151
|
Nikolaev AR, Bramão I, Johansson R, Johansson M. Episodic memory formation in unrestricted viewing. Neuroimage 2023; 266:119821. [PMID: 36535321 DOI: 10.1016/j.neuroimage.2022.119821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The brain systems of episodic memory and oculomotor control are tightly linked, suggesting a crucial role of eye movements in memory. But little is known about the neural mechanisms of memory formation across eye movements in unrestricted viewing behavior. Here, we leverage simultaneous eye tracking and EEG recording to examine episodic memory formation in free viewing. Participants memorized multi-element events while their EEG and eye movements were concurrently recorded. Each event comprised elements from three categories (face, object, place), with two exemplars from each category, in different locations on the screen. A subsequent associative memory test assessed participants' memory for the between-category associations that specified each event. We used a deconvolution approach to overcome the problem of overlapping EEG responses to sequential saccades in free viewing. Brain activity was time-locked to the fixation onsets, and we examined EEG power in the theta and alpha frequency bands, the putative oscillatory correlates of episodic encoding mechanisms. Three modulations of fixation-related EEG predicted high subsequent memory performance: (1) theta increase at fixations after between-category gaze transitions, (2) theta and alpha increase at fixations after within-element gaze transitions, (3) alpha decrease at fixations after between-exemplar gaze transitions. Thus, event encoding with unrestricted viewing behavior was characterized by three neural mechanisms, manifested in fixation-locked theta and alpha EEG activity that rapidly turned on and off during the unfolding eye movement sequences. These three distinct neural mechanisms may be the essential building blocks that subserve the buildup of coherent episodic memories during unrestricted viewing behavior.
Collapse
Affiliation(s)
- Andrey R Nikolaev
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden; Brain and Cognition Research Unit, KU Leuven, Leuven, Belgium.
| | - Inês Bramão
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden
| | - Roger Johansson
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden
| | - Mikael Johansson
- Department of Psychology, Lund Memory Lab, Lund University, Lund, Sweden
| |
Collapse
|
152
|
Spontaneity matters! Network alterations before and after spontaneous and active facial self-touches: An EEG functional connectivity study. Int J Psychophysiol 2023; 184:28-38. [PMID: 36563880 DOI: 10.1016/j.ijpsycho.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite humans frequently performing spontaneous facial self-touches (sFST), the function of this behavior remains speculative. sFST have been discussed in the context of self-regulation, emotional homeostasis, working memory processes, and attention focus. First evidence indicates that sFST and active facial self-touches (aFST) are neurobiologically different phenomena. The aim of the present analysis was to examine EEG-based connectivity in the course of sFST and aFST to test the hypotheses that sFST affect brain network interactions relevant for other than sensorimotor processes. METHODS To trigger spontaneous FST a previously successful setting was used: 60 healthy participants manually explored two haptic stimuli and held the shapes of the stimuli in memory for a 14 min retention interval. Afterwards the shapes were drawn on a sheet of paper. During the retention interval, artifact-free EEG-data of 97 sFST by 32 participants were recorded. At the end of the experiment, the participants performed aFST with both hands successively. For the EEG-data, connectivity was computed and compared between the phases before and after sFST and aFST and between the respective before-and the after-phases. RESULTS For the before-after comparison, brainwide distributed significant connectivity differences (p < .00079) were observed for sFST, but not for aFST. Additionally, comparing the before- and after-phases of sFST and aFST, respectively, revealed increased similarity between the after-phases than between the before-phases. CONCLUSION The results support the assumption that sFST and aFST are neurobiologically different phenomena. Furthermore, the aligned network properties of the after-phases compared to the before-phases indicate that sFST serve self-regulatory functions that aFST do not serve.
Collapse
|
153
|
Giustiniani A, Danesin L, Bozzetto B, Macina A, Benavides-Varela S, Burgio F. Functional changes in brain oscillations in dementia: a review. Rev Neurosci 2023; 34:25-47. [PMID: 35724724 DOI: 10.1515/revneuro-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023]
Abstract
A growing body of evidence indicates that several characteristics of electroencephalography (EEG) and magnetoencephalography (MEG) play a functional role in cognition and could be linked to the progression of cognitive decline in some neurological diseases such as dementia. The present paper reviews previous studies investigating changes in brain oscillations associated to the most common types of dementia, namely Alzheimer's disease (AD), frontotemporal degeneration (FTD), and vascular dementia (VaD), with the aim of identifying pathology-specific patterns of alterations and supporting differential diagnosis in clinical practice. The included studies analysed changes in frequency power, functional connectivity, and event-related potentials, as well as the relationship between electrophysiological changes and cognitive deficits. Current evidence suggests that an increase in slow wave activity (i.e., theta and delta) as well as a general reduction in the power of faster frequency bands (i.e., alpha and beta) characterizes AD, VaD, and FTD. Additionally, compared to healthy controls, AD exhibits alteration in latencies and amplitudes of the most common event related potentials. In the reviewed studies, these changes generally correlate with performances in many cognitive tests. In conclusion, particularly in AD, neurophysiological changes can be reliable early markers of dementia.
