151
|
Huang BR, Chen TS, Bau DT, Chuang IC, Tsai CF, Chang PC, Lu DY. EGFR is a pivotal regulator of thrombin-mediated inflammation in primary human nucleus pulposus culture. Sci Rep 2017; 7:8578. [PMID: 28819180 PMCID: PMC5561020 DOI: 10.1038/s41598-017-09122-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 01/23/2023] Open
Abstract
We found that the coagulation and cytokine pathways were important mechanisms involve in the degeneration of intervertebral discs (IVD) using a microarray approach to analyze gene expression in different grades of specimens. Furthermore, using a cytokine/chemokine array, a significant increase in CXCL8 expression was observed in human nucleus pulposus (NP) cells after thrombin treatment. The enhancement of CXCL8 expression by thrombin was activated by the PAR1 receptor. Importantly, analysis of degenerated human NP tissue samples showed that EGFR expression positively correlated with the grade of tissue degeneration. In NP cells, thrombin caused an increase in phosphorylation of the EGFR at the Tyr1068, and treatment with the pharmacological EGFR inhibitor, AG1473 effectively blocked thrombin-enhanced CXCL8 production. Surprisingly, inhibition of STAT3 for 24 h decreased expression of EGFR. Treatment with thrombin also increased Akt and GSK3α/β activation; this activation was also blocked by EGFR inhibitor. Although c-Src, ERK, and FAK were activated by thrombin, only c-Src and ERK were involved in the STAT3/CXCL8 induction. Our findings indicate that stimulation of an inflammatory response in NP cells by thrombin is part of a specific pathophysiology that modulates the EGFR activation through activation of Src/ERK/STAT3 signaling.
Collapse
Affiliation(s)
- Bor-Ren Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tzu-Sheng Chen
- Department of Pathology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - I-Chen Chuang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan. .,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
152
|
ICAM-1-targeted thrombomodulin mitigates tissue factor-driven inflammatory thrombosis in a human endothelialized microfluidic model. Blood Adv 2017; 1:1452-1465. [PMID: 29296786 DOI: 10.1182/bloodadvances.2017007229] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/02/2017] [Indexed: 12/14/2022] Open
Abstract
Diverse human illnesses are characterized by loss or inactivation of endothelial thrombomodulin (TM), predisposing to microvascular inflammation, activation of coagulation, and tissue ischemia. Single-chain antibody fragment (scFv)/TM) fusion proteins, previously protective against end-organ injury in murine models of inflammation, are attractive candidates to treat inflammatory thrombosis. However, animal models have inherent differences in TM and coagulation biology, are limited in their ability to resolve and control endothelial biology, and do not allow in-depth testing of "humanized" scFv/TM fusion proteins, which are necessary for translation to the clinical domain. To address these challenges, we developed a human whole-blood, microfluidic model of inflammatory, tissue factor (TF)-driven coagulation that features a multichannel format for head-to-head comparison of therapeutic approaches. In this model, fibrin deposition, leukocyte adhesion, and platelet adhesion and aggregation showed a dose-dependent response to tumor necrosis factor-α activation and could be quantified via real-time microscopy. We used this model to compare hTM/R6.5, a humanized, intracellular adhesion molecule 1 (ICAM-1)-targeted scFv/TM biotherapeutic, to untargeted antithrombotic agents, including soluble human TM (shTM), anti-TF antibodies, and hirudin. The targeted hTM/R6.5 more effectively inhibited TF-driven coagulation in a protein C (PC)-dependent manner and demonstrated synergy with supplemental PC. These results support the translational prospects of ICAM-targeted scFv/TM and illustrate the utility of the microfluidic system as a platform to study humanized therapeutics at the interface of endothelium and whole blood under flow.
