151
|
Xu Y, Borcherding AF, Heier C, Tian G, Roeder T, Kühnlein RP. Chronic dysfunction of Stromal interaction molecule by pulsed RNAi induction in fat tissue impairs organismal energy homeostasis in Drosophila. Sci Rep 2019; 9:6989. [PMID: 31061470 PMCID: PMC6502815 DOI: 10.1038/s41598-019-43327-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/15/2019] [Indexed: 01/09/2023] Open
Abstract
Obesity is a progressive, chronic disease, which can be caused by long-term miscommunication between organs. It remains challenging to understand how chronic dysfunction in a particular tissue remotely impairs other organs to eventually imbalance organismal energy homeostasis. Here we introduce RNAi Pulse Induction (RiPI) mediated by short hairpin RNA (shRiPI) or double-stranded RNA (dsRiPI) to generate chronic, organ-specific gene knockdown in the adult Drosophila fat tissue. We show that organ-restricted RiPI targeting Stromal interaction molecule (Stim), an essential factor of store-operated calcium entry (SOCE), results in progressive fat accumulation in fly adipose tissue. Chronic SOCE-dependent adipose tissue dysfunction manifests in considerable changes of the fat cell transcriptome profile, and in resistance to the glucagon-like Adipokinetic hormone (Akh) signaling. Remotely, the adipose tissue dysfunction promotes hyperphagia likely via increased secretion of Akh from the neuroendocrine system. Collectively, our study presents a novel in vivo paradigm in the fly, which is widely applicable to model and functionally analyze inter-organ communication processes in chronic diseases.
Collapse
Affiliation(s)
- Yanjun Xu
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077, Göttingen, Germany.
- Max-Planck-Institut für biophysikalische Chemie, Department of Molecular Developmental Biology, Am Faβberg 11, D-37077, Göttingen, Germany.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, D-85764, Neuherberg, München, Germany.
| | - Annika F Borcherding
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077, Göttingen, Germany
| | - Christoph Heier
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50/2.OG, A-8010, Graz, Austria
| | - Gu Tian
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098, Kiel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Thomas Roeder
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098, Kiel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Ronald P Kühnlein
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077, Göttingen, Germany.
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50/2.OG, A-8010, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
152
|
Radenkovic S, Bird MJ, Emmerzaal TL, Wong SY, Felgueira C, Stiers KM, Sabbagh L, Himmelreich N, Poschet G, Windmolders P, Verheijen J, Witters P, Altassan R, Honzik T, Eminoglu TF, James PM, Edmondson AC, Hertecant J, Kozicz T, Thiel C, Vermeersch P, Cassiman D, Beamer L, Morava E, Ghesquière B. The Metabolic Map into the Pathomechanism and Treatment of PGM1-CDG. Am J Hum Genet 2019; 104:835-846. [PMID: 30982613 DOI: 10.1016/j.ajhg.2019.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Phosphoglucomutase 1 (PGM1) encodes the metabolic enzyme that interconverts glucose-6-P and glucose-1-P. Mutations in PGM1 cause impairment in glycogen metabolism and glycosylation, the latter manifesting as a congenital disorder of glycosylation (CDG). This unique metabolic defect leads to abnormal N-glycan synthesis in the endoplasmic reticulum (ER) and the Golgi apparatus (GA). On the basis of the decreased galactosylation in glycan chains, galactose was administered to individuals with PGM1-CDG and was shown to markedly reverse most disease-related laboratory abnormalities. The disease and treatment mechanisms, however, have remained largely elusive. Here, we confirm the clinical benefit of galactose supplementation in PGM1-CDG-affected individuals and obtain significant insights into the functional and biochemical regulation of glycosylation. We report here that, by using tracer-based metabolomics, we found that galactose treatment of PGM1-CDG fibroblasts metabolically re-wires their sugar metabolism, and as such replenishes the depleted levels of galactose-1-P, as well as the levels of UDP-glucose and UDP-galactose, the nucleotide sugars that are required for ER- and GA-linked glycosylation, respectively. To this end, we further show that the galactose in UDP-galactose is incorporated into mature, de novo glycans. Our results also allude to the potential of monosaccharide therapy for several other CDG.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Matthew J Bird
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Tim L Emmerzaal
- Department of Anatomy, Radboud University Medical Centre, Donders Institute for Brain Cognition and Behaviour, 6535 HR Nijmegen, the Netherlands
| | - Sunnie Y Wong
