151
|
Piret JP, Jacques D, Audinot JN, Mejia J, Boilan E, Noël F, Fransolet M, Demazy C, Lucas S, Saout C, Toussaint O. Copper(II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. NANOSCALE 2012; 4:7168-7184. [PMID: 23070296 DOI: 10.1039/c2nr31785k] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The potential toxic effects of two types of copper(II) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu(2+) released in cell culture medium suggested that Cu(2+) cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.
Collapse
Affiliation(s)
- Jean-Pascal Piret
- URBC, Namur Nanosafety Center (NNC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
He X, Ma Q. Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. Mol Pharmacol 2012; 82:887-97. [PMID: 22869588 PMCID: PMC4678870 DOI: 10.1124/mol.112.081133] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor activated by a range of oxidants and electrophiles. The transcriptional response to endogenous oxidative cues by Nrf2 plays an important role in mammalian redox physiology and oxidative pathology. Hyperglycemia induces oxidative stress in the heart where it leads to apoptosis and ultimately cardiomyopathy. Here we investigated the mechanism by which Nrf2 suppresses oxidative stress in diabetic mouse heart. Knockout (KO) of Nrf2 induced oxidative stress and apoptosis in KO heart; diabetes further increased oxidative damage. A pathway-focused gene array revealed that Nrf2 controls the expression of 24 genes in the heart, including the gene encoding thioredoxin-interacting protein (TXNIP). Nrf2 suppressed the basal expression of Txnip in the heart and blocked induction of Txnip by high glucose by binding to an antioxidant response element (ARE) (-1286 to -1276) of the Txnip promoter. Binding of Nrf2 to ARE also suppressed the binding of MondoA to the carbohydrate response element with or without high glucose. TXNIP promoted reactive oxygen species production and apoptosis by inhibiting thioredoxin. On the other hand, Nrf2 boosted thioredoxin activity by inhibiting Txnip. The findings revealed, for the first time, that Nrf2 is a key gatekeeper of Txnip transcription, suppressing both its basal expression and MondoA-driven induction to control the thioredoxin redox signaling in diabetes.
Collapse
Affiliation(s)
- Xiaoqing He
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | |
Collapse
|
153
|
Lee JH, Khor TO, Shu L, Su ZY, Fuentes F, Kong ANT. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther 2012; 137:153-71. [PMID: 23041058 DOI: 10.1016/j.pharmthera.2012.09.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/17/2012] [Indexed: 02/06/2023]
Abstract
Reactive metabolites from carcinogens and oxidative stress can drive genetic mutations, genomic instability, neoplastic transformation, and ultimately carcinogenesis. Numerous dietary phytochemicals in vegetables/fruits have been shown to possess cancer chemopreventive effects in both preclinical animal models and human epidemiological studies. These phytochemicals could prevent the initiation of carcinogenesis via either direct scavenging of reactive oxygen species/reactive nitrogen species (ROS/RNS) or, more importantly, the induction of cellular defense detoxifying/antioxidant enzymes. These defense enzymes mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against ROS/RNS and reactive metabolites of carcinogens. In addition, these compounds would kill initiated/transformed cancer cells in vitro and in in vivo xenografts via diverse anti-cancer mechanisms. These mechanisms include the activation of signaling kinases (e.g., JNK), caspases and the mitochondria damage/cytochrome c pathways. Phytochemicals may also have anti-cancer effects by inhibiting the IKK/NF-κB pathway, inhibiting STAT3, and causing cell cycle arrest. In addition, other mechanisms may include epigenetic alterations (e.g., inhibition of HDACs, miRNAs, and the modification of the CpG methylation of cancer-related genes). In this review, we will discuss: the current advances in the study of Nrf2 signaling; Nrf2-deficient tumor mouse models; the epigenetic control of Nrf2 in tumorigenesis and chemoprevention; Nrf2-mediated cancer chemoprevention by naturally occurring dietary phytochemicals; and the mutation or hyper-expression of the Nrf2-Keap1 signaling pathway in advanced tumor cells. The future development of dietary phytochemicals for chemoprevention must integrate in vitro signaling mechanisms, relevant biomarkers of human diseases, and combinations of different phytochemicals and/or non-toxic therapeutic drugs, including NSAIDs.
