151
|
A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J Neurosci 2013; 33:8951-60. [PMID: 23699506 DOI: 10.1523/jneurosci.5657-12.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Caloric restriction (CR) is a dietary regimen known to promote lifespan by slowing down the occurrence of age-dependent diseases. The greatest risk factor for neurodegeneration in the brain is age, from which follows that CR might also attenuate the progressive loss of neurons that is often associated with impaired cognitive capacities. In this study, we used a transgenic mouse model that allows for a temporally and spatially controlled onset of neurodegeneration to test the potentially beneficial effects of CR. We found that in this model, CR significantly delayed the onset of neurodegeneration and synaptic loss and dysfunction, and thereby preserved cognitive capacities. Mechanistically, CR induced the expression of the known lifespan-regulating protein SIRT1, prompting us to test whether a pharmacological activation of SIRT1 might recapitulate CR. We found that oral administration of a SIRT1-activating compound essentially replicated the beneficial effects of CR. Thus, SIRT1-activating compounds might provide a pharmacological alternative to the regimen of CR against neurodegeneration and its associated ailments.
Collapse
|
152
|
Decreased expression of sirtuin 6 is associated with release of high mobility group box-1 after cerebral ischemia. Biochem Biophys Res Commun 2013; 438:388-94. [PMID: 23899523 DOI: 10.1016/j.bbrc.2013.07.085] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/20/2013] [Indexed: 11/22/2022]
Abstract
Sirtuin 6 (SIRT6) belongs to the sirtuin family of NAD(+)-dependent deacetylases and has been implicated in the regulation of metabolism, inflammation, and aging. Here, we found that SIRT6 was predominantly expressed in neuronal cells throughout the entire brain. Ischemia models using transient middle cerebral artery occlusion in rats and oxygen/glucose deprivation (OGD) in SH-SY5Y neuronal cells showed that ischemia reduced SIRT6 expression and induced the release of high mobility group box-1 (HMGB1) from cell nuclei. The reduced expression of SIRT6 via treatment with SIRT6 siRNA dramatically enhanced the OGD-induced release of HMGB1 in SH-SY5Y cells. Together, our data suggest that SIRT6 may serve as a potential therapeutic target for HMGB1-mediated inflammation after cerebral ischemia.
Collapse
|
153
|
The role of SIRT1 in ocular aging. Exp Eye Res 2013; 116:17-26. [PMID: 23892278 DOI: 10.1016/j.exer.2013.07.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 12/27/2022]
Abstract
The sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases that helps regulate the lifespan of diverse organisms. The human genome encodes seven different sirtuins (SIRT1-7), which share a common catalytic core domain but possess distinct N- and C-terminal extensions. Dysfunction of some sirtuins have been associated with age-related diseases, such as cancer, type II diabetes, obesity-associated metabolic diseases, neurodegeneration, and cardiac aging, as well as the response to environmental stress. SIRT1 is one of the targets of resveratrol, a polyphenolic SIRT1 activator that has been shown to increase the lifespan and to protect various organs against aging. A number of animal studies have been conducted to examine the role of sirtuins in ocular aging. Here we review current knowledge about SIRT1 and ocular aging. The available data indicate that SIRT1 is localized in the nucleus and cytoplasm of cells forming all normal ocular structures, including the cornea, lens, iris, ciliary body, and retina. Upregulation of SIRT1 has been shown to have an important protective effect against various ocular diseases, such as cataract, retinal degeneration, optic neuritis, and uveitis, in animal models. These results suggest that SIRT1 may provide protection against diseases related to oxidative stress-induced ocular damage, including cataract, age-related macular degeneration, and optic nerve degeneration in glaucoma patients.