Collapse
Affiliation(s)
| | - Laura Danesin
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| | | | - AnnaRita Macina
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy.,Department of Neuroscience, University of Padova, 35128 Padova, Italy.,Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Francesca Burgio
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| |
Collapse
|
154
|
Hippocampal Theta and Episodic Memory. J Neurosci 2023; 43:613-620. [PMID: 36639900 PMCID: PMC9888505 DOI: 10.1523/jneurosci.1045-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Computational models of rodent physiology implicate hippocampal theta as a key modulator of learning and memory (Buzsáki and Moser, 2013; Lisman and Jensen, 2013), yet human hippocampal recordings have shown divergent theta correlates of memory formation. Herweg et al. (2020) suggest that decreases in memory-related broadband power mask narrowband theta increases. Their survey also notes that the theta oscillations appear most prominently in contrasts that isolate memory retrieval processes and when aggregating signals across large brain regions. We evaluate these hypotheses by analyzing human hippocampal recordings captured as 162 neurosurgical patients (n = 86 female) performed a free recall task. Using the Irregular-Resampling Auto-Spectral Analysis (IRASA) to separate broad and narrowband components of the field potential, we show that (1) broadband and narrowband components of theta exhibit opposite effects, with broadband signals decreasing and narrowband theta increasing during successful encoding; (2) whereas low-frequency theta oscillations increase before successful recall, higher-frequency theta and alpha oscillations decrease, masking the positive effect of theta when aggregating across the full band; and (3) the effects of theta on memory encoding and retrieval do not differ between reference schemes that accentuate local signals (bipolar) and those that aggregate signals globally (whole-brain average). In line with computational models that ascribe a fundamental role for hippocampal theta in memory, our large-scale study of human hippocampal recordings shows that 3-4 Hz theta oscillations reliably increase during successful memory encoding and before spontaneous recall of previously studied items.SIGNIFICANCE STATEMENT Analyzing recordings from 162 participants, we resolve a long-standing question regarding the role of hippocampal theta oscillations in the formation and retrieval of episodic memories. We show that broadband spectral changes confound estimates of narrowband theta activity, thereby accounting for inconsistent results in the literature. After accounting for broadband effects, we find that increased theta activity marks successful encoding and retrieval of episodic memories, supporting rodent models that ascribe a key role for hippocampal theta in memory function.
Collapse
|
155
|
Alexander AS, Place R, Starrett MJ, Chrastil ER, Nitz DA. Rethinking retrosplenial cortex: Perspectives and predictions. Neuron 2023; 111:150-175. [PMID: 36460006 PMCID: PMC11709228 DOI: 10.1016/j.neuron.2022.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022]
Abstract
The last decade has produced exciting new ideas about retrosplenial cortex (RSC) and its role in integrating diverse inputs. Here, we review the diversity in forms of spatial and directional tuning of RSC activity, temporal organization of RSC activity, and features of RSC interconnectivity with other brain structures. We find that RSC anatomy and dynamics are more consistent with roles in multiple sensorimotor and cognitive processes than with any isolated function. However, two more generalized categories of function may best characterize roles for RSC in complex cognitive processes: (1) shifting and relating perspectives for spatial cognition and (2) prediction and error correction for current sensory states with internal representations of the environment. Both functions likely take advantage of RSC's capacity to encode conjunctions among sensory, motor, and spatial mapping information streams. Together, these functions provide the scaffold for intelligent actions, such as navigation, perspective taking, interaction with others, and error detection.
Collapse
Affiliation(s)
- Andrew S Alexander
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Ryan Place
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Starrett
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
156
|
Desaunay P, Clochon P, Doidy F, Hinault T, Lambrechts A, Wantzen P, Wallois F, Mahmoudzadeh M, Guile JM, Guénolé F, Baleyte JM, Eustache F, Bowler DM, Guillery-Girard B. Intact memory storage but impaired retrieval in visual memory in autism: New insights from an electrophysiological study. Autism Res 2023; 16:99-105. [PMID: 36317823 DOI: 10.1002/aur.2838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
In a recent study on visual episodic memory (Desaunay, Clochon, et al., 2020), we have shown event-related potentials (ERPs) differences associated with priming (150-300 msec), familiarity (350-470 msec), and recollection (600-700 msec), in young people with autism spectrum disorders (ASD) compared with typical development (TD). To go further into the study of the processes of storage and retrieval of the memory trace, we re-analyzed Desaunay, Clochon, et al's data using time-frequency analysis, that is, event-related synchronization and desynchronization (ERS/ERD). This allows a decomposition of the spectral power within frequency bands associated with these ERPs. We focused both on the same time windows and the same regions of interest as previously published. We mainly identified, in ASD compared with TD, reduced ERS in low-frequencies (delta, theta) in early time-windows, and non-significant differences in ERD in higher frequencies (alpha, beta1) in all time-windows. Reduced ERS during recognition confirmed previously reported diminution of priming effects and difficulties in manipulation and retrieval of both semantic and episodic information. Conversely, preserved ERD corroborates a preservation of memory storage processes. These observations are consistent with a cognitive model of memory in ASD, that suggests difficulties in cognitive operations or executive demand at retrieval, subsequent to successful long-term storage of information. LAY SUMMARY: We assessed the EEG synchronization and desynchronization, during visual episodic recognition. We observed, in youth with Autism, reduced synchronization in low-frequencies (delta, theta), suggesting reduced access to and manipulation of long-term stored information. By contrast, non-significant differences in desynchronization at higher frequencies (alpha, beta frequency bands), that support long-term stored semantic and episodic information, suggested preserved memory traces.