Collapse
|
153
|
Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 2017; 274:307-329. [PMID: 27782324 DOI: 10.1111/imr.12479] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelium is strategically located at the interface between blood and interstitial tissues, placing thus endothelial cell as a key player in vascular homeostasis. Endothelial cells are in a dynamic equilibrium with their environment and constitute concomitantly a source, a barrier, and a target of defensive mediators. This review will discuss the recent advances in our understanding of the complex crosstalk between the endothelium, the complement system and the hemostasis in health and in disease. The first part will provide a general introduction on endothelial cells heterogeneity and on the physiologic role of the complement and hemostatic systems. The second part will analyze the interplay between complement, hemostasis and endothelial cells in physiological conditions and their alterations in diseases. Particular focus will be made on the prototypes of thrombotic microangiopathic disorders, resulting from complement or hemostasis dysregulation-mediated endothelial damage: atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Novel aspects of the pathophysiology of the thrombotic microangiopathies will be discussed.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Marie Frimat
- INSERM UMR 995, Lille, France.,Nephrology Department, CHU Lille, Lille, France
| | - Veronique Fremeaux-Bacchi
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
154
|
Brambilla M, Rossetti L, Zara C, Canzano P, Giesen PL, Tremoli E, Camera M. Do methodological differences account for the current controversy on tissue factor expression in platelets? Platelets 2017. [DOI: 10.1080/09537104.2017.1327653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Chiara Zara
- Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | | | - Elena Tremoli
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
155
|
Sartim MA, Cezarette GN, Jacob-Ferreira AL, Frantz FG, Faccioli LH, Sampaio SV. Disseminated intravascular coagulation caused by moojenactivase, a procoagulant snake venom metalloprotease. Int J Biol Macromol 2017; 103:1077-1086. [PMID: 28552727 DOI: 10.1016/j.ijbiomac.2017.05.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/27/2017] [Accepted: 05/18/2017] [Indexed: 02/07/2023]
Abstract
Snake venom toxins that activate coagulation factors are key players in the process of venom-induced coagulopathy, and account for severe clinical manifestations. The present study applies a variety of biochemical, hematological, and histopathological approaches to broadly investigate the intravascular and systemic effects of moojenactivase (MooA), the first described PIIId subclass metalloprotease isolated from Bothrops sp. venom that activates coagulation factors. MooA induced consumption coagulopathy with high toxic potency, characterized by prolongation of prothrombin and activated partial thromboplastin time, consumption of fibrinogen and the plasma coagulation factors X and II, and thrombocytopenia. MooA promoted leukocytosis and expression of the proinflammatory cytokines interleukin-6 and tumor necrosis factor-α, accompanied by tissue factor-dependent procoagulant activity in peripheral blood mononuclear cells. This metalloprotease also caused intravascular hemolysis, elevated plasma levels of creatine kinase-MB, aspartate transaminase, and urea/creatinine, and induced morphopathological alterations in erythrocytes, heart, kidney, and lungs associated with thrombosis and hemorrhage. Diagnosis of MooA-induced disseminated intravascular coagulation represents an important approach to better understand the pathophysiology of Bothrops envenomation and develop novel therapeutic strategies targeting hemostatic disturbances.
Collapse
Affiliation(s)
- Marco A Sartim
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Gabriel N Cezarette
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Anna L Jacob-Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fabiani G Frantz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Lucia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
156
|
Słomka A, Piekuś A, Kowalewski M, Pawliszak W, Anisimowicz L, Żekanowska E. Assessment of the Procoagulant Activity of Microparticles and the Protein Z System in Patients Undergoing Off-Pump Coronary Artery Bypass Surgery. Angiology 2017; 69:347-357. [PMID: 28464697 DOI: 10.1177/0003319717706616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To understand the coagulation changes after off-pump coronary artery bypass (OPCAB) surgery, we evaluated the procoagulant activity of microparticles (MPs) and microparticles exposing tissue factor (MPs-TF), together with the levels of total tissue factor (TF), protein Z (PZ), protein Z-dependent protease inhibitor (ZPI), and factor X (FX) before (first day) and 1 week after surgery (seventh day) in plasma samples from 30 patients. Twenty healthy controls were also included. Compared to the controls, patients scheduled for surgery had significantly higher MPs-TF procoagulant activity and lower TF levels ( P = .0006, P = .02, respectively). In the whole cohort, median procoagulant activity of MPs-TF and median levels of TF and ZPI were significantly lower ( P = .02, P = .0003, and P = .004, respectively), while median levels of PZ and FX were significantly higher ( P = .02 and P = .002, respectively) on the seventh day compared to the first day. Our results suggest that OPCAB surgery has a significant effect on the procoagulant activity of MPs-TF and the PZ system.