Collapse
Affiliation(s)
- Jong Hun Lee
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
154
|
Nemmiche S, Chabane-Sari D, Kadri M, Guiraud P. Cadmium-induced apoptosis in the BJAB human B cell line: Involvement of PKC/ERK1/2/JNK signaling pathways in HO-1 expression. Toxicology 2012; 300:103-11. [DOI: 10.1016/j.tox.2012.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/16/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
155
|
Ma Q, He X. Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Pharmacol Rev 2012; 64:1055-81. [PMID: 22966037 PMCID: PMC4648289 DOI: 10.1124/pr.110.004333] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Induction of drug-metabolizing enzymes through the antioxidant response element (ARE)-dependent transcription was initially implicated in chemoprevention against cancer by antioxidants. Recent progress in understanding the biology and mechanism of induction revealed a critical role of induction in cellular defense against electrophilic and oxidative stress. Induction is mediated through a novel signaling pathway via two regulatory proteins, the nuclear factor erythroid 2-related factor 2 (Nrf2) and the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1). Nrf2 binds to Keap1 at a two site-binding interface and is ubiquitinated by the Keap1/cullin 3/ring box protein-1-ubiquitin ligase, resulting in a rapid turnover of Nrf2 protein. Electrophiles and oxidants modify critical cysteine thiols of Keap1 and Nrf2 to inhibit Nrf2 ubiquitination, leading to Nrf2 activation and induction. Induction increases stress resistance critical for cell survival, because knockout of Nrf2 in mice increased susceptibility to a variety of toxicity and disease processes. Collateral to diverse functions of Nrf2, genome-wide search has led to the identification of a plethora of ARE-dependent genes regulated by Nrf2 in an inducer-, tissue-, and disease-dependent manner to control drug metabolism, antioxidant defense, stress response, proteasomal degradation, and cell proliferation. The protective nature of Nrf2 could also be hijacked in a number of pathological conditions by means of somatic mutation, epigenetic alteration, and accumulation of disruptor proteins, promoting drug resistance in cancer and pathologic liver features in autophagy deficiency. The repertoire of ARE inducers has expanded enormously; the therapeutic potential of the inducers has been examined beyond cancer prevention. Developing potent and specific ARE inducers and Nrf2 inhibitors holds certain new promise for the prevention and therapy against cancer, chronic disease, and toxicity.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute forOccupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia.
| | | |
Collapse
|
156
|
Lemaire B, Debier C, Calderon PB, Thomé JP, Stegeman J, Mork J, Rees JF. Precision-cut liver slices to investigate responsiveness of deep-sea fish to contaminants at high pressure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10310-10316. [PMID: 22900608 DOI: 10.1021/es301850e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
While deep-sea fish accumulate high levels of persistent organic pollutants (POPs), the toxicity associated with this contamination remains unknown. Indeed, the recurrent collection of moribund individuals precludes experimental studies to investigate POP effects in this fauna. We show that precision-cut liver slices (PCLS), an in vitro tool commonly used in human and rodent toxicology, can overcome such limitation. This technology was applied to individuals of the deep-sea grenadier Coryphaenoides rupestris directly upon retrieval from 530-m depth in Trondheimsfjord (Norway). PCLS remained viable and functional for 15 h when maintained in an appropriate culture media at 4 °C. This allowed experimental exposure of liver slices to the model POP 3-methylcholanthrene (3-MC; 25 μM) at levels of hydrostatic pressure mimicking shallow (0.1 megapascal or MPa) and deep-sea (5-15 MPa; representative of 500-1500 m depth) environments. As in shallow water fish, 3-MC induced the transcription of the detoxification enzyme cytochrome P4501A (CYP1A; a biomarker of exposure to POPs). This induction was diminished at elevated pressure, suggesting a limited responsiveness of C. rupestris toward POPs in its native environment. This very first in vitro toxicological investigation on a deep-sea fish opens the route for understanding pollutants effects in this highly exposed fauna.
Collapse
Affiliation(s)
- Benjamin Lemaire
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
157
|
Inhibitory effects of Zataria multiflora essential oil and its main components on nitric oxide and hydrogen peroxide production in glucose-stimulated human monocyte. Food Chem Toxicol 2012; 50:3079-85. [DOI: 10.1016/j.fct.2012.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/28/2012] [Accepted: 06/04/2012] [Indexed: 12/24/2022]
|
158
|
He X, Young SH, Fernback JE, Ma Q. Single-Walled Carbon Nanotubes Induce Fibrogenic Effect by Disturbing Mitochondrial Oxidative Stress and Activating NF-κB Signaling. ACTA ACUST UNITED AC 2012; Suppl 5. [PMID: 26702365 DOI: 10.4172/2161-0495.s5-005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) are newly discovered material of crystalline carbon that forms single-carbon layer cylinders with nanometer diameters and varying lengths. Although SWCNTs are potentially suitable for a range of novel applications, their extremely small size, fiber-like shape, large surface area, and unique surface chemistry raise potential hazard to humans, including lung toxicity and fibrosis. The molecular mechanisms by which SWCNTs cause lung damage remain elusive. Here we show that SWCNTs dose and time-dependently caused toxicity in cultured human bronchial epithelial (BEAS-2B), alveolar epithelial (A549), and lung fibroblast (WI38) cells. At molecular levels, SWCNTs induced significant mitochondrial depolarization and ROS production at subtoxic doses. SWCNTs stimulated the secretion of proinflammatory cytokines and chemokines TNFα, IL-1β, IL-6, IL-10 and MCP1 from macrophages (Raw 264.7), which was attributed to the activation of the canonical signaling pathway of NF-κB by SWCNT. Finally, SWCNTs stimulated profibrogenic growth factors TGFβ1 production and fibroblast-to-myofibroblast-transformation. These results indicate that SWCNTs has a potential to induce human lung damage and fibrosis by damaging mitochondria, generating ROS, and stimulating production of proinflammatory and profibrogenic cytokines and growth factors.