Collapse
Affiliation(s)
- Pierre Desaunay
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Service de Psychiatrie de l'enfant et de l'adolescent, CHU de Caen, Caen, France
| | - Patrice Clochon
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Franck Doidy
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Thomas Hinault
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Anna Lambrechts
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Prany Wantzen
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Fabrice Wallois
- Picardie Univ, INSERM, U 1105, CHU Amiens, groupe de recherches sur l'analyse multimodale de la fonction cérébrale, Amiens, France
| | - Mahdi Mahmoudzadeh
- Picardie Univ, INSERM, U 1105, CHU Amiens, groupe de recherches sur l'analyse multimodale de la fonction cérébrale, Amiens, France
| | - Jean-Marc Guile
- Picardie Univ, INSERM, U 1105, CHU Amiens, groupe de recherches sur l'analyse multimodale de la fonction cérébrale, Amiens, France
| | - Fabian Guénolé
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Service de Psychiatrie de l'enfant et de l'adolescent, CHU de Caen, Caen, France
| | - Jean-Marc Baleyte
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Service de Psychiatrie de l'enfant et de l'adolescent, Hôpital Universitaire de Créteil, Créteil, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Dermot M Bowler
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Bérengère Guillery-Girard
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| |
Collapse
|
157
|
Alpha7 nicotinic acetylcholine receptor agonist PHA-543613 improves memory deficits in presenilin 1 and presenilin 2 conditional double knockout mice. Exp Neurol 2023; 359:114271. [PMID: 36370840 DOI: 10.1016/j.expneurol.2022.114271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Cholinergic system dysfunction has been considered as a critical feature of neurodegenerative progression in Alzheimer's disease (AD). The α7 nicotinic acetylcholine receptors (α7-nAChRs) are widely expressed in the hippocampus cortex and play an important role in memory formation, considered as potential therapeutic agents targets. However, underlying mechanisms have not been fully elucidated. Here, we combine behavioral, molecular biological methods with in vitro slice and in vivo multichannel electrophysiological recording techniques to investigate the molecular, cellular synaptic and neuronal mechanisms of activating α7-nAChR by PHA-543613 (a selective α7-nAChR agonist), which influences the impaired cognitive function using presenilin 1 (PS1) and presenilin 2 (PS2) conditional double knockout (cDKO) mice. Our results demonstrated that PHA-543613 treatment significantly improved the impaired hippocampus-related memory via recovering the reduced the hippocampal synaptic protein levels of α7-nAChR, NMADAR and AMPAR, thereby restoring the impaired post-tetanic potentiation (PTP), long-term potentiation (LTP), activation of molecular signaling pathway for neuronal protection, theta power and strength of theta-gamma phase-amplitude coupling (PAC) at hippocampus in 6-month-old cDKO mice. For the first time, we systematically reveal the mechanisms by which PHA-543613 improves memory deficits at different levels. Therefore, our findings may be significant for the development of therapeutic strategies for AD.
Collapse
|
158
|
Zhou R, Belge T, Wolbers T. Reaching the Goal: Superior Navigators in Late Adulthood Provide a Novel Perspective into Successful Cognitive Aging. Top Cogn Sci 2023; 15:15-45. [PMID: 35582831 DOI: 10.1111/tops.12608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Normal aging is typically associated with declines in navigation and spatial memory abilities. However, increased interindividual variability in performance across various navigation/spatial memory tasks is also evident with advancing age. In this review paper, we shed the spotlight on those older individuals who exhibit exceptional, sometimes even youth-like navigational/spatial memory abilities. Importantly, we (1) showcase observations from existing studies that demonstrate superior navigation/spatial memory performance in late adulthood, (2) explore possible cognitive correlates and neurophysiological mechanisms underlying these preserved spatial abilities, and (3) discuss the potential link between the superior navigators in late adulthood and SuperAgers (older adults with superior episodic memory). In the closing section, given the lack of studies that directly focus on this subpopulation, we highlight several important directions that future studies could look into to better understand the cognitive characteristics of older superior navigators and the factors enabling such successful cognitive aging.
Collapse
Affiliation(s)
- Ruojing Zhou
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases
| | - Tuğçe Belge
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases
| | - Thomas Wolbers
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases.,Center for Behavioral Brain Sciences, Magdeburg
| |
Collapse
|
159
|
Tiganj Z, Singh I, Esfahani ZG, Howard MW. Scanning a compressed ordered representation of the future. J Exp Psychol Gen 2022; 151:3082-3096. [PMID: 35913876 PMCID: PMC9670103 DOI: 10.1037/xge0001243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several authors have suggested a deep symmetry between the psychological processes that underlie our ability to remember the past and make predictions about the future. The judgment of recency (JOR) task measures temporal order judgments for the past by presenting pairs of probe stimuli; participants choose the probe that was presented more recently. We performed a short-term relative JOR task and introduced a novel judgment of imminence (JOI) task to study temporal order judgments for the future. In the JOR task, participants were presented with a sequence of stimuli and asked to choose which of two probe stimuli was presented closer to the present. In the JOI task, participants were trained on a probabilistic sequence. After training, the sequence was interrupted with probe stimuli. Participants were asked to choose which of two probe stimuli was expected to be presented closer to the present. Replicating prior work on JOR, we found that RT results supported a backward self-terminating search model operating on a temporally organized representation of the past. We also showed that RT distributions are consistent with this model and that the temporally organized representation is compressed. Critically, results for the JOI task probing expectations of the future suggest a forward self-terminating search model operating on a temporally organized representation of the future. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
160
|
Vaitonytė J, Alimardani M, Louwerse MM. Scoping review of the neural evidence on the uncanny valley. COMPUTERS IN HUMAN BEHAVIOR REPORTS 2022. [DOI: 10.1016/j.chbr.2022.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
161
|
Comparison of Electroencephalogram Power Spectrum Characteristics of Left and Right Dragon Boat Athletes after 1 km of Rowing. Brain Sci 2022; 12:brainsci12121621. [PMID: 36552080 PMCID: PMC9776062 DOI: 10.3390/brainsci12121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose: This study aimed to detect differences in post-exercise brain activity between the left and right paddlers due to exercise by analyzing the resting-state electroencephalogram (EEG) power spectrum before and after exercise. Methods: Twenty-one right paddlers and twenty-two left paddlers completed a 1 km all-out test on a dragon boat ergometer, and their heart rate and exercise time were recorded. EEG signals were collected from superficial brain layers before and after exercise; then, the EEG power spectrum was extracted and compared in different frequency bands. In addition, the degree of lateralization in each brain region was assessed by the asymmetry index. Results: There was no significant difference in the power spectrum values and asymmetry indices between the left and right paddlers before rowing (p ˃ 0.05). However, after rowing, the left-paddlers group had significantly higher spectral power values in θ and α bands than the right-paddlers group (p < 0.05), and brain lateralization in both groups of athletes occurred mainly in the ipsilateral hemisphere of the frontal and central regions. Conclusion: The 1 km of rowing induced more brain activation in the left paddlers, and both left and right paddlers showed functional aggregation of hemispheric lateralization.
