellular processes with often opposing outcomes, their signalling pathways are extensively interconnected through various mechanisms of crosstalk. The physiological relevance of the autophagy-apoptosis crosstalk is not well understood, but it is presumed to facilitate a controlled and well-balanced cellular response to a given stress signal. In this Commentary, we explore the various mechanisms by which autophagy and apoptosis regulate each other, and define general paradigms of crosstalk on the basis of mechanistic features. One paradigm relates to physical and functional interactions between pairs of specific apoptotic and autophagic proteins. In a second mechanistic paradigm, the apoptosis or autophagy processes (as opposed to individual proteins) regulate each other through induced caspase and autolysosomal activity, respectively. In a third paradigm unique to autophagy, caspases are recruited and activated on autophagosomal membranes. These mechanistic paradigms are discernible experimentally, and can therefore be used as a practical guide for the interpretation of experimental data.
Collapse
Affiliation(s)
- Assaf D Rubinstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
158
|
Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M. Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome. Prog Neurobiol 2013; 106-107:33-54. [DOI: 10.1016/j.pneurobio.2013.06.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022]
|
159
|
Contreras AU, Mebratu Y, Delgado M, Montano G, Hu CAA, Ryter SW, Choi AMK, Lin Y, Xiang J, Chand H, Tesfaigzi Y. Deacetylation of p53 induces autophagy by suppressing Bmf expression. ACTA ACUST UNITED AC 2013; 201:427-37. [PMID: 23629966 PMCID: PMC3639396 DOI: 10.1083/jcb.201205064] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interferon γ (IFN-γ)-induced cell death is mediated by the BH3-only domain protein, Bik, in a p53-independent manner. However, the effect of IFN-γ on p53 and how this affects autophagy have not been reported. The present study demonstrates that IFN-γ down-regulated expression of the BH3 domain-only protein, Bmf, in human and mouse airway epithelial cells in a p53-dependent manner. p53 also suppressed Bmf expression in response to other cell death-stimulating agents, including ultraviolet radiation and histone deacetylase inhibitors. IFN-γ did not affect Bmf messenger RNA half-life but increased nuclear p53 levels and the interaction of p53 with the Bmf promoter. IFN-γ-induced interaction of HDAC1 and p53 resulted in the deacetylation of p53 and suppression of Bmf expression independent of p53's proline-rich domain. Suppression of Bmf facilitated IFN-γ-induced autophagy by reducing the interaction of Beclin-1 and Bcl-2. Furthermore, autophagy was prominent in cultured bmf(-/-) but not in bmf(+/+) cells. Collectively, these observations show that deacetylation of p53 suppresses Bmf expression and facilitates autophagy.
Collapse
Affiliation(s)
- Amelia U Contreras
- Chronic Obstructive Pulmonary Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Role of the Crosstalk between Autophagy and Apoptosis in Cancer. JOURNAL OF ONCOLOGY 2013; 2013:102735. [PMID: 23840208 PMCID: PMC3687500 DOI: 10.1155/2013/102735] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/24/2013] [Indexed: 12/14/2022]
Abstract
Autophagy and apoptosis are catabolic pathways essential for organismal homeostasis. Autophagy is normally a cell-survival pathway involving the degradation and recycling of obsolete, damaged, or harmful macromolecular assemblies; however, excess autophagy has been implicated in type II cell death. Apoptosis is the canonical programmed cell death pathway. Autophagy and apoptosis have now been shown to be interconnected by several molecular nodes of crosstalk, enabling the coordinate regulation of degradation by these pathways. Normally, autophagy and apoptosis are both tumor suppressor pathways. Autophagy fulfils this role as it facilitates the degradation of oncogenic molecules, preventing development of cancers, while apoptosis prevents the survival of cancer cells. Consequently, defective or inadequate levels of either autophagy or apoptosis can lead to cancer. However, autophagy appears to have a dual role in cancer, as it has now been shown that autophagy also facilitates the survival of tumor cells in stress conditions such as hypoxic or low-nutrition environments. Here we review the multiple molecular mechanisms of coordination of autophagy and apoptosis and the role of the proteins involved in this crosstalk in cancer. A comprehensive understanding of the interconnectivity of autophagy and apoptosis is essential for the development of effective cancer therapeutics.