Collapse
Affiliation(s)
- Xiaoqing He
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division,National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, USA
| | - Shih-Houng Young
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, USA
| | - Joseph E Fernback
- Chemical Exposure and Measuring Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division,National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, USA
| |
Collapse
|
159
|
He X, Wang L, Szklarz G, Bi Y, Ma Q. Resveratrol inhibits paraquat-induced oxidative stress and fibrogenic response by activating the nuclear factor erythroid 2-related factor 2 pathway. J Pharmacol Exp Ther 2012; 342:81-90. [PMID: 22493042 PMCID: PMC4696400 DOI: 10.1124/jpet.112.194142] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an antioxidant-activated transcription factor that recently emerged as a critical regulator of cellular defense against oxidative and inflammatory lesions. Resveratrol (Res) is a natural phytoalexin that exhibits multiple therapeutic potentials, including antioxidative and anti-inflammatory effects in animals. Paraquat (PQ) is the second most widely used herbicide worldwide, but it selectively accumulates in human lungs to cause oxidative injury and fibrosis with high mortality. Here, we analyzed the molecular mechanism of the fibrogenic response to PQ and its inhibition by Res and Nrf2. PQ dose-dependently caused toxicity in normal human bronchial epithelial cells (BEAS-2B), resulting in mitochondrial damage, oxidative stress, and cell death. Res at 10 μM markedly inhibited PQ toxicity. PQ at 10 μM stimulated production of inflammatory and profibrogenic factors (tumor necrosis factor α, interleukin 6, and transforming growth factor β1) and induced the transformation of normal human lung fibroblasts (WI38-VA13) to myofibroblasts; both effects were inhibited by Res. Res strongly activated the Nrf2 signaling pathway and induced antioxidant response element-dependent cytoprotective genes. On the other hand, knockout or knockdown of Nrf2 markedly increased PQ-induced cytotoxicity, cytokine production, and myofibroblast transformation and abolished protection by Res. The findings demonstrate that Res attenuates PQ-induced reactive oxygen species production, inflammation, and fibrotic reactions by activating Nrf2 signaling. The study reveals a new pathway for molecular intervention against pulmonary oxidative injury and fibrosis.
Collapse
Affiliation(s)
- Xiaoqing He
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505, USA
| | | | | | | | | |
Collapse
|
160
|
Kavoosi G, Teixeira da Silva JA, Saharkhiz MJ. Inhibitory effects of Zataria multiflora essential oil and its main components on nitric oxide and hydrogen peroxide production in lipopolysaccharide-stimulated macrophages. ACTA ACUST UNITED AC 2012; 64:1491-500. [PMID: 22943180 DOI: 10.1111/j.2042-7158.2012.01510.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Zataria multiflora is an aromatic plant that is used in flavouring and preserving foods and also used as an antispasmodic, anaesthetic and antinociceptive agent. In this study, the effects of Z. multiflora essential oil on nitric oxide (NO) and hydrogen peroxide (H(2) O(2) ) production in lipopolysaccharide (LPS)-stimulated macrophages was investigated. METHODS Z. multiflora essential oil was extracted by water-distillation, analysed by GC-MS and then the effect of the essential oil on NO and H(2) O(2) production was investigated. KEY FINDINGS Carvacrol (52%), thymol (16%) and p-cymene (10%) were the main components of the oil. The IC50 (concentration providing 50% inhibition) for reactive oxygen scavenging was estimated to be 5.7, 3 and 4.2 µg/ml for the essential oil, thymol and carvacrol, respectively, while the corresponding IC50 values for reactive nitrogen scavenging were estimated to be 8.6, 4.7 and 6.6 µg/ml. Z. multiflora essential oil, thymol, and carvacrol significantly reduced NO and H(2) O(2) production as well as NO synthase and NADH oxidase activity in LPS-stimulated murine macrophages while p-cymene did not show any antioxidant activity. CONCLUSIONS Z. multiflora essential oil has the potential to be used in the therapy of oxidative damage.
Collapse
Affiliation(s)
- Gholamreza Kavoosi
- Institute of Biotechnology Department of Horticultural Sciences, Faculty of Agriculture, Shiraz University, Shiraz, Iran.
