151
|
Van Gerven N, Klein RD, Hultgren SJ, Remaut H. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 2015; 23:693-706. [PMID: 26439293 DOI: 10.1016/j.tim.2015.07.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 01/20/2023]
Abstract
Curli are functional amyloid fibers assembled by many Gram-negative bacteria as part of an extracellular matrix that encapsulates the bacteria within a biofilm. A multicomponent secretion system ensures the safe transport of the aggregation-prone curli subunits across the periplasm and outer membrane, and coordinates subunit self-assembly into surface-attached fibers. To avoid the build-up of potentially toxic intracellular protein aggregates, the timing and location of the interactions of the different curli proteins are of paramount importance. Here we review the structural and molecular biology of curli biogenesis, with a focus on the recent breakthroughs in our understanding of subunit chaperoning and secretion. The mechanistic insight into the curli assembly pathway will provide tools for new biotechnological applications and inform the design of targeted inhibitors of amyloid polymerization and biofilm formation.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Roger D Klein
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St Louis, MO 63110-1010, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St Louis, MO 63110-1010, USA
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
152
|
Landreh M, Rising A, Presto J, Jörnvall H, Johansson J. Specific chaperones and regulatory domains in control of amyloid formation. J Biol Chem 2015; 290:26430-6. [PMID: 26354437 DOI: 10.1074/jbc.r115.653097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many proteins can form amyloid-like fibrils in vitro, but only about 30 amyloids are linked to disease, whereas some proteins form physiological amyloid-like assemblies. This raises questions of how the formation of toxic protein species during amyloidogenesis is prevented or contained in vivo. Intrinsic chaperoning or regulatory factors can control the aggregation in different protein systems, thereby preventing unwanted aggregation and enabling the biological use of amyloidogenic proteins. The molecular actions of these chaperones and regulators provide clues to the prevention of amyloid disease, as well as to the harnessing of amyloidogenic proteins in medicine and biotechnology.
Collapse
Affiliation(s)
- Michael Landreh
- From the Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 5QY, United Kingdom
| | - Anna Rising
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden, the Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, 751 23 Uppsala, Sweden
| | - Jenny Presto
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden
| | - Hans Jörnvall
- the Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden, and
| | - Jan Johansson
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden, the Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, 751 23 Uppsala, Sweden, the Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt 25, 101 20 Tallinn, Estonia
| |
Collapse
|
153
|
Brundin P, Atkin G, Lamberts JT. Basic science breaks through: New therapeutic advances in Parkinson's disease. Mov Disord 2015; 30:1521-7. [PMID: 26177603 DOI: 10.1002/mds.26332] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/13/2015] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor dysfunction, although PD patients also exhibit a variety of non-motor symptoms. The neuropathological hallmark of PD is intraneuronal inclusions containing primarily α-Synuclein (α-Syn), and several lines of evidence point to α-Syn as a key contributor to disease progression. Thus, basic research in the field of PD is largely focused on understanding the pathogenic properties of α-Syn. Over the past 2 y, these studies helped to identify several novel therapeutic strategies that have the potential to slow PD progression; such strategies include sequestration of extracellular α-Syn through immunotherapy, reduction of α-Syn multimerization or intracellular toxicity, and attenuation of the neuroinflammatory response. This review describes these and other putative therapeutic strategies, together with the basic science research that led to their identification. The current breadth of novel targets for the treatment of PD warrants cautious optimism in the fight against this devastating disease.
Collapse
Affiliation(s)
- Patrik Brundin
- Laboratory of Translational Parkinson's Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Graham Atkin
- Laboratory of Translational Parkinson's Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jennifer T Lamberts
- Laboratory of Translational Parkinson's Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, USA.,College of Pharmacy, Ferris State University, Big Rapids, Michigan, USA
| |
Collapse
|
154
|
Abstract
In this issue of Molecular Cell, Evans et al. (2015) report that the hitherto largely unstudied CsgC protein is responsible for the suppression of premature amyloidogenesis within the cellular periplasm, preventing early aggregation and cellular toxicity.
Collapse
Affiliation(s)
- Roger D Klein
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
155
|
Taylor JD, Matthews SJ. New insight into the molecular control of bacterial functional amyloids. Front Cell Infect Microbiol 2015; 5:33. [PMID: 25905048 PMCID: PMC4389571 DOI: 10.3389/fcimb.2015.00033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
Amyloid protein structure has been discovered in a variety of functional or pathogenic contexts. What distinguishes the former from the latter is that functional amyloid systems possess dedicated molecular control systems that determine the timing, location, and structure of the fibers. Failure to guide this process can result in cytotoxicity, as observed in several pathologies like Alzheimer's and Parkinson's Disease. Many gram-negative bacteria produce an extracellular amyloid fiber known as curli via a multi-component secretion system. During this process, aggregation-prone, semi-folded curli subunits have to cross the periplasm and outer-membrane and self-assemble into surface-attached fibers. Two recent breakthroughs have provided molecular details regarding periplasmic chaperoning and subunit secretion. This review offers a combined perspective on these first mechanistic insights into the curli system.
Collapse
Affiliation(s)
- Jonathan D Taylor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College of Science, Technology and Medicine London, UK
| | - Steve J Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College of Science, Technology and Medicine London, UK
| |
Collapse
|