Collapse
|
161
|
Puyal J, Ginet V, Clarke PGH. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 2013; 105:24-48. [PMID: 23567504 DOI: 10.1016/j.pneurobio.2013.03.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 02/09/2023]
Abstract
There is currently no approved neuroprotective pharmacotherapy for acute conditions such as stroke and cerebral asphyxia. One of the reasons for this may be the multiplicity of cell death mechanisms, because inhibition of a particular mechanism leaves the brain vulnerable to alternative ones. It is therefore essential to understand the different cell death mechanisms and their interactions. We here review the multiple signaling pathways underlying each of the three main morphological types of cell death--apoptosis, autophagic cell death and necrosis--emphasizing their importance in the neuronal death that occurs during cerebral ischemia and hypoxia-ischemia, and we analyze the interactions between the different mechanisms. Finally, we discuss the implications of the multiplicity of cell death mechanisms for the design of neuroprotective strategies.
Collapse
Affiliation(s)
- Julien Puyal
- Département des Neurosciences Fondamentales, Université de Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
162
|
Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 2013; 105:49-59. [PMID: 23528736 DOI: 10.1016/j.pneurobio.2013.03.001] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 03/03/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
Abstract
The ubiquitin-proteasome system (UPS) and the autophagy-lysosome system are two major protein quality control mechanisms in eukaryotic cells. While the UPS has been considered for decades as the critical regulator in the degradation of various aggregate-prone proteins, autophagy has more recently been shown to be an important pathway implicated in neuronal health and disease. The two hallmark lesions of Alzheimer's disease (AD) are extracellular β-amyloid plaques and intracellular tau tangles. It has been suggested that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than β-amyloid plaques. Here, we review the UPS and autophagy-mediated tau clearance mechanisms and outline the biochemical connections between these two processes. In addition, we discuss pharmacological methods that target these degradation systems for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| | | | | |
Collapse
|
163
|
Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev 2013; 12:520-34. [PMID: 23220384 DOI: 10.1016/j.arr.2012.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 01/10/2023]
Abstract
Autophagy and apoptosis are crucial cellular housekeeping and tissue survival mechanisms. There is emerging evidence of important crosstalk between apoptosis and autophagy which can be linked to inflammasome activation. Beclin 1 is a platform protein which assembles an interactome consisting of diverse proteins which control the initiation of autophagocytosis and distinct phases in endocytosis. Recent studies have demonstrated that the anti-apoptotic Bcl-2 family members can interact with Beclin 1 and inhibit autophagy. Consequently, impaired autophagy can trigger inflammasome activation. Interestingly, the hallmarks of the ageing process include a decline in autophagy, increased resistance to apoptosis and a low-grade inflammatory phenotype. Age-related stresses, e.g. genotoxic, metabolic and environmental insults, enhance the expression of NF-κB-driven anti-apoptotic Bcl-2 proteins which repress the Beclin 1-dependent autophagy. Suppression of autophagocytosis provokes inflammation including NF-κB activation which further potentiates anti-apoptotic defence. In a context-dependent manner, this feedback defence mechanism can enhance the aging process or provoke tumorigenesis or cellular senescence. We will review the role of Beclin 1 interactome in the crosstalk between apoptosis, autophagy and inflammasomes emphasizing that disturbances in Beclin 1-dependent autophagy can have a crucial impact on the aging process.