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, LA, USA
| | - Catarina Felgueira
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Kyle M Stiers
- Biochemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Leila Sabbagh
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, LA, USA
| | - Nastassja Himmelreich
- Center for Child and Adolescent Medicine, Department I, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jan Verheijen
- Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter Witters
- Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ruqaiah Altassan
- Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium; Medical Genetics Department, Montréal Children's Hospital, McGill University, Montreal, QC H4A3J1, Canada
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague, Czech Republic
| | - Tuba F Eminoglu
- Department of Pediatric Metabolism and Nutrition, Ankara University School of Medicine, 06560 Ankara, Turkey
| | - Phillip M James
- Phoenix Children's Medical Group, Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jozef Hertecant
- Department of Pediatrics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tamas Kozicz
- Department of Anatomy, Radboud University Medical Centre, Donders Institute for Brain Cognition and Behaviour, 6535 HR Nijmegen, the Netherlands; Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, LA, USA; Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department I, University of Heidelberg, 69120 Heidelberg, Germany
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium; Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lesa Beamer
- Biochemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Eva Morava
- Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
153
|
The Fate of Glutamine in Human Metabolism. The Interplay with Glucose in Proliferating Cells. Metabolites 2019; 9:metabo9050081. [PMID: 31027329 PMCID: PMC6571637 DOI: 10.3390/metabo9050081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023] Open
Abstract
Genome-scale models of metabolism (GEM) are used to study how metabolism varies in different physiological conditions. However, the great number of reactions involved in GEM makes it difficult to understand these variations. In order to have a more understandable tool, we developed a reduced metabolic model of central carbon and nitrogen metabolism, C2M2N with 77 reactions, 54 internal metabolites, and 3 compartments, taking into account the actual stoichiometry of the reactions, including the stoichiometric role of the cofactors and the irreversibility of some reactions. In order to model oxidative phosphorylation (OXPHOS) functioning, the proton gradient through the inner mitochondrial membrane is represented by two pseudometabolites DPH (∆pH) and DPSI (∆ψ). To illustrate the interest of such a reduced and quantitative model of metabolism in mammalian cells, we used flux balance analysis (FBA) to study all the possible fates of glutamine in metabolism. Our analysis shows that glutamine can supply carbon sources for cell energy production and can be used as carbon and nitrogen sources to synthesize essential metabolites. Finally, we studied the interplay between glucose and glutamine for the formation of cell biomass according to ammonia microenvironment. We then propose a quantitative analysis of the Warburg effect.
Collapse
|
154
|
Mazat JP, Ransac S. The Fate of Glutamine in Human Metabolism. The Interplay with Glucose in Proliferating Cells. Metabolites 2019. [PMID: 31027329 DOI: 10.1101/477224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genome-scale models of metabolism (GEM) are used to study how metabolism varies in different physiological conditions. However, the great number of reactions involved in GEM makes it difficult to understand these variations. In order to have a more understandable tool, we developed a reduced metabolic model of central carbon and nitrogen metabolism, C2M2N with 77 reactions, 54 internal metabolites, and 3 compartments, taking into account the actual stoichiometry of the reactions, including the stoichiometric role of the cofactors and the irreversibility of some reactions. In order to model oxidative phosphorylation (OXPHOS) functioning, the proton gradient through the inner mitochondrial membrane is represented by two pseudometabolites DPH (∆pH) and DPSI (∆ψ). To illustrate the interest of such a reduced and quantitative model of metabolism in mammalian cells, we used flux balance analysis (FBA) to study all the possible fates of glutamine in metabolism. Our analysis shows that glutamine can supply carbon sources for cell energy production and can be used as carbon and nitrogen sources to synthesize essential metabolites. Finally, we studied the interplay between glucose and glutamine for the formation of cell biomass according to ammonia microenvironment. We then propose a quantitative analysis of the Warburg effect.