Collapse
|
162
|
Wang J, Zhang S, Liu T, Zheng X, Tian X, Bai W. Directional prefrontal-thalamic information flow is selectively required during spatial working memory retrieval. Front Neurosci 2022; 16:1055986. [PMID: 36507330 PMCID: PMC9726760 DOI: 10.3389/fnins.2022.1055986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Spatial working memory is a kind of short-term memory that allows temporarily storing and manipulating spatial information. Evidence suggests that spatial working memory is processed through three distinctive phases: Encoding, maintenance, and retrieval. Though the medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD) are involved in memory retrieval, how the functional interactions and information transfer between mPFC and MD remains largely unclear. Methods We recorded local field potentials (LFPs) from mPFC and MD while mice performed a spatial working memory task in T-maze. The temporal dynamics of functional interactions and bidirectional information flow between mPFC and MD was quantitatively assessed by using directed transfer function. Results Our results showed a significantly elevated information flow from mPFC to MD, varied in time and frequency (theta in particular), accompanying successful memory retrieval. Discussion Elevated theta information flow, a feature that was absent on error trials, indicates an important role of the directional information transfer from mPFC to MD for memory retrieval.
Collapse
|
163
|
Seymour RA, Alexander N, Maguire EA. Robust estimation of 1/f activity improves oscillatory burst detection. Eur J Neurosci 2022; 56:5836-5852. [PMID: 36161675 PMCID: PMC9828710 DOI: 10.1111/ejn.15829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 02/06/2023]
Abstract
Neural oscillations often occur as transient bursts with variable amplitude and frequency dynamics. Quantifying these effects is important for understanding brain-behaviour relationships, especially in continuous datasets. To robustly measure bursts, rhythmical periods of oscillatory activity must be separated from arrhythmical background 1/f activity, which is ubiquitous in electrophysiological recordings. The Better OSCillation (BOSC) framework achieves this by defining a power threshold above the estimated background 1/f activity, combined with a duration threshold. Here we introduce a modification to this approach called fBOSC, which uses a spectral parametrisation tool to accurately model background 1/f activity in neural data. fBOSC (which is openly available as a MATLAB toolbox) is robust to power spectra with oscillatory peaks and can also model non-linear spectra. Through a series of simulations, we show that fBOSC more accurately models the 1/f power spectrum compared with existing methods. fBOSC was especially beneficial where power spectra contained a 'knee' below ~.5-10 Hz, which is typical in neural data. We also found that, unlike other methods, fBOSC was unaffected by oscillatory peaks in the neural power spectrum. Moreover, by robustly modelling background 1/f activity, the sensitivity for detecting oscillatory bursts was standardised across frequencies (e.g., theta- and alpha-bands). Finally, using openly available resting state magnetoencephalography and intracranial electrophysiology datasets, we demonstrate the application of fBOSC for oscillatory burst detection in the theta-band. These simulations and empirical analyses highlight the value of fBOSC in detecting oscillatory bursts, including in datasets that are long and continuous with no distinct experimental trials.
Collapse
Affiliation(s)
- Robert A. Seymour
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Nicholas Alexander
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Eleanor A. Maguire
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
164
|
Electrophysiological markers of memory consolidation in the human brain when memories are reactivated during sleep. Proc Natl Acad Sci U S A 2022; 119:e2123430119. [PMID: 36279460 PMCID: PMC9636913 DOI: 10.1073/pnas.2123430119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep contributes to memory consolidation, we presume, because memories are replayed during sleep. Understanding this aspect of consolidation can help with optimizing normal learning in many contexts and with treating memory disorders and other diseases. Here, we systematically manipulated sleep-based processing using targeted memory reactivation; brief sounds coupled with presleep learning were quietly presented again during sleep, producing 1) recall improvements for specific spatial memories associated with those sounds and 2) physiological responses in the sleep electroencephalogram. Neural activity in the hippocampus and adjacent medial temporal cortex was thus found in association with memory consolidation during sleep. These findings advance understanding of consolidation by linking beneficial memory changes during sleep to both memory reactivation and specific patterns of brain activity. Human accomplishments depend on learning, and effective learning depends on consolidation. Consolidation is the process whereby new memories are gradually stored in an enduring way in the brain so that they can be available when needed. For factual or event knowledge, consolidation is thought to progress during sleep as well as during waking states and to be mediated by interactions between hippocampal and neocortical networks. However, consolidation is difficult to observe directly but rather is inferred through behavioral observations. Here, we investigated overnight memory change by measuring electrical activity in and near the hippocampus. Electroencephalographic (EEG) recordings were made in five patients from electrodes implanted to determine whether a surgical treatment could relieve their seizure disorders. One night, while each patient slept in a hospital monitoring room, we recorded electrophysiological responses to 10 to 20 specific sounds that were presented very quietly, to avoid arousal. Half of the sounds had been associated with objects and their precise spatial locations that patients learned before sleep. After sleep, we found systematic improvements in spatial recall, replicating prior results. We assume that when the sounds were presented during sleep, they reactivated and strengthened corresponding spatial memories. Notably, the sounds also elicited oscillatory intracranial EEG activity, including increases in theta, sigma, and gamma EEG bands. Gamma responses, in particular, were consistently associated with the degree of improvement in spatial memory exhibited after sleep. We thus conclude that this electrophysiological activity in the hippocampus and adjacent medial temporal cortex reflects sleep-based enhancement of memory storage.