| | | | | |
Collapse
|
161
|
He X, Ma Q. Disruption of Nrf2 Synergizes with High Glucose to Cause Heightened Myocardial Oxidative Stress and Severe Cardiomyopathy in Diabetic Mice. ACTA ACUST UNITED AC 2012; Suppl 7. [PMID: 26691239 DOI: 10.4172/2155-6156.s7-002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High glucose-induced oxidative stress is a major contributing mechanism to the development of diabetic cardiomyopathy. Nrf2 is an emerging critical regulator of cellular defense against oxidative damage. The role of Nrf2 in diabetic cardiomyopathy was investigated in vivo. Streptozotocin (STZ) induced diabetes in Nrf2 knockout (KO) mice that rapidly progressed to severe conditions with high mortality within two weeks of injection; whereas, in wild type (WT) mice, diabetes was less severe with no death. Severe myocardial lesions were observed in diabetic KO mice that had high, sublethal levels of blood glucose including: (a) irregular myocardial arrangements, myofibrillar discontinuation, and cell death; (b) reduced electron density, discontinuation of myocardial fibers, and mitochondrial damage; and (c) markedly reduced contractility of the cardiomyocytes to β-agonist stimulation. Parallel to severe cardiomyopathy, the diabetic KO hearts showed: (a) increased apoptosis as revealed by TUNEL and PARP1 cleavage assays; (b) infiltration of granulocytes and macrophages as well as fibrosis indicating robust inflammatory response; and (c) heightened oxidative stress as evidenced by increased levels of 8-hydroxydeoxyquanine, free malondialdehyde, and 3-nitrotyrosine. Increased oxidative stress in the KO hearts was attributed to decrease or loss of the basal and induced expression of Nrf2-dependent cytoprotective genes. Our findings demonstrate that loss of Nrf2 function synergizes with high glucose to cause heightened oxidative stress in the heart leading to severe diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoqing He
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA
| |
Collapse
|
162
|
Kershaw RM, Hodges NJ. Repair of oxidative DNA damage is delayed in the Ser326Cys polymorphic variant of the base excision repair protein OGG1. Mutagenesis 2012; 27:501-10. [PMID: 22451681 DOI: 10.1093/mutage/ges012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene-environment interactions influence an individual's risk of disease development. A common human 8-oxoguanine DNA glycosylase 1 (OGG1) variant, Cys326-hOGG1, has been associated with increased cancer risk. Evidence suggests that this is due to reduced repair ability, particularly under oxidising conditions but the underlying mechanism is poorly understood. Oxidising conditions may arise due to internal cellular processes, such as inflammation or external chemical or radiation exposure. To investigate wild-type and variant OGG1 regulation and activity under oxidising conditions, we generated mOgg1 (-/-) null mouse embryonic fibroblasts cells stably expressing Ser326- and Cys326-hOGG1 and measured activity, gene expression, protein expression and localisation following treatment with the glutathione-depleting compound L-buthionine-S-sulfoximine (BSO). Assessment of OGG1 activity using a 7,8-dihydro-8-oxodeoxyguanine (8-oxo dG) containing molecular beacon demonstrated that the activity of both Ser326- and Cys326-hOGG1 was increased following oxidative treatment but with different kinetics. Peak activity of Ser326-hOGG1 occurred 12 h prior to that of Cys326-hOGG1. In both variants, the increased activity was not associated with any gene expression or protein increase or change in protein localisation. These findings suggest that up-regulation of OGG1 activity in response to BSO-induced oxidative stress is via post-transcriptional regulation and provide further evidence for impaired Cys326-hOGG1 repair ability under conditions of oxidative stress. This may have important implications for increased mutation frequency resulting from increased oxidative stress in individuals homozygous for the Cys326 hOGG1 allele.
Collapse
Affiliation(s)
- Rachael M Kershaw
- School of Biosciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
163
|
Abstract
Tumour necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is a dominantly inherited autoinflammatory disease caused by heterozygous mutations in the TNFRSF1A gene encoding for the TNF receptor 1 (TNFR1). TRAPS is a multi-faceted and heterogeneous disease which commonly manifests as recurrent episodes of high fever accompanied by abdominal pain, pleurisy, migratory rash, and myalgia. Disease attacks occur spontaneously or may be elicited by minor triggers. Because of a vigorous and sustained acute-phase response it may be complicated by systemic AA amyloidosis. Therapeutically interleukin-1 blockade seems even more promising than TNF blockade. Studies on the pathogenesis of TRAPS have shown TNFα-dependent cellular signalling to be defective, an enigmatic finding considering the hyperinflammatory phenotype of the disease. Several studies indicate that most mutated receptors never reach the cell surface but are misfolded and trapped in the endoplasmic reticulum, where they may elicit an intracellular inflammatory response, and thus lead to constitutional expression of proinflammatory cytokines. The aim of this review is to describe the current understanding of the pathogenesis of TRAPS by integrating recent clinical and laboratory data.
Collapse
Affiliation(s)
- Tom Pettersson
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Haartmaninkatu 4, Helsinki, Finland.
| | | | | | | |
Collapse
|
164
|
Glutathione homeostasis and functions: potential targets for medical interventions. JOURNAL OF AMINO ACIDS 2012; 2012:736837. [PMID: 22500213 PMCID: PMC3303626 DOI: 10.1155/2012/736837] [Citation(s) in RCA: 769] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 08/30/2011] [Accepted: 10/24/2011] [Indexed: 12/25/2022]
Abstract
Glutathione (GSH) is a tripeptide, which has many biological roles including protection against reactive oxygen and nitrogen species. The primary goal of this paper is to characterize the principal mechanisms of the protective role of GSH against reactive species and electrophiles. The ancillary goals are to provide up-to-date knowledge of GSH biosynthesis, hydrolysis, and utilization; intracellular compartmentalization and interorgan transfer; elimination of endogenously produced toxicants; involvement in metal homeostasis; glutathione-related enzymes and their regulation; glutathionylation of sulfhydryls. Individual sections are devoted to the relationships between GSH homeostasis and pathologies as well as to developed research tools and pharmacological approaches to manipulating GSH levels. Special attention is paid to compounds mainly of a natural origin (phytochemicals) which affect GSH-related processes. The paper provides starting points for development of novel tools and provides a hypothesis for investigation of the physiology and biochemistry of glutathione with a focus on human and animal health.