Collapse
Affiliation(s)
- Jean-Pierre Mazat
- IBGC CNRS UMR 5095 & Université de Bordeaux, 1, rue Camille Saint-Saëns, 33077 Bordeaux-CEDEX, France.
| | - Stéphane Ransac
- IBGC CNRS UMR 5095 & Université de Bordeaux, 1, rue Camille Saint-Saëns, 33077 Bordeaux-CEDEX, France.
| |
Collapse
|
155
|
Zhuang H, Wu F, Wei W, Dang Y, Yang B, Ma X, Han F, Li Y. Glycine decarboxylase induces autophagy and is downregulated by miRNA-30d-5p in hepatocellular carcinoma. Cell Death Dis 2019; 10:192. [PMID: 30804330 PMCID: PMC6389915 DOI: 10.1038/s41419-019-1446-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Glycine decarboxylase (GLDC) belongs to the glycine cleavage system and is involved in one-carbon metabolism. We previously reported that GLDC downregulation enhances hepatocellular carcinoma (HCC) progression and intrahepatic metastasis through decreasing ROS-mediated ubiquitination of cofilin. The role of autophagy in cancer metastasis is still controversial. Redox-dependent autophagy largely relies on the magnitude and the rate of ROS generation. Thus, we aimed to explore the role of GLDC in cellular autophagy during HCC progression. We showed that a high GLDC expression level is associated with better overall survival and is an independent factor for the favorable prognosis of HCC patients. GLDC overexpression significantly induced cell autophagy, whereas GLDC downregulation reduced cell autophagy. Of note, GLDC is the post-transcriptional target of miR-30d-5p. GLDC overexpression could rescue miR-30d-5p-mediated cell metastasis and increase autophagy. Furthermore, upregulation of GLDC could significantly decrease p62 expression and impair intrahepatic metastasis in vivo. Taken together, our results suggest that GLDC may play an important role to increasing miR-30d-5p-reduced autophagy to suppress HCC progress.
Collapse
Affiliation(s)
- Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan Province, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Fei Wu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Wen Wei
- School of Life Sciences, Chongqing University, 400044, Chongqing, China
| | - Yamei Dang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Baicai Yang
- Department of Gynaecology and Obstetrics, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang Province, China
| | - Xuda Ma
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan Province, China.
| | - Yongmei Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
156
|
Dyer A, Schoeps B, Frost S, Jakeman P, Scott EM, Freedman J, Jacobus EJ, Seymour LW. Antagonism of Glycolysis and Reductive Carboxylation of Glutamine Potentiates Activity of Oncolytic Adenoviruses in Cancer Cells. Cancer Res 2019; 79:331-345. [PMID: 30487139 DOI: 10.1158/0008-5472.can-18-1326] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/08/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022]
Abstract
Tumor cells exhibiting the Warburg effect rely on aerobic glycolysis for ATP production and have a notable addiction to anaplerotic use of glutamine for macromolecular synthesis. This strategy maximizes cellular biosynthetic potential while avoiding excessive depletion of NAD+ and provides an attractive anabolic environment for viral infection. Here, we evaluate infection of highly permissive and poorly permissive cancer cells with wild-type adenoviruses and the oncolytic chimeric adenovirus enadenotucirev (EnAd). All adenoviruses caused an increase in glucose and glutamine uptake along with increased lactic acid secretion. Counterintuitively, restricting glycolysis using 2-deoxyglucose or by limiting glucose supply strongly improved virus activity in both cell types. Antagonism of glycolysis also boosted EnAd replication and transgene expression within human tumor biopsies and in xenografted tumors in vivo. In contrast, the virus life cycle was critically dependent on exogenous glutamine. Virus activity in glutamine-free cells was rescued with exogenous membrane-permeable α-ketoglutarate, but not pyruvate or oxaloacetate, suggesting an important role for reductive carboxylation in glutamine usage, perhaps for production of biosynthetic intermediates. This overlap between the metabolic phenotypes of adenovirus infection and transformed tumor cells may provide insight into how oncolytic adenoviruses exploit metabolic transformation to augment their selectivity for cancer cells. SIGNIFICANCE: This study describes changes in glucose and glutamine metabolism induced by oncolytic and wild-type adenoviruses in cancer cells, which will be important to consider in the preclinical evaluation of oncolytic viruses.