Collapse
|
165
|
Hussin AT, Abbaspoor S, Hoffman KL. Retrosplenial and Hippocampal Synchrony during Retrieval of Old Memories in Macaques. J Neurosci 2022; 42:7947-7956. [PMID: 36261267 PMCID: PMC9617609 DOI: 10.1523/jneurosci.0001-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Memory for events from the distant past relies on multiple brain regions, but little is known about the underlying neural dynamics that give rise to such abilities. We recorded neural activity in the hippocampus and retrosplenial cortex of two female rhesus macaques as they visually selected targets in year-old and newly acquired object-scene associations. Whereas hippocampal activity was unchanging with memory age, the retrosplenial cortex responded with greater magnitude alpha oscillations (10-15 Hz) and greater phase locking to memory-guided eye movements during retrieval of old events. A similar old-memory enhancement was observed in the anterior cingulate cortex but in a beta2/gamma band (28-35 Hz). In contrast, remote retrieval was associated with decreased gamma-band synchrony between the hippocampus and each neocortical area. The increasing retrosplenial alpha oscillation and decreasing hippocampocortical synchrony with memory age may signify a shift in frank memory allocation or, alternatively, changes in selection among distributed memory representations in the primate brain.SIGNIFICANCE STATEMENT Memory depends on multiple brain regions, whose involvement is thought to change with time. Here, we recorded neuronal population activity from the hippocampus and retrosplenial cortex as nonhuman primates searched for objects embedded in scenes. These memoranda were either newly presented or a year old. Remembering old material drove stronger oscillations in the retrosplenial cortex and led to a greater locking of neural activity to search movements. Remembering new material revealed stronger oscillatory synchrony between the hippocampus and retrosplenial cortex. These results suggest that with age, memories may come to rely more exclusively on neocortical oscillations for retrieval and search guidance and less on long-range coupling with the hippocampus.
Collapse
Affiliation(s)
- Ahmed T Hussin
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
| | | | - Kari L Hoffman
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
- Departments of Psychology
- Biomedical Engineering, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| |
Collapse
|
166
|
Vaitonytė J, Alimardani M, Louwerse MM. Corneal reflections and skin contrast yield better memory of human and virtual faces. Cogn Res Princ Implic 2022; 7:94. [PMID: 36258062 PMCID: PMC9579222 DOI: 10.1186/s41235-022-00445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Virtual faces have been found to be rated less human-like and remembered worse than photographic images of humans. What it is in virtual faces that yields reduced memory has so far remained unclear. The current study investigated face memory in the context of virtual agent faces and human faces, real and manipulated, considering two factors of predicted influence, i.e., corneal reflections and skin contrast. Corneal reflections referred to the bright points in each eye that occur when the ambient light reflects from the surface of the cornea. Skin contrast referred to the degree to which skin surface is rough versus smooth. We conducted two memory experiments, one with high-quality virtual agent faces (Experiment 1) and the other with the photographs of human faces that were manipulated (Experiment 2). Experiment 1 showed better memory for virtual faces with increased corneal reflections and skin contrast (rougher rather than smoother skin). Experiment 2 replicated these findings, showing that removing the corneal reflections and smoothening the skin reduced memory recognition of manipulated faces, with a stronger effect exerted by the eyes than the skin. This study highlights specific features of the eyes and skin that can help explain memory discrepancies between real and virtual faces and in turn elucidates the factors that play a role in the cognitive processing of faces.
Collapse
Affiliation(s)
- Julija Vaitonytė
- grid.12295.3d0000 0001 0943 3265Department of Cognitive Science and Artificial Intelligence, Tilburg University, Dante Building D 134, Warandelaan 2, 5037 AB Tilburg, The Netherlands
| | - Maryam Alimardani
- grid.12295.3d0000 0001 0943 3265Department of Cognitive Science and Artificial Intelligence, Tilburg University, Dante Building D 134, Warandelaan 2, 5037 AB Tilburg, The Netherlands
| | - Max M. Louwerse
- grid.12295.3d0000 0001 0943 3265Department of Cognitive Science and Artificial Intelligence, Tilburg University, Dante Building D 134, Warandelaan 2, 5037 AB Tilburg, The Netherlands
| |
Collapse
|
167
|
Wu C, Liu Y, Guo X, Zhu T, Bao Z. Enhancing the feasibility of cognitive load recognition in remote learning using physiological measures and an adaptive feature recalibration convolutional neural network. Med Biol Eng Comput 2022; 60:3447-3460. [PMID: 36197639 PMCID: PMC9532827 DOI: 10.1007/s11517-022-02670-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/17/2022] [Indexed: 11/05/2022]
Abstract
The precise assessment of cognitive load during a learning phase is an important pathway to improving students’ learning efficiency and performance. Physiological measures make it possible to continuously monitor learners’ cognitive load in remote learning during the COVID-19 outbreak. However, maintaining a good balance between performance and computational cost is still a major challenge in advancing cognitive load recognition technology to real-world applications. This paper introduced an adaptive feature recalibration (AFR) convolutional neural network to overcome this challenge by capturing the most discriminative physiological features (EEG and eye-tracking). The results revealed that the optimal average classification accuracy of the feature combination obtained by the AFR method reached 95.56% with only 60 feature dimensions. Additionally, compared with the best result of the conventional correlation-based feature selection (CFS) method, the introduced AFR algorithm achieved higher accuracy and cheaper computational cost, as well as a 2.06% improvement in accuracy and a 51.21% reduction in feature dimension, which is more in line with the requirements of low delay and real-time performance in practical BCI applications.