Collapse
|
165
|
Abstract
Oxidative stress is defined by an imbalance between increased levels of reactive oxygen species (ROS) and a low activity of antioxidant mechanisms. An increased oxidative stress can induce damage to the cellular structure and potentially destroy tissues. However, ROS are needed for adequate cell function, including the production of energy by the mitochondria. Increased oxidative stress has been incriminated in physiological conditions, such as aging and exercise, and in several pathological conditions, including cancer, neurodegenerative diseases, cardiovascular diseases, diabetes, inflammatory diseases, and intoxications. However, prevention by antioxidants has been mostly inefficient. Therefore, a rigorous scientific evaluation in well-defined conditions is mandatory to define the appropriate place for manipulations of the oxidative pathways in human medicine.
Collapse
|
166
|
Roche L. Oxidative stress: the dark side of soybean-oil-based emulsions used in parenteral nutrition. ACTA ACUST UNITED AC 2012. [DOI: 10.5455/oams.100412.rv.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
167
|
Swartzlander DB, Bauer NC, Corbett AH, Doetsch PW. Regulation of base excision repair in eukaryotes by dynamic localization strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:93-121. [PMID: 22749144 DOI: 10.1016/b978-0-12-387665-2.00005-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter discusses base excision repair (BER) and the known mechanisms defined thus far regulating BER in eukaryotes. Unlike the situation with nucleotide excision repair and double-strand break repair, little is known about how BER is regulated to allow for efficient and accurate repair of many types of DNA base damage in both nuclear and mitochondrial genomes. Regulation of BER has been proposed to occur at multiple, different levels including transcription, posttranslational modification, protein-protein interactions, and protein localization; however, none of these regulatory mechanisms characterized thus far affect a large spectrum of BER proteins. This chapter discusses a recently discovered mode of BER regulation defined in budding yeast cells that involves mobilization of DNA repair proteins to DNA-containing organelles in response to genotoxic stress.
Collapse
Affiliation(s)
- Daniel B Swartzlander
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
168
|
Snyder-Talkington BN, Qian Y, Castranova V, Guo NL. New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: application of coculture and bioinformatics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2012; 15:468-492. [PMID: 23190270 PMCID: PMC3513758 DOI: 10.1080/10937404.2012.736856] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanotechnology is a rapidly expanding field with wide application for industrial and medical use; therefore, understanding the toxicity of engineered nanomaterials is critical for their commercialization. While short-term in vivo studies have been performed to understand the toxicity profile of various nanomaterials, there is a current effort to shift toxicological testing from in vivo observational models to predictive and high-throughput in vitro models. However, conventional monoculture results of nanoparticle exposure are often disparate and not predictive of in vivo toxic effects. A coculture system of multiple cell types allows for cross-talk between cells and better mimics the in vivo environment. This review proposes that advanced coculture models, combined with integrated analysis of genome-wide in vivo and in vitro toxicogenomic data, may lead to development of predictive multigene expression-based models to better determine toxicity profiles of nanomaterials and consequent potential human health risk due to exposure to these compounds.
Collapse
Affiliation(s)
- Brandi N. Snyder-Talkington
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Nancy L. Guo
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
169
|
He X, Young SH, Schwegler-Berry D, Chisholm WP, Fernback JE, Ma Q. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem Res Toxicol 2011; 24:2237-48. [PMID: 22081859 DOI: 10.1021/tx200351d] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon nanotubes (CNTs) are novel materials with unique electronic and mechanical properties. The extremely small size, fiberlike shape, large surface area, and unique surface chemistry render their distinctive chemical and physical characteristics and raise potential hazards to humans. Several reports have shown that pulmonary exposure to CNTs caused inflammation and lung fibrosis in rodents. The molecular mechanisms that govern CNT lung toxicity remain largely unaddressed. Here, we report that multiwalled carbon nanotubes (MWCNTs) have potent, dose-dependent toxicity on cultured human lung cells (BEAS-2B, A549, and WI38-VA13). Mechanistic analyses were carried out at subtoxic doses (≤20 μg/mL, ≤ 24 h). MWCNTs induced substantial ROS production and mitochondrial damage, implicating oxidative stress in cellular damage by MWCNT. MWCNTs activated the NF-κB signaling pathway in macrophages (RAW264.7) to increase the secretion of a panel of cytokines and chemokines (TNFα, IL-1β, IL-6, IL-10, and MCP1) that promote inflammation. Activation of NF-κB involved rapid degradation of IκBα, nuclear accumulation of NF-κBp65, binding of NF-κB to specific DNA-binding sequences, and transactivation of target gene promoters. Finally, MWCNTs induced the production of profibrogenic growth factors TGFβ1 and PDGF from macrophages that function as paracrine signals to promote the transformation of lung fibroblasts (WI38-VA13) into myofibroblasts, a key step in the development of fibrosis. Our results revealed that MWCNTs elicit multiple and intertwining signaling events involving oxidative damage, inflammatory cytokine production, and myofibroblast transformation, which potentially underlie the toxicity and fibrosis in human lungs by MWCNTs.