Collapse
|
164
|
Wong PM, Puente C, Ganley IG, Jiang X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 2013; 9:124-37. [PMID: 23295650 PMCID: PMC3552878 DOI: 10.4161/auto.23323] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstream autophagy pathway. Much progress has been made in the last few years in understanding the mechanisms by which the complex is regulated through protein-protein interactions and post-translational modifications, providing insights into how the cell modulates autophagy, particularly in response to nutrient status. However, how the ULK1 complex transduces upstream signals to the downstream central autophagy pathway is still unclear. Although the protein kinase activity of ULK1 is required for its autophagic function, its protein substrate(s) responsible for autophagy activation has not been identified. Furthermore, examples of potential ULK1-independent autophagy have emerged, indicating that under certain specific contexts, the ULK1 complex might be dispensable for autophagy activation. This raises the question of how the autophagic machinery is activated independent of the ULK1 complex and what are the biological functions of such noncanonical autophagy pathways.
Collapse
Affiliation(s)
- Pui-Mun Wong
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | - Cindy Puente
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation Unit; University of Dundee; Dundee, Scotland UK
| | - Xuejun Jiang
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| |
Collapse
|
165
|
Liu G, Bi Y, Wang R, Wang X. Self-eating and self-defense: autophagy controls innate immunity and adaptive immunity. J Leukoc Biol 2012; 93:511-9. [PMID: 23271703 DOI: 10.1189/jlb.0812389] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autophagy (macroautophagy; "self-eating") is a degradation process, in which cytoplasmic content is engulfed and degraded by the lysosome. And, immunity is an important mechanism of the "self-defense" system. Autophagy has long been recognized as a stress response to nutrient deprivation. This will provide energy and anabolic building blocks to maintain cellular bioenergetic homeostasis. Thus, autophagy plays critical roles in regulating a wide variety of pathophysiological processes, including tumorigenesis, embryo development, tissue remodeling, and most recently, immunity. The latter shows that a self-eating (autophagy) process could regulate a self-defense (immune) system. In this review, we summarize the recent findings regarding the regulatory and mechanistic insights of the autophagy pathway in immunity.
Collapse
Affiliation(s)
- Guangwei Liu
- Shanghai Medical College, Fudan University, Yixueyuan Rd. 138, Xuhui District, Shanghai, China.
| | | | | | | |
Collapse
|
166
|
Kapuy O, Vinod PK, Mandl J, Bánhegyi G. A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis. MOLECULAR BIOSYSTEMS 2012; 9:296-306. [PMID: 23223525 DOI: 10.1039/c2mb25261a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Decision-making between life and death is one of the most important tasks of cells to maintain their genetic integrity. While the surviving mechanism is driven by Beclin1-dependent autophagy, the suicide processes are controlled by caspases-mediated apoptosis. Interestingly, both these processes share regulators such as Bcl2 and influence each other through feedback loops. The physiological relevance of the crosstalk between autophagy and apoptosis is still unclear. To gain system level insights, we have developed a mathematical model of the autophagy-apoptosis crosstalk. Our analysis reveals that a combination of Bcl2-dependent regulation and feedback loops between Beclin1 and caspases robustly enforces a sequential activation of cellular responses depending upon the intensity and duration of stress levels. The amplifying loops for caspases activation involving Beclin1-dependent inhibition of caspases and cleavage of Beclin1 by caspases (Beclin1 ┤ caspases ┤ Beclin1; caspases → cleaved Beclin1 → caspases) not only make the system bistable but also help to switch off autophagy at high stress levels. The presence of an additional positive feedback loop between Bcl2 and caspases helps to maintain the caspases activation by making the switch irreversible. Our results provide a framework for further experiments and modelling.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tüzoltó utca 37-47, Budapest, H-1094, Hungary
| | | | | | | |
Collapse
|
167
|
Affiliation(s)
- Itay Koren
- Department of Molecular Genetics. Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
168
|
Fimia GM, Corazzari M, Antonioli M, Piacentini M. Ambra1 at the crossroad between autophagy and cell death. Oncogene 2012; 32:3311-8. [DOI: 10.1038/onc.2012.455] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 12/12/2022]
|
169
|
BIM doubles its responsibilities. Nat Rev Mol Cell Biol 2012. [DOI: 10.1038/nrm3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|