Collapse
Affiliation(s)
- Chennan Wu
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yang Liu
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xiang Guo
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Tianshui Zhu
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zongliang Bao
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
168
|
Cross ZR, Chatburn A, Melberzs L, Temby P, Pomeroy D, Schlesewsky M, Bornkessel-Schlesewsky I. Task-related, intrinsic oscillatory and aperiodic neural activity predict performance in naturalistic team-based training scenarios. Sci Rep 2022; 12:16172. [PMID: 36171478 PMCID: PMC9519541 DOI: 10.1038/s41598-022-20704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Effective teams are essential for optimally functioning societies. However, little is known regarding the neural basis of two or more individuals engaging cooperatively in real-world tasks, such as in operational training environments. In this exploratory study, we recruited forty individuals paired as twenty dyads and recorded dual-EEG at rest and during realistic training scenarios of increasing complexity using virtual simulation systems. We estimated markers of intrinsic brain activity (i.e., individual alpha frequency and aperiodic activity), as well as task-related theta and alpha oscillations. Using nonlinear modelling and a logistic regression machine learning model, we found that resting-state EEG predicts performance and can also reliably differentiate between members within a dyad. Task-related theta and alpha activity during easy training tasks predicted later performance on complex training to a greater extent than prior behaviour. These findings complement laboratory-based research on both oscillatory and aperiodic activity in higher-order cognition and provide evidence that theta and alpha activity play a critical role in complex task performance in team environments.
Collapse
Affiliation(s)
- Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia.
| | - Alex Chatburn
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| | - Lee Melberzs
- Department of Defence, Australian Army, Canberra, Australia
| | - Philip Temby
- Land Division, Defence Science and Technology Group, Edinburgh, SA, Australia
| | - Diane Pomeroy
- Land Division, Defence Science and Technology Group, Edinburgh, SA, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| |
Collapse
|
169
|
Oscillatory delta and theta frequencies differentially support multiple items encoding to optimize memory performance during the digit span task. Neuroimage 2022; 263:119650. [PMID: 36167270 DOI: 10.1016/j.neuroimage.2022.119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The human brain has limited storage capacity often challenging the encoding and recall of a long series of multiple items. Different encoding strategies are therefore employed to optimize performance in memory processes such as chunking where particular items are 'grouped' to reduce the number of items to store artificially. Additionally, related to the position of an item within a series, there is a tendency to remember the first and last items on the list better than the middle ones, which calls the "serial position effect". Although relatively well-established in behavioral research, the neuronal mechanisms underlying such encoding strategies and memory effects remain poorly understood. Here, we used event-related EEG oscillation analyses to unravel the neuronal substrates of serial encoding strategies and effects during the behaviorally controlled execution of the digit span task. We recorded EEG in forty-four healthy young-adult participants during a backward digit span (ds) task with two difficulty levels (i.e., 3-ds and 5-ds). Participants were asked to recall the digits in reverse order after the presentation of each set. We analyzed the pattern of event-related delta and theta oscillatory power in the time-frequency domain over fronto-central and parieto-occipital areas during the item (digit) list encoding, focusing on how these oscillatory responses changed with each subsequent digit being encoded in the series. Results showed that the development of event-related delta power evoked by digits in each series matched the 'serial position curve', with higher delta power being present during the first, and especially last, digits as compared to digits presented in the middle of a set, for both difficulty levels. Event-related theta power, in contrast, rather resembled a neural correlate of a chunking pattern where, during the 5-ds encoding, a clear change in event-related theta occurred around the third/fourth positions, with decreasing power values for later digits. This suggests that different oscillatory mechanisms linked to different frequency bands may code for the different encoding strategies and effects in serial item presentation. Furthermore, recall-EEG correlations suggested that participants with higher fronto-central delta responses during digit encoding showed also higher recall scores. The here presented findings contribute to our understanding of the neural oscillatory mechanisms underlying multiple item encoding, directly informing recent efforts towards memory enhancement through targeted oscillation-based neuromodulation.
Collapse
|
170
|
Perez V, Garrido-Chaves R, Zapater-Fajarí M, Pulopulos MM, Hidalgo V, Salvador A. EEG markers and subjective memory complaints in young and older people. Int J Psychophysiol 2022; 182:23-31. [PMID: 36150529 DOI: 10.1016/j.ijpsycho.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
Subjective memory complaints (SMCs) have been related to subtle cognitive deficits and neural changes. In this study, we investigated whether EEG rhythms, usually altered in mild cognitive impairment and Alzheimer's disease, are also affected in SMCs compared to people without SMCs. Seventy-one older adults (55-74 years old) and 75 young people (18-34 years old) underwent 3 min of EEG recording in a resting-state condition with their eyes open (EO) and eyes closed (EC) and a comprehensive neuropsychological evaluation. The EEG measures included were power spectral delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), and EEG reactivity to EO. Compared to controls, older people with SMCs showed increased theta power and a loss of alpha reactivity to EO. Additionally, in older participants with SMCs, the theta power spectral was related to deficits in verbal memory. In contrast, we failed to find differences in the young people with SMCs, compared to the control group, in the power spectral or the EEG reactivity to EO. Our findings suggest that neurophysiological markers of brain dysfunction may identify cognitive changes even before they are observed on objective neuropsychological tests, at least in older people.