Collapse
Affiliation(s)
- Xiaoqing He
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505, USA
| | | | | | | | | | | |
Collapse
|
170
|
Hackert T, Werner J. Antioxidant therapy in acute pancreatitis: experimental and clinical evidence. Antioxid Redox Signal 2011; 15:2767-77. [PMID: 21834688 DOI: 10.1089/ars.2011.4076] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Oxidative stress plays an important role in the pathogenesis of both acute and chronic pancreatitis. Although its impact is well investigated and has been studied clinically in chronic pancreatitis, it is less well defined for acute pancreatitis. RECENT ADVANCES Pathophysiological aspects of oxidative stress in acute pancreatitis have shown that reactive oxidative species (ROS) participate in the inflammatory cascade, and mediate inflammatory cell adhesion and consecutive tissue damage. Furthermore, ROS are involved in the generation of pain as another important clinical feature of patients suffering from acute pancreatitis. CRITICAL ISSUES Despite sufficient basic and experimental knowledge and evidence, the step from bench to bedside has not been successfully performed. Only a limited number of clinical studies are available that can give convincing evidence for the use of antioxidants in the clinical setting of acute pancreatitis. FUTURE DIRECTIONS Future studies are required to evaluate potential benefits of antioxidative substances to attenuate the severity of acute pancreatitis. Special focus should be put on the aspect of pain generation and the progression from mild to severe acute pancreatitis in the clinical setting.
Collapse
Affiliation(s)
- Thilo Hackert
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
171
|
Ma Q. Influence of light on aryl hydrocarbon receptor signaling and consequences in drug metabolism, physiology and disease. Expert Opin Drug Metab Toxicol 2011; 7:1267-93. [DOI: 10.1517/17425255.2011.614947] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
172
|
The control of mitochondrial succinate-dependent H2O2 production. J Bioenerg Biomembr 2011; 43:359-66. [DOI: 10.1007/s10863-011-9363-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/25/2011] [Indexed: 12/11/2022]
|
173
|
Procházková J, Kubala L, Kotasová H, Gudernová I, Šrámková Z, Pekarová M, Sarkadi B, Pacherník J. ABC transporters affect the detection of intracellular oxidants by fluorescent probes. Free Radic Res 2011; 45:779-87. [PMID: 21568630 DOI: 10.3109/10715762.2011.579120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intracellular production of reactive oxygen species (ROS) plays an important role in the control of cell physiology. For the assessment of intracellular ROS production, a plethora of fluorescent probes is commonly used. Interestingly, chemical structures of these probes imply they could be substrates of plasma membrane efflux pumps, called ABC transporters. This study tested whether the determination of intracellular ROS production and mitochondrial membrane potential by selected fluorescent probes is modulated by the expression and activity of ABC transporters. The sub-clones of the HL-60 cell line over-expressing MDR1, MRP1 and BCRP transporters were employed. ROS production measured by luminol- and L-012-enhaced chemiluminescence and cytochrome c reduction assay showed similar levels of ROS production in all the employed cell lines. It was proved that dihydrorhodamine 123, dihexiloxocarbocyanine iodide, hydroethidine, tetrachloro-tetraethylbenzimidazolocarbo-cyanine iodide and tetramethylrhodamine ethyl ester perchlorate are substrates for MDR1; dichlorodihydrofluoresceine, hydroethidine and tetramethylrhodamine ethyl ester perchlorate are substrates for MRP1; dichlorodihydrofluoresceine, dihydrorhodamine 123, hydroethidine and tetrachloro-tetraethylbenzimidazolocarbo-cyanine iodide are substrates for BCRP. Thus, the determination of intracellular ROS and mitochondrial potential by the selected probes is significantly altered by ABC transporter activities. The activity of these transporters must be considered when employing fluorescent probes for the assessment of ROS production or mitochondrial membrane potential.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Westhofen P, Watzka M, Marinova M, Hass M, Kirfel G, Müller J, Bevans CG, Müller CR, Oldenburg J. Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular antioxidant function. J Biol Chem 2011; 286:15085-94. [PMID: 21367861 DOI: 10.1074/jbc.m110.210971] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1), expressed in HEK 293T cells and localized exclusively to membranes of the endoplasmic reticulum, was found to support both vitamin K 2,3-epoxide reductase (VKOR) and vitamin K reductase enzymatic activities. Michaelis-Menten kinetic parameters for dithiothreitol-driven VKOR activity were: K(m) (μM) = 4.15 (vitamin K(1) epoxide) and 11.24 (vitamin K(2) epoxide); V(max) (nmol·mg(-1)·hr(-1)) = 2.57 (vitamin K(1) epoxide) and 13.46 (vitamin K(2) epoxide). Oxidative stress induced by H(2)O(2) applied to cultured cells up-regulated VKORC1L1 expression and VKOR activity. Cell viability under conditions of no induced oxidative stress was increased by the presence of vitamins K(1) and K(2) but not ubinquinone-10 and was specifically dependent on VKORC1L1 expression. Intracellular reactive oxygen species levels in cells treated with 2,3-dimethoxy-1,4-naphthoquinone were mitigated in a VKORC1L1 expression-dependent manner. Intracellular oxidative damage to membrane intrinsic proteins was inversely dependent on VKORC1L1 expression and the presence of vitamin K(1). Taken together, our results suggest that VKORC1L1 is responsible for driving vitamin K-mediated intracellular antioxidation pathways critical to cell survival.