Collapse
Affiliation(s)
- Artur Słomka
- 1 Department of Pathophysiology, Nicolaus Copernicus University, Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Aleksandra Piekuś
- 2 Department of Cardiac Surgery, Dr Antoni Jurasz Memorial University Hospital, Bydgoszcz, Poland
| | - Mariusz Kowalewski
- 2 Department of Cardiac Surgery, Dr Antoni Jurasz Memorial University Hospital, Bydgoszcz, Poland
| | - Wojciech Pawliszak
- 2 Department of Cardiac Surgery, Dr Antoni Jurasz Memorial University Hospital, Bydgoszcz, Poland
| | - Lech Anisimowicz
- 2 Department of Cardiac Surgery, Dr Antoni Jurasz Memorial University Hospital, Bydgoszcz, Poland
| | - Ewa Żekanowska
- 1 Department of Pathophysiology, Nicolaus Copernicus University, Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
157
|
Koizume S, Miyagi Y. Potential Coagulation Factor-Driven Pro-Inflammatory Responses in Ovarian Cancer Tissues Associated with Insufficient O₂ and Plasma Supply. Int J Mol Sci 2017; 18:ijms18040809. [PMID: 28417928 PMCID: PMC5412393 DOI: 10.3390/ijms18040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is a cell surface receptor for coagulation factor VII (fVII). The TF-activated fVII (fVIIa) complex is an essential initiator of the extrinsic blood coagulation process. Interactions between cancer cells and immune cells via coagulation factors and adhesion molecules can promote progression of cancer, including epithelial ovarian cancer (EOC). This process is not necessarily advantageous, as tumor tissues generally undergo hypoxia due to aberrant vasculature, followed by reduced access to plasma components such as coagulation factors. However, hypoxia can activate TF expression. Expression of fVII, intercellular adhesion molecule-1 (ICAM-1), and multiple pro-inflammatory cytokines can be synergistically induced in EOC cells in response to hypoxia along with serum deprivation. Thus, pro-inflammatory responses associated with the TF-fVIIa-ICAM-1 interaction are expected within hypoxic tissues. Tumor tissue consists of multiple components such as stromal cells, interstitial fluid, albumin, and other micro-factors such as proton and metal ions. These factors, together with metabolism reprogramming in response to hypoxia and followed by functional modification of TF, may contribute to coagulation factor-driven inflammatory responses in EOC tissues. The aim of this review was to describe potential coagulation factor-driven inflammatory responses in hypoxic EOC tissues. Arguments were extended to clinical issues targeting this characteristic tumor environment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| |
Collapse
|
158
|
Ou ZB, Miao CM, Ye MX, Xing DP, He K, Li PZ, Zhu RT, Gong JP. Investigation for role of tissue factor and blood coagulation system in severe acute pancreatitis and associated liver injury. Biomed Pharmacother 2016; 85:380-388. [PMID: 27923687 DOI: 10.1016/j.biopha.2016.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/29/2022] Open
Abstract
This study aims to investigate the molecular mechanisms underlying the pathogenesis of severe acute pancreatitis (SAP) and SAP-associated liver injury, we performed an association analysis of the functions of tissue factor (TF) and blood coagulation system in both SAP patients and mouse SAP model. Our results showed that serum TF and tissue factor-microparticle (TF-MP) levels were highly up-regulated in both SAP patients and SAP mouse model, which was accompanied by the dysfunction of blood coagulation system. Besides, TF expression was also highly up-regulated in the Kupffer cells (KCs) of SAP mouse model. After inhibiting KCs in SAP mouse model, the amelioration of blood coagulation system functions was associated with the decrease in serum TF and TF-MPs levels, and the reduction of SAP-associated liver injury was associated with the decrease of TF expression in KCs. In conclusion, the dis-regulated TF expression and associated dysfunction of blood coagulation system are critical factors for the pathogenesis of SAP and SAP-associated liver injury. TF may serve as a potential and effective target for treating SAP and SAP-associated liver injury.