Collapse
Affiliation(s)
- Vanesa Perez
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Valencian International University, Valencia, Spain
| | - Ruth Garrido-Chaves
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Mariola Zapater-Fajarí
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Vanesa Hidalgo
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, IIS Aragón, Teruel, Spain.
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain
| |
Collapse
|
171
|
Kalafatovich J, Lee M, Lee SW. Decoding declarative memory process for predicting memory retrieval based on source localization. PLoS One 2022; 17:e0274101. [PMID: 36074790 PMCID: PMC9455842 DOI: 10.1371/journal.pone.0274101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Many studies have focused on understanding memory processes due to their importance in daily life. Differences in timing and power spectra of brain signals during encoding task have been linked to later remembered items and were recently used to predict memory retrieval performance. However, accuracies remain low when using non-invasive methods for acquiring brain signals, mainly due to the low spatial resolution. This study investigates the prediction of successful retrieval using estimated source activity corresponding either to cortical or subcortical structures through source localization. Electroencephalogram (EEG) signals were recorded while participants performed a declarative memory task. Frequency-time analysis was performed using signals from encoding and retrieval tasks to confirm the importance of neural oscillations and their relationship with later remembered and forgotten items. Significant differences in the power spectra between later remembered and forgotten items were found before and during the presentation of the stimulus in the encoding task. Source activity estimation revealed differences in the beta band power over the medial parietal and medial prefrontal areas prior to the presentation of the stimulus, and over the cuneus and lingual areas during the presentation of the stimulus. Additionally, there were significant differences during the stimuli presentation during the retrieval task. Prediction of later remembered items was performed using surface potentials and estimated source activity. The results showed that source localization increases classification performance compared to the one using surface potentials. These findings support the importance of incorporating spatial features of neural activity to improve the prediction of memory retrieval.
Collapse
Affiliation(s)
- Jenifer Kalafatovich
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
| | - Minji Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Seong-Whan Lee
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
172
|
Bjekić J, Paunovic D, Živanović M, Stanković M, Griskova-Bulanova I, Filipović SR. Determining the Individual Theta Frequency for Associative Memory Targeted Personalized Transcranial Brain Stimulation. J Pers Med 2022; 12:jpm12091367. [PMID: 36143152 PMCID: PMC9506372 DOI: 10.3390/jpm12091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) methods have gained increased interest in research and therapy of associative memory (AM) and its impairments. However, the one-size-fits-all approach yields inconsistent findings, thus putting forward the need for electroencephalography (EEG)-guided personalized frequency-modulated NIBS protocols to increase the focality and the effectiveness of the interventions. Still, extraction of individual frequency, especially in the theta band, turned out to be a challenging task. Here we present an approach to extracting the individual theta-band frequency (ITF) from EEG signals recorded during the AM task. The method showed a 93% success rate, good reliability, and the full range of variability of the extracted ITFs. This paper provides a rationale behind the adopted approach and critically evaluates it in comparison to the alternative methods that have been reported in the literature. Finally, we discuss how it could be used as an input parameter for personalized frequency-modulated NIBS approaches—transcranial alternating current stimulation (tACS) and transcranial oscillatory current stimulation (otDCS) directed at AM neuromodulation.
Collapse
Affiliation(s)
- Jovana Bjekić
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (J.B.); (S.R.F.)
| | - Dunja Paunovic
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Živanović
- Institute of Psychology and Laboratory for Research of Individual Differences, Department of Psychology, Faculty of Philosophy, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Stanković
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Inga Griskova-Bulanova
- Institute of Biosciences, Life Sciences Centre, Vilnius University, LT-10322 Vilnius, Lithuania
| | - Saša R. Filipović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (J.B.); (S.R.F.)
| |
Collapse
|
173
|
Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci 2022; 25:1237-1246. [PMID: 35995877 PMCID: PMC10068908 DOI: 10.1038/s41593-022-01132-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
The development of technologies to protect or enhance memory in older people is an enduring goal of translational medicine. Here we describe repetitive (4-day) transcranial alternating current stimulation (tACS) protocols for the selective, sustainable enhancement of auditory-verbal working memory and long-term memory in 65-88-year-old people. Modulation of synchronous low-frequency, but not high-frequency, activity in parietal cortex preferentially improved working memory on day 3 and day 4 and 1 month after intervention, whereas modulation of synchronous high-frequency, but not low-frequency, activity in prefrontal cortex preferentially improved long-term memory on days 2-4 and 1 month after intervention. The rate of memory improvements over 4 days predicted the size of memory benefits 1 month later. Individuals with lower baseline cognitive function experienced larger, more enduring memory improvements. Our findings demonstrate that the plasticity of the aging brain can be selectively and sustainably exploited using repetitive and highly focalized neuromodulation grounded in spatiospectral parameters of memory-specific cortical circuitry.