Collapse
Affiliation(s)
- Philipp Westhofen
- Institute of Experimental Hematology and Transfusion Medicine, Sigmund-Freud-Strasse 25, University Clinic Bonn, 53127 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Alcaide P, Merinero B, Ruiz-Sala P, Richard E, Navarrete R, Arias A, Ribes A, Artuch R, Campistol J, Ugarte M, Rodríguez-Pombo P. Defining the pathogenicity of creatine deficiency syndrome. Hum Mutat 2011; 32:282-91. [PMID: 21140503 DOI: 10.1002/humu.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/12/2010] [Indexed: 01/09/2023]
Abstract
This work examined nine patients with creatine deficiency syndrome (CDS): six with a creatine transport (CRTR) defect and three with a GAMT defect. Eleven nucleotide variations were detected: six in SLC6A8 and five in GAMT. These changes were analyzed at the mRNA level and specific alleles (most of which bore premature stop codons) were selected as nulls because they provoked nonsense-mediated decay activation. The impact of these CDS mutations on metabolic stress (ROS production, p38MAPK activation, aberrant proliferation and apoptosis) was analyzed in patient fibroblast cultures. Oxidative stress contributed toward the severe form of CDS, with increases seen in the intracellular ROS content and the percentage of apoptotic cells. An altered cell cycle was also seen in a number of CRTR and GAMT fibroblast cell lines (mostly those carrying null alleles). p38MAPK activation only correlated with oxidative stress in the CRTR cells. Based on intracellular creatine levels, the contribution of energy depletion toward metabolic stress was demonstrable only in selected CRTR cells. Together, these findings suggest that the apoptotic response to genotoxic damage in the present CDS cells may have been triggered by different cell signaling pathways. They also suggest that reducing oxidative stress could be helpful in treating CDS. Hum Mutat 32:1-10, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Patricia Alcaide
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Furukawa R, Yamada Y, Takenaga M, Igarashi R, Harashima H. Octaarginine-modified liposomes enhance the anti-oxidant effect of Lecithinized superoxide dismutase by increasing its cellular uptake. Biochem Biophys Res Commun 2011; 404:796-801. [DOI: 10.1016/j.bbrc.2010.12.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/12/2010] [Indexed: 01/31/2023]
|
177
|
Amengual J, Lobo GP, Golczak M, Li HNM, Klimova T, Hoppel CL, Wyss A, Palczewski K, von Lintig J. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J 2010; 25:948-59. [PMID: 21106934 DOI: 10.1096/fj.10-173906] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Carotenoids are the precursors for vitamin A and are proposed to prevent oxidative damage to cells. Mammalian genomes encode a family of structurally related nonheme iron oxygenases that modify double bonds of these compounds by oxidative cleavage and cis-to-trans isomerization. The roles of the family members BCMO1 and RPE65 for vitamin A production and vision have been well established. Surprisingly, we found that the third family member, β,β-carotene-9',10'-oxygenase (BCDO2), is a mitochondrial carotenoid-oxygenase with broad substrate specificity. In BCDO2-deficient mice, carotenoid homeostasis was abrogated, and carotenoids accumulated in several tissues. In hepatic mitochondria, accumulated carotenoids induced key markers of mitochondrial dysfunction, such as manganese superoxide dismutase (9-fold), and reduced rates of ADP-dependent respiration by 30%. This impairment was associated with an 8- to 9-fold induction of phosphor-MAP kinase and phosphor-AKT, markers of cell signaling pathways related to oxidative stress and disease. Administration of carotenoids to human HepG2 cells depolarized mitochondrial membranes and resulted in the production of reactive oxygen species. Thus, our studies in BCDO2-deficient mice and human cell cultures indicate that carotenoids can impair respiration and induce oxidative stress. Mammalian cells thus express a mitochondrial carotenoid-oxygenase that degrades carotenoids to protect these vital organelles.