Collapse
|
154
|
Chaudhuri AD, Yelamanchili SV, Marcondes MCG, Fox HS. Up-regulation of microRNA-142 in simian immunodeficiency virus encephalitis leads to repression of sirtuin1. FASEB J 2013; 27:3720-9. [PMID: 23752207 DOI: 10.1096/fj.13-232678] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA (miR)-142 is up-regulated in the brain in HIV and SIV encephalitis (SIVE). We identified the cell types where miR-142 is up-regulated and its relevant downstream target. Fluorescent in situ hybridization combined with immunofluorescent labeling revealed that miR-142-3p and -5p are expressed within hippocampal neurons and myeloid cells in SIVE. Sirtuin1 (SIRT1) was predicted as a potential miR-142 target by analysis of its 3'-UTR and bioinformatic analysis of factors linked to altered hippocampal gene expression profile in SIVE. Overexpression of pre-miR-142 in HEK293T cells led to a 3.7-fold decrease in SIRT1 protein level. Examination of the individual effects of miR-142-5p and miR-142-3p through overexpression and inhibition studies revealed that significant effects on SIRT1 occurred only with miR-142-5p. Luciferase reporter assays revealed a 2.3-fold inhibition of expression due to interaction of miR-142 with the SIRT1 3'-UTR, mutation analysis revealed that only the miR-142-5p target site was active. MiR-142 expression in primary human neurons led to a small (1.3-fold) but significant decrease in SIRT1 protein level. Furthermore, qRT-PCR revealed up-regulation of miR-142-3p (6.4-fold) and -5p (3.9-fold) and down-regulation of SIRT1 (33-fold) in macrophages/microglia from animals with SIVE. We have therefore elucidated a miR-mediated mechanism of regulation of SIRT1 expression in SIVE.
Collapse
Affiliation(s)
- Amrita Datta Chaudhuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | | | |
Collapse
|
155
|
Abstract
Huntington's disease (HD) is an autosomal dominant hereditary disease caused by a trinucleotide repeat mutation in the huntingtin gene that results in an increased number of glutamine residues in the N terminus of huntingtin protein. Mutant huntingtin leads to progressive impairment of motor function, cognitive dysfunction, and neuropsychiatric disturbance. There are no disease-modifying treatments available. During the past decade, sirtuin-1 (SIRT1) has been the focus of intense investigation and discussion because it regulates longevity in multiple organisms and has shown beneficial effects in a variety of models of neurodegenerative disorders. Studies in different animal models provide convincing evidence that SIRT1 protects neurons in mouse models of HD as well as in Caenorhabditis elegans, although controversial results were reported in a fly model. Indeed, many connections exist between the deacetylation function of SIRT1 and its role in neuroprotection. As a result, pharmacological interventions targeting SIRT1 might become promising strategies to combat HD. This review summarizes recent progress in SIRT1 research, with a focus on the specificity of this protein as a potential therapeutic target for HD, as well as existing challenges for developing SIRT1 modulators for clinical use.
Collapse
|
156
|
Paraíso AF, Mendes KL, Santos SHS. Brain activation of SIRT1: role in neuropathology. Mol Neurobiol 2013; 48:681-9. [PMID: 23615921 DOI: 10.1007/s12035-013-8459-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/09/2013] [Indexed: 01/27/2023]
Abstract
Sirtuins (SIRTs) are a family of regulatory proteins of genetic information with a high degree of conservation among species. The SIRTs are heavily involved in several physiological functions including control of gene expression, metabolism, and aging. SIRT1 has been the most studied sirtuin and plays important role in the prevention and progression of neurodegenerative diseases acting in different pathways of proteins involved in brain function. SIRT1 activation regulates important genes that also exert neuroprotective actions such as p53, nuclear factor kappa B, peroxisome proliferator-activated receptor-gamma (PPARγ), PPARγ coactivator-1α, liver X receptor, and forkhead box O. It is well established in literature that growing population aging, oxidative stress, inflammation, and genetic factors are important conditions to development of neurodegenerative disorders. However, the exact pathophysiological mechanisms leading to these diseases remain obscure. The sirtuins show strong potential to become valuable predictive and prognostic markers for diseases and as therapeutic targets for the treatment of a variety of neurodegenerative disorders. In this context, the aim of the current review is to present an actual view of the potential role of SIRT1 in modulating the interaction between target genes and neurodegenerative diseases on the brain.