Collapse
Affiliation(s)
- Zhi-Bing Ou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chun-Mu Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ming-Xin Ye
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ding-Pei Xing
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Kun He
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Pei-Zhi Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Rong-Tao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary and Pancreatic Diseases, School of Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
159
|
Ahmad FI, Clayburgh DR. Venous thromboembolism in head and neck cancer surgery. CANCERS OF THE HEAD & NECK 2016; 1:13. [PMID: 31093343 PMCID: PMC6460546 DOI: 10.1186/s41199-016-0014-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/03/2016] [Indexed: 11/30/2022]
Abstract
Background Venous thromboembolism (VTE) is a major cause of perioperative morbidity and mortality. Historically, otolaryngology surgery has been seen as very low risk of VTE, given the relatively short procedures and healthy patient population. However, head and neck surgery patients have multiple additional risk factors for VTE compared to general otolaryngology patients, and only recently has research been directed at examining this population of patients regarding VTE risk. Review VTE has long been recognized as a major issue in other surgical specialties, with VTE rates of 15–60 % in some specialties in the absence of prophylaxis with either mechanical compression or anticoagulation. Multiple large-scale retrospective studies have shown that the incidence of VTE in otolaryngology patients is quite low, ranging between 0.1 and 1.6 %. However, these studies indicated that head and neck cancer patients may have an increased risk of VTE. Further retrospective studies focusing on head and neck cancer patients found a VTE rate of approximately 2 %, but one study also found a suspected VTE rate of 5.6 % based on clinical symptoms, indicating that retrospective studies may underreport the true incidence. A single prospective study found a 13 % risk of VTE after major head and neck surgery. Furthermore, risk stratification using the Caprini risk assessment model demonstrates that the highest risk patients may have a VTE risk of 18.3 %, although this may be lowered (but not eliminated) through the use of appropriate prophylactic anticoagulation. Conclusion VTE is likely a more significant concern in head and neck surgery patients than previously realized. Appropriate prophylaxis with mechanical compression and anticoagulation is essential; risk stratification may serve as a useful tool to identify head and neck cancer patients at highest risk for VTE.
Collapse
Affiliation(s)
- Faisal I Ahmad
- Department of Otolaryngology- Head & Neck Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, PV01, Portland, OR 97239 USA
| | - Daniel R Clayburgh
- Department of Otolaryngology- Head & Neck Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, PV01, Portland, OR 97239 USA
| |
Collapse
|
160
|
Letter to the Editor: Tissue factor of endothelial origin: Just another brick in the wall? Trends Cardiovasc Med 2016; 27:155-156. [PMID: 27769629 DOI: 10.1016/j.tcm.2016.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 11/22/2022]
|
161
|
Witkowski M, Weithauser A, Tabaraie T, Steffens D, Kränkel N, Witkowski M, Stratmann B, Tschoepe D, Landmesser U, Rauch-Kroehnert U. Micro-RNA-126 Reduces the Blood Thrombogenicity in Diabetes Mellitus via Targeting of Tissue Factor. Arterioscler Thromb Vasc Biol 2016; 36:1263-71. [PMID: 27127202 PMCID: PMC4894779 DOI: 10.1161/atvbaha.115.306094] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 04/18/2016] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Diabetes mellitus involves vascular inflammatory processes and is a main contributor to cardiovascular mortality. Notably, heightened levels of circulating tissue factor (TF) account for the increased thrombogenicity and put those patients at risk for thromboembolic events. Here, we sought to investigate the role of micro-RNA (miR)–driven TF expression and thrombogenicity in diabetes mellitus. Approach and Results— Plasma samples of patients with diabetes mellitus were analyzed for TF protein and activity as well as miR-126 expression before and after optimization of the antidiabetic treatment. We found low miR-126 levels to be associated with markedly increased TF protein and TF-mediated thrombogenicity. Reduced miR-126 expression was accompanied by increased vascular inflammation as evident from the levels of vascular adhesion molecule-1 and fibrinogen, as well as leukocyte counts. With optimization of the antidiabetic treatment miR-126 levels increased and thrombogenicity was reduced. Using a luciferase reporter system, we demonstrated miR-126 to directly bind to the F3-3′-untranslated region, thereby reducing TF expression both on mRNA and on protein levels in human microvascular endothelial cells as well as TF mRNA and activity in monocytes. Conclusions— Circulating miR-126 exhibits antithrombotic properties via regulating post-transcriptional TF expression, thereby impacting the hemostatic balance of the vasculature in diabetes mellitus.
Collapse
Affiliation(s)
- Marco Witkowski
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Alice Weithauser
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Termeh Tabaraie
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Daniel Steffens
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Nicolle Kränkel
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Mario Witkowski
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Bernd Stratmann
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Diethelm Tschoepe
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Ulf Landmesser
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Ursula Rauch-Kroehnert
- From the Charité Centrum 11, Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany; Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany; and Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
162
|
Antoniak S, Mackman N. Editorial Commentary: Tissue factor expression by the endothelium: Coagulation or inflammation? Trends Cardiovasc Med 2016; 26:304-5. [PMID: 26850939 DOI: 10.1016/j.tcm.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Silvio Antoniak
- Department of Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Nigel Mackman
- Department of Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|