Collapse
Affiliation(s)
- Arthur Dyer
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Benjamin Schoeps
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, München, Germany
| | - Sally Frost
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip Jakeman
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Eleanor M Scott
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Joshua Freedman
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Egon J Jacobus
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Leonard W Seymour
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
157
|
Andjelković A, Mordas A, Bruinsma L, Ketola A, Cannino G, Giordano L, Dhandapani PK, Szibor M, Dufour E, Jacobs HT. Expression of the Alternative Oxidase Influences Jun N-Terminal Kinase Signaling and Cell Migration. Mol Cell Biol 2018; 38:e00110-18. [PMID: 30224521 PMCID: PMC6275184 DOI: 10.1128/mcb.00110-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
Downregulation of Jun N-terminal kinase (JNK) signaling inhibits cell migration in diverse model systems. In Drosophila pupal development, attenuated JNK signaling in the thoracic dorsal epithelium leads to defective midline closure, resulting in cleft thorax. Here we report that concomitant expression of the Ciona intestinalis alternative oxidase (AOX) was able to compensate for JNK pathway downregulation, substantially correcting the cleft thorax phenotype. AOX expression also promoted wound-healing behavior and single-cell migration in immortalized mouse embryonic fibroblasts (iMEFs), counteracting the effect of JNK pathway inhibition. However, AOX was not able to rescue developmental phenotypes resulting from knockdown of the AP-1 transcription factor, the canonical target of JNK, nor its targets and had no effect on AP-1-dependent transcription. The migration of AOX-expressing iMEFs in the wound-healing assay was differentially stimulated by antimycin A, which redirects respiratory electron flow through AOX, altering the balance between mitochondrial ATP and heat production. Since other treatments affecting mitochondrial ATP did not stimulate wound healing, we propose increased mitochondrial heat production as the most likely primary mechanism of action of AOX in promoting cell migration in these various contexts.
Collapse
Affiliation(s)
- Ana Andjelković
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Amelia Mordas
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Lyon Bruinsma
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Annika Ketola
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Giuseppe Cannino
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Luca Giordano
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Praveen K Dhandapani
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marten Szibor
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
158
|
Matés JM, Campos-Sandoval JA, Márquez J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim Biophys Acta Rev Cancer 2018; 1870:158-164. [DOI: 10.1016/j.bbcan.2018.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/14/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
|
159
|
Kelly RA, Leedale J, Harrell A, Beard DA, Randle LE, Chadwick AE, Webb SD. Modelling the impact of changes in the extracellular environment on the cytosolic free NAD+/NADH ratio during cell culture. PLoS One 2018; 13:e0207803. [PMID: 30496306 PMCID: PMC6264472 DOI: 10.1371/journal.pone.0207803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
Cancer cells depend on glucose metabolism via glycolysis as a primary energy source, despite the presence of oxygen and fully functioning mitochondria, in order to promote growth, proliferation and longevity. Glycolysis relies upon NAD+ to accept electrons in the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reaction, linking the redox state of the cytosolic NAD+ pool to glycolytic rate. The free cytosolic NAD+/NADH ratio is involved in over 700 oxidoreductive enzymatic reactions and as such, the NAD+/NADH ratio is regarded as a metabolic readout of overall cellular redox state. Many experimental techniques that monitor or measure total NAD+ and NADH are unable to distinguish between protein-bound and unbound forms. Yet total NAD+/NADH measurements yield little information, since it is the free forms of NAD+ and NADH that determine the kinetic and thermodynamic influence of redox potential on glycolytic rate. Indirect estimations of free NAD+/NADH are based on the lactate/pyruvate (L/P) ratio at chemical equilibrium, but these measurements are often undermined by high lability. To elucidate the sensitivity of the free NAD+/NADH ratio to changes in extracellular substrate, an in silico model of hepatocarcinoma glycolysis was constructed and validated against in vitro data. Model simulations reveal that over experimentally relevant concentrations, changes in extracellular glucose and lactate concentration during routine cancer cell culture can lead to significant deviations in the NAD+/NADH ratio. Based on the principles of chemical equilibrium, the model provides a platform from which experimentally challenging situations may be examined, suggesting that extracellular substrates play an important role in cellular redox and bioenergetic homeostasis.