Collapse
Affiliation(s)
- Alanna Fernandes Paraíso
- Laboratory of Health Science, Postgraduate Program in Health Science, State University of Montes Claros (Unimontes), Av. Cula Mangabeira, 562-Santo Expedito, Montes Claros, Minas Gerais, 39401-001, Brazil
| | | | | |
Collapse
|
157
|
Abstract
Mitochondrial diseases are a diverse group of inherited and acquired disorders that result in inadequate energy production. They can be caused by inheritable genetic mutations, acquired somatic mutations, and exposure to toxins (including some prescription medications). Normal mitochondrial physiology is responsible, in part, for the aging process itself, as free radical production within the mitochondria results in a lifetime burden of oxidative damage to DNA, especially the mitochondrial DNA that, in turn, replicate the mutational burden in future copies of itself, and lipid membranes. Primary mitochondrial diseases are those caused by mutations in genes that encode for mitochondrial structural and enzymatic proteins, and those proteins required for mitochondrial assembly and maintenance. A number of common adult maladies are associated with defective mitochondrial energy production and function, including diabetes, obesity, hyperthyroidism, hypothyroidism, and hyperlipidemia. Mitochondrial dysfunction has been demonstrated in many neurodegenerative disorders, including Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and some cancers. Polymorphisms in mitochondrial DNA have been linked to disease susceptibility, including death from sepsis and survival after head injury. There is considerable overlap in symptoms caused by primary mitochondrial diseases and those illnesses that affect mitochondrial function, but are not caused by primary mutations, as well as disorders that mimic mitochondrial diseases, but are caused by other identified mutations. Evaluation of these disorders is complex, expensive, and not without false-negative and false-positive results that can mislead the physician. Most of the common heritable mitochondrial disorders have been well-described in the literature, but can be overlooked by many clinicians if they are uneducated about these disorders. In general, the evaluation of the classic mitochondrial disorders has become straightforward if the clinician recognized the phenotype and orders appropriate confirmatory testing. However, the majority of patients referred for a mitochondrial evaluation do not have a clear presentation that allows for rapid identification and testing. This article provides introductory comments on mitochondrial structure, physiology, and genetics, but will focus on the presentation and evaluation of adults with mitochondrial symptoms, but who may not have a primary mitochondrial disease.
Collapse
Affiliation(s)
- Bruce H Cohen
- NeuroDevelopmental Science Center, Children's Hospital Medical Center of Akron, 215 West Bowery Street, Suite 4400, Akron, OH 44308, USA.
| |
Collapse
|
158
|
Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 2013; 5:344-52. [PMID: 23417962 PMCID: PMC3598076 DOI: 10.1002/emmm.201302451] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 12/11/2022] Open
Abstract
Sirtuins are NAD-dependent protein deacetylases known to have protective effects against age-related diseases such as cancer, diabetes, cardiovascular and neurodegenerative diseases. In mammals, there are seven sirtuins (SIRT1-7), which display diversity in subcellular localization and function. While SIRT1 has been extensively investigated due to its initial connection with lifespan extension and involvement in calorie restriction, important biological and therapeutic roles of other sirtuins have only recently been recognized. Here, we review the potential roles and effects of SIRT1 and SIRT2 in neurodegenerative diseases. We discuss different functions and targets of SIRT1 and SIRT2 in a variety of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's Disease (HD). We also cover the role of SIRT1 in neuronal differentiation due to the possible implications in neurodegenerative conditions, and conclude with an outlook on the potential therapeutic value of SIRT1 and SIRT2 in these disorders.
Collapse
Affiliation(s)
- Gizem Donmez
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
159
|
Abstract
Mitochondria play a central role in cell fate after stressors such as ischemic brain injury. The convergence of intracellular signaling pathways on mitochondria and their release of critical factors are now recognized as a default conduit to cell death or survival. Besides the individual processes that converge on or emanate from mitochondria, a mitochondrial organellar response to changes in the cellular environment has recently been described. Whereas mitochondria have previously been perceived as a major center for cellular signaling, one can postulate that the organelle's dynamics themselves affect cell survival. This brief perspective review puts forward the concept that disruptions in mitochondrial dynamics--biogenesis, clearance, and fission/fusion events--may underlie neural diseases and thus could be targeted as neuroprotective strategies in the context of ischemic injury. To do so, we present a general overview of the current understanding of mitochondrial dynamics and regulation. We then review emerging studies that correlate mitochondrial biogenesis, mitophagy, and fission/fusion events with neurologic disease and recovery. An overview of the system as it is currently understood is presented, and current assessment strategies and their limitations are discussed.