Collapse
Affiliation(s)
- Jaume Amengual
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Ther 2010; 128:336-74. [DOI: 10.1016/j.pharmthera.2010.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
|
179
|
Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:178-86. [PMID: 20382436 DOI: 10.1016/j.aquatox.2010.03.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 05/09/2023]
Abstract
Gold nanoparticles (AuNP) have potential applications in drug delivery, cancer diagnosis and therapy, food industry and environment remediation. However, little is known about their potential toxicity or fate in the environment. Mytilus edulis was exposed in tanks to 750 ppb AuNP (average diameter 5.3 ± 1 nm) for 24h to study in vivo biological effects of nanoparticles. Traditional biomarkers and an affinity procedure selective for thiol-containing proteins followed by two-dimensional electrophoresis (2DE) separations were used to study toxicity and oxidative stress responses. Results were compared to those obtained for treatment with cadmium chloride, a well known pro-oxidant. M. edulis mainly accumulated AuNP in digestive gland which also showed higher lipid peroxidation. One-dimensional SDS/PAGE (1DE) and 2DE analysis of digestive gland samples revealed decreased thiol-containing proteins for AuNP. Lysosomal membrane stability measured in haemolymph gave lower values for neutral red retention time (NRRT) in both treatments but was greater in AuNP. Oxidative stress occurred within 24h of AuNP exposure in M. edulis. Previously we showed that larger diameter AuNP caused modest effects, indicating that nanoparticle size is a key factor in biological responses to nanoparticles. This study suggests that M. edulis is a suitable model animal for environmental toxicology studies of nanoparticles.
Collapse
Affiliation(s)
- Sara Tedesco
- Environmental Research Institute of University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
180
|
Kim D, Kim YJ, Koh HS, Jang TY, Park HE, Kim JY. Reactive oxygen species enhance TLR10 expression in the human monocytic cell line THP-1. Int J Mol Sci 2010; 11:3769-82. [PMID: 21152300 PMCID: PMC2996776 DOI: 10.3390/ijms11103769] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/10/2010] [Accepted: 09/17/2010] [Indexed: 02/06/2023] Open
Abstract
We investigated TLR10 expression in human monocytes, THP-1 cells, cultured in hypoxia (3% O2). Levels of both TLR10 mRNA and protein in THP-1 cells cultured in hypoxia were significantly higher than those cultured in normoxia (20% O2). We examined intracellular reactive oxygen species (ROS) content in hypoxic cells, and TLR10 expression in cells treated with hydrogen peroxide (H2O2), to determine whether the increase in TLR10 expression observed with hypoxia was due to an increase in intracellular ROS levels. We found that the level of intracellular ROS in cells subject to hypoxia was significantly higher than in normoxia. Experiments with ROS synthesis inhibitors revealed that hypoxia induced ROS production is mainly due to NADPH oxidase activity. TLR10 mRNA expression was increased by treatment with H2O2 at concentrations ranging from 50 to 250 μM. We screened the TLR10 promoter and found putative binding sites for transcription factors (TFs), such as NF-κB, NF-AT and AP-1. Next, we examined TF activities using a luciferase reporter assay. Activities of NF-κB, NF-AT and AP-1 in the cells treated with H2O2 were significantly higher than in untreated cells. The experiment with TF inhibitors revealed that ROS-induced upregulation of TLR10 expression is mainly due to NF-κB activation. Overall, our results suggest that hypoxia or ROS increase TLR10 expression in human monocytes and the transcriptional activities of NF-κB are involved in this process. Therefore, it is suggested that ROS produced by various exogenous stimuli may play a crucial role in the regulation of expression and function of TLR10 as second messengers.
Collapse
Affiliation(s)
- Donghee Kim
- Department of Biological Science, Gachon University of Medicine and Science, Incheon, 406-799, Korea; E-Mails: (D.K.); (Y.J.K.); (H.S.K.); (T.Y.J.); (H.E.P.)
| | | | | | | | | | | |
Collapse
|
181
|
Wang HJ, Wei XF, Jiang YY, Huang H, Yang Y, Fan SM, Zang LH, Tashiro SI, Onodera S, Ikejima T. Silibinin induces the generation of nitric oxide in human breast cancer MCF-7 cells. Free Radic Res 2010; 44:577-84. [PMID: 20370556 DOI: 10.3109/10715761003692495] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Increasing research has concentrated on the anti-tumour efficacy of silibinin, a flavonolignan that is clinically used as an hepatoprotectant. However, previous work has found that silibinin-induced apoptosis is accompanied by protective superoxide (O(2)*-) generation in MCF-7 cells. This study further reports the formation of reactive nitrogen species (RNS) in the same system. It finds that silibinin induces nitric oxide (*NO) generation in a time- and concentration-dependent manner. Moreover, the results support that there exists an inter-regulation pattern between RNS and reactive oxygen species (ROS) generation. In addition, silibinin is also found to induce RNS and ROS generation in the isolated populations of mouse peripheral blood mononuclear cells (PBMCs) and a simple in vivo model of Caenorhabditis elegans.
Collapse
Affiliation(s)
- Hong-Jun Wang
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|