Collapse
Affiliation(s)
- Ross A. Kelly
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
| | - Joseph Leedale
- EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| | - Andy Harrell
- GlaxoSmithKline, David Jack Centre for Research, Ware, United Kingdom
| | - Daniel A. Beard
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Laura E. Randle
- Department of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Amy E. Chadwick
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Steven D. Webb
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
- EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
160
|
Rescue from galactose-induced death of Leigh Syndrome patient cells by pyruvate and NAD .. Cell Death Dis 2018; 9:1135. [PMID: 30429455 PMCID: PMC6235972 DOI: 10.1038/s41419-018-1179-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Cell models of mitochondrial complex I (CI) deficiency display activation of glycolysis to compensate for the loss in mitochondrial ATP production. This adaptation can mask other relevant deficiency-induced aberrations in cell physiology. Here we investigated the viability, mitochondrial morphofunction, ROS levels and ATP homeostasis of primary skin fibroblasts from Leigh Syndrome (LS) patients with isolated CI deficiency. These cell lines harbored mutations in nuclear DNA (nDNA)-encoded CI genes (NDUFS7, NDUFS8, NDUFV1) and, to prevent glycolysis upregulation, were cultured in a pyruvate-free medium in which glucose was replaced by galactose. Following optimization of the cell culture protocol, LS fibroblasts died in the galactose medium, whereas control cells did not. LS cell death was dose-dependently inhibited by pyruvate, malate, oxaloacetate, α-ketoglutarate, aspartate, and exogenous NAD+ (eNAD), but not by lactate, succinate, α-ketobutyrate, and uridine. Pyruvate and eNAD increased the cellular NAD+ content in galactose-treated LS cells to a different extent and co-incubation studies revealed that pyruvate-induced rescue was not primarily mediated by NAD+. Functionally, in LS cells glucose-by-galactose replacement increased mitochondrial fragmentation and mass, depolarized the mitochondrial membrane potential (Δψ), increased H2DCFDA-oxidizing ROS levels, increased mitochondrial ATP generation, and reduced the total cellular ATP content. These aberrations were differentially rescued by pyruvate and eNAD, supporting the conclusion that these compounds rescue galactose-induced LS cell death via different mechanisms. These findings establish a cell-based strategy for intervention testing and enhance our understanding of CI deficiency pathophysiology.
Collapse
|
161
|
Lord SR, Cheng WC, Liu D, Gaude E, Haider S, Metcalf T, Patel N, Teoh EJ, Gleeson F, Bradley K, Wigfield S, Zois C, McGowan DR, Ah-See ML, Thompson AM, Sharma A, Bidaut L, Pollak M, Roy PG, Karpe F, James T, English R, Adams RF, Campo L, Ayers L, Snell C, Roxanis I, Frezza C, Fenwick JD, Buffa FM, Harris AL. Integrated Pharmacodynamic Analysis Identifies Two Metabolic Adaption Pathways to Metformin in Breast Cancer. Cell Metab 2018; 28:679-688.e4. [PMID: 30244975 PMCID: PMC6224605 DOI: 10.1016/j.cmet.2018.08.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/21/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
Late-phase clinical trials investigating metformin as a cancer therapy are underway. However, there remains controversy as to the mode of action of metformin in tumors at clinical doses. We conducted a clinical study integrating measurement of markers of systemic metabolism, dynamic FDG-PET-CT, transcriptomics, and metabolomics at paired time points to profile the bioactivity of metformin in primary breast cancer. We show metformin reduces the levels of mitochondrial metabolites, activates multiple mitochondrial metabolic pathways, and increases 18-FDG flux in tumors. Two tumor groups are identified with distinct metabolic responses, an OXPHOS transcriptional response (OTR) group for which there is an increase in OXPHOS gene transcription and an FDG response group with increased 18-FDG uptake. Increase in proliferation, as measured by a validated proliferation signature, suggested that patients in the OTR group were resistant to metformin treatment. We conclude that mitochondrial response to metformin in primary breast cancer may define anti-tumor effect.