Collapse
|
160
|
Huntington’s disease: Towards disease modification – Gaps and bridges, facts and opinions. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.baga.2012.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
161
|
Gonzalo H, Brieva L, Tatzber F, Jové M, Cacabelos D, Cassanyé A, Lanau-Angulo L, Boada J, Serrano JCE, González C, Hernández L, Peralta S, Pamplona R, Portero-Otin M. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J Neurochem 2012; 123:622-34. [PMID: 22924648 DOI: 10.1111/j.1471-4159.2012.07934.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/18/2012] [Accepted: 08/19/2012] [Indexed: 11/30/2022]
Abstract
Metabolomic and lipidomic analyses have been used for the profiling of neurodegenerative processes, both in targeted and untargeted approaches. In this work we have applied these techniques to the study of CSF samples of multiple sclerosis (MS) patients (n = 9), compared with samples of non-MS individuals (n = 9) using mass-spectrometry. We have used western-blot and analyzed cell culture to confirm pathogenic pathways suggested by mass-spectrometric measurements. The results of the untargeted approach of metabolomics and lipidomics suggest the existence of several metabolites and lipids discriminating both populations. Applying targeted lipidomic analyses focused to a pathogenic pathway in MS, oxidative stress, reveal that the lipid peroxidation marker 8-iso-prostaglandin F2α is increased in CSF from MS patients. Furthermore, as lipid peroxidation exerts its pathogenical effects through protein modification, we studied the incidence of protein lipoxidation, revealing specific increases in carboxymethylated, neuroketal and malondialdehyde-mediated protein modifications in proteins of CSF from MS patients, despite the absence of their precursors glyoxal and methylglyoxal. Finally, we report that the level of neuroketal-modified proteins correlated with a hitherto unknown increased amount of autoantibodies against lipid peroxidation-modified proteins in CSF, without compensation by signaling induced by lipid peroxidation via peroxisome proliferator-activated receptor γ (PPARγ). The results, despite the limitation of being obtained in a small population, strongly suggest that autoimmunity against in situ produced epitopes derived from lipid peroxidation can be a relevant pathogenic factor in MS.
Collapse
Affiliation(s)
- Hugo Gonzalo
- Department of Experimental Medicine, PCiTAL-Universitat de Lleida-IRBLLEIDA, Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Rice CM, Sun M, Kemp K, Gray E, Wilkins A, Scolding NJ. Mitochondrial sirtuins - a new therapeutic target for repair and protection in multiple sclerosis. Eur J Neurosci 2012; 35:1887-93. [DOI: 10.1111/j.1460-9568.2012.08150.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
163
|
Selfridge JE, E L, Lu J, Swerdlow RH. Role of mitochondrial homeostasis and dynamics in Alzheimer's disease. Neurobiol Dis 2012; 51:3-12. [PMID: 22266017 DOI: 10.1016/j.nbd.2011.12.057] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/27/2011] [Accepted: 12/31/2011] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects a staggering percentage of the aging population and causes memory loss and cognitive decline. Mitochondrial abnormalities can be observed systemically and in brains of patients suffering from AD, and may account for part of the disease phenotype. In this review, we summarize some of the key findings that indicate mitochondrial dysfunction is present in AD-affected subjects, including cytochrome oxidase deficiency, endophenotype data, and altered mitochondrial morphology. Special attention is given to recently described perturbations in mitochondrial autophagy, fission-fusion dynamics, and biogenesis. We also briefly discuss how mitochondrial dysfunction may influence amyloidosis in Alzheimer's disease, why mitochondria are a valid therapeutic target, and strategies for addressing AD-specific mitochondrial dysfunction.
Collapse
Affiliation(s)
- J Eva Selfridge
- Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|