Collapse
|
174
|
Aktürk T, de Graaf TA, Güntekin B, Hanoğlu L, Sack AT. Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS. Sci Rep 2022; 12:14199. [PMID: 35987918 PMCID: PMC9392784 DOI: 10.1038/s41598-022-18665-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
The coupling of gamma oscillation (~ 40+ Hz) amplitude to the phase of ongoing theta (~ 6 Hz) oscillations has been proposed to be directly relevant for memory performance. Current theories suggest that memory capacity scales with number of gamma cycles that can be fitted into the preferred phase of a theta cycle. Following this logic, transcranial alternating current stimulation (tACS) may be used to adjust theta cycles (increasing/decreasing theta frequency) to decrease or increase memory performance during stimulation. Here, we used individualized EEG-informed theta tACS to (1) experimentally “slow down” individual theta frequency (ITF), (2) evaluate cognitive after effects on a battery of memory and learning tasks, and (3) link the cognitive performance changes to tACS-induced effects on theta-band oscillations as measured by post EEG. We found frequency- and task-specific tACS after effects demonstrating a specific enhancement in memory capacity. This tACS-induced cognitive enhancement was specific to the visual memory task performed immediately after tACS offset, and specific to the ITF-1 Hz (slowing) stimulation condition and thus following a protocol specifically designed to slow down theta frequency to enhance memory capacity. Follow-up correlation analyses in this group linked the enhanced memory performance to increased left frontal-parietal theta-band connectivity. Interestingly, resting-state theta power immediately after tACS offset revealed a theta power increase not for the ITF-1 Hz group, but only for the ITF group where the tACS frequency was ‘optimal’ for entrainment. These results suggest that while individually calibrated tACS at peak frequency maximally modulates resting-state oscillatory power, tACS stimulation slightly below this optimal peak theta frequency is better suited to enhance memory capacity performance. Importantly, our results further suggest that such cognitive enhancement effects can last beyond the period of stimulation and are linked to increased network connectivity, opening the door towards more clinical and applied relevance of using tACS in cognitive rehabilitation and/or neurocognitive enhancement.
Collapse
|
175
|
Živanović M, Bjekić J, Konstantinović U, Filipović SR. Effects of online parietal transcranial electric stimulation on associative memory: a direct comparison between tDCS, theta tACS, and theta-oscillatory tDCS. Sci Rep 2022; 12:14091. [PMID: 35982223 PMCID: PMC9388571 DOI: 10.1038/s41598-022-18376-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 12/26/2022] Open
Abstract
Associative memory (AM) is the ability to remember and retrieve multiple items bound together. Previous studies aiming to modulate AM by various transcranial electric stimulation (tES) techniques were inconclusive, although overall suggestive that tES could be a tool for AM enhancement. However, evidence from a direct comparison between different tES techniques is lacking. Here, in a sham-controlled cross-over experiment, we comparatively assessed the effects of three types of tES-anodal tDCS, theta-band transcranial alternating current stimulation (tACS), and theta-oscillatory tDCS (otDCS), delivered over the left posterior parietal cortex, during a short-term digit-color AM task with cued-recall. The effects were tested in 40 healthy young participants while both oscillatory tES were delivered at a previously determined individual theta frequency (4-8 Hz). All three active stimulations facilitated the overall AM performance, and no differences could be detected between them on direct comparison. However, unlike tDCS, the effects of which appeared to stem mainly from the facilitation of low-memory demand trials, both theta-modulated tACS and otDCS primarily promoted AM in high memory demand trials. Comparable yet differential effects of tDCS, theta tACS, and otDCS could be attributed to differences in their presumed modes of action.
Collapse
Affiliation(s)
- Marko Živanović
- Institute of Psychology & Laboratory for Research of Individual Differences, Faculty of Philosophy, University of Belgrade, Belgrade, Serbia.
| | - Jovana Bjekić
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Uroš Konstantinović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Saša R Filipović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
176
|
Leung LS, Moallem S, Prado MAM, Prado VF, Chu L. Muscarinic and N‐methyl‐D‐aspartate receptor blockade reveal differences in hippocampal local field potentials in mice with low cholinergic tone. Hippocampus 2022; 32:731-751. [DOI: 10.1002/hipo.23462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/11/2022] [Accepted: 07/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- L. Stan Leung
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
- Graduate Program in Neuroscience University of Western Ontario London Ontario Canada
| | - Shahin Moallem
- Graduate Program in Neuroscience University of Western Ontario London Ontario Canada
| | - Marco A. M. Prado
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
- Graduate Program in Neuroscience University of Western Ontario London Ontario Canada
- Department of Anatomy and Cell Biology University of Western Ontario London Ontario Canada
- Robarts Research Institute University of Western Ontario London Ontario Canada
| | - Vania F. Prado
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
- Graduate Program in Neuroscience University of Western Ontario London Ontario Canada
- Department of Anatomy and Cell Biology University of Western Ontario London Ontario Canada
- Robarts Research Institute University of Western Ontario London Ontario Canada
| | - Liangwei Chu
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
| |
Collapse
|
177
|
Long J, Lu F, Yang S, Zhang Q, Chen X, Pang Y, Wang M, He B, Liu H, Duan X, Chen H, Ye S, Chen H. Different functional connectivity optimal frequency in autism compared with healthy controls and the relationship with social communication deficits: Evidence from gene expression and behavior symptom analyses. Hum Brain Mapp 2022; 44:258-268. [PMID: 35822559 PMCID: PMC9783427 DOI: 10.1002/hbm.26011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Studies have reported that different brain regions/connections possess distinct frequency properties, which are related to brain function. Previous studies have proposed altered brain activity frequency and frequency-specific functional connectivity (FC) patterns in autism spectrum disorder (ASD