Collapse
Affiliation(s)
- Simon R Lord
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Wei-Chen Cheng
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Dan Liu
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Edoardo Gaude
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Syed Haider
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Tom Metcalf
- Institute of Translational Medicine, University of Liverpool, Royal Liverpool University Hospital, Liverpool L69 3GA, UK
| | - Neel Patel
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| | - Eugene J Teoh
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| | - Fergus Gleeson
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK; Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| | - Kevin Bradley
- Department of Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| | - Simon Wigfield
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Christos Zois
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Mei-Lin Ah-See
- Department of Oncology, Luton and Dunstable Hospital, Luton, UK
| | - Alastair M Thompson
- Department of Breast Surgical Oncology, MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Anand Sharma
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Luc Bidaut
- College of Science, University of Lincoln, Lincoln LN6 7TS, UK; Clinical Research Imaging Facility, University of Dundee, Ninewells Hospital, Dundee DD2 1SY, UK
| | - Michael Pollak
- Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Pankaj G Roy
- Breast Surgery Unit, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Tim James
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruth English
- Oxford Breast Imaging Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Rosie F Adams
- Oxford Breast Imaging Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Leticia Campo
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Lisa Ayers
- Department of Clinical and Laboratory Immunology, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| | - Cameron Snell
- Department of Anatomical Pathology, Mater Research Institute, Brisbane 4101, Australia
| | - Ioannis Roxanis
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - John D Fenwick
- Institute of Translational Medicine, University of Liverpool, Royal Liverpool University Hospital, Liverpool L69 3GA, UK
| | - Francesca M Buffa
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
162
|
Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med 2018; 24:1691-1695. [PMID: 30250142 PMCID: PMC6225988 DOI: 10.1038/s41591-018-0165-9] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin.
Collapse
|
163
|
Fitzgerald G, Soro-Arnaiz I, De Bock K. The Warburg Effect in Endothelial Cells and its Potential as an Anti-angiogenic Target in Cancer. Front Cell Dev Biol 2018; 6:100. [PMID: 30255018 PMCID: PMC6141712 DOI: 10.3389/fcell.2018.00100] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/09/2018] [Indexed: 12/29/2022] Open
Abstract
Endothelial cells (ECs) make up the lining of our blood vessels and they ensure optimal nutrient and oxygen delivery to the parenchymal tissue. In response to oxygen and/or nutrient deprivation, ECs become activated and sprout into hypo-vascularized tissues forming new vascular networks in a process termed angiogenesis. New sprouts are led by migratory tip cells and extended through the proliferation of trailing stalk cells. Activated ECs rewire their metabolism to cope with the increased energetic and biosynthetic demands associated with migration and proliferation. Moreover, metabolic signaling pathways interact and integrate with angiogenic signaling events. These metabolic adaptations play essential roles in determining EC fate and function, and are perturbed during pathological angiogenesis, as occurs in cancer. The angiogenic switch, or the growth of new blood vessels into an expanding tumor, increases tumor growth and malignancy. Limiting tumor angiogenesis has therefore long been a goal for anticancer therapy but the traditional growth factor targeted anti-angiogenic treatments have met with limited success. In recent years however, it has become increasingly recognized that focusing on altered tumor EC metabolism provides an attractive alternative anti-angiogenic strategy. In this review, we will describe the EC metabolic signature and how changes in EC metabolism affect EC fate during physiological sprouting, as well as in the cancer setting. Then, we will discuss the potential of targeting EC metabolism as a promising approach to develop new anti-cancer therapies.
Collapse
Affiliation(s)
- Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Inés Soro-Arnaiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
164
|
Halbrook CJ, Nwosu ZC, Lyssiotis CA. Fine-Tuning Mitochondrial Dysfunction and Reductive Carboxylation. Trends Endocrinol Metab 2018; 29:599-602. [PMID: 29692332 DOI: 10.1016/j.tem.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/05/2018] [Indexed: 02/01/2023]
Abstract
Metabolic processes within cells are dynamically interconnected. If mitochondria become defective, cells must rewire their metabolism to survive. Here we highlight recent work by Gaude et al. that used a tunable model of mitochondrial dysfunction combined with metabolic tracing and in silico analyses to define these compensatory pathways.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA; http://lyssiotislab.com.
| |
Collapse
|
165
|
Karlstaedt A, Schiffer W, Taegtmeyer H. Actionable Metabolic Pathways in Heart Failure and Cancer-Lessons From Cancer Cell Metabolism. Front Cardiovasc Med 2018; 5:71. [PMID: 29971237 PMCID: PMC6018530 DOI: 10.3389/fcvm.2018.00071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
Recent advances in cancer cell metabolism provide unprecedented opportunities for a new understanding of heart metabolism and may offer new approaches for the treatment of heart failure. Key questions driving the cancer field to understand how tumor cells reprogram metabolism and to benefit tumorigenesis are also applicable to the heart. Recent experimental and conceptual advances in cancer cell metabolism provide the cardiovascular field with the unique opportunity to target metabolism. This review compares cancer cell metabolism and cardiac metabolism with an emphasis on strategies of cellular adaptation, and how to exploit metabolic changes for therapeutic benefit.
Collapse
Affiliation(s)
- Anja Karlstaedt
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Walter Schiffer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
166
|
Gammage PA, Minczuk M. Enhanced Manipulation of Human Mitochondrial DNA Heteroplasmy In Vitro Using Tunable mtZFN Technology. Methods Mol Biol 2018; 1867:43-56. [PMID: 30155814 DOI: 10.1007/978-1-4939-8799-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a platform capable of mtDNA heteroplasmy manipulation, mitochondrially targeted zinc-finger nuclease (mtZFN) technology holds significant potential for the future of mitochondrial genome engineering, in both laboratory and clinic. Recent work highlights the importance of finely controlled mtZFN levels in mitochondria, permitting far greater mtDNA heteroplasmy modification efficiencies than observed in early applications. An initial approach, differential fluorescence-activated cell sorting (dFACS), allowing selection of transfected cells expressing various levels of mtZFN, demonstrated improved heteroplasmy modification. A further, key optimization has been the use of an engineered hammerhead ribozyme as a means for dynamic regulation of mtZFN expression, which has allowed the development of a unique isogenic cellular model of mitochondrial dysfunction arising from mutations in mtDNA, known as mTUNE. Protocols detailing these transformative optimizations are described in this chapter.
Collapse
Affiliation(s)
- Payam A Gammage
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
167
|
Development of pulmonary edema related to heparin administration. J Clin Pharmacol 1981; 9:51. [PMID: 32415061 PMCID: PMC7229118 DOI: 10.1038/s41389-020-0231-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer type with poor prognosis due to its high metastatic potential, however, the role of metabolic reprogramming in the metastasis of PDAC cell is not known. Here, we report that COX6B2 drive metastasis but not cancer cell proliferation in PDAC by enhancing oxidative phosphorylation function (OXPHOS). Transcriptome and clinical analyses revealed that cytochrome c oxidase subunit 6B2 (COX6B2) positively associated with metastasis of PDAC cells. Knockdown of COX6B2 in PDAC cells tuned down the assembly of complex IV and downregulated the function of OXPHOS, whereas re-expression of COX6B2 restored the function of OXPHOS and metastatic potential. Mechanistically, COX6B2 upregulated OXPHOS function to active purinergic receptor pathway for the metastasis of PDAC cells. Notably, the metastatic potential in PDAC could be reversely regulated by metformin, a drug was found accelerating the degradation of COX6B2 mRNA in this study. Collectively, our findings indicated that a complex metabolic control mechanism might be involved in achieving the balance of metabolic requirements for both growth and metastasis in PDAC, and regulation of the expression of COX6B2 could potentially encompass one of the targets.
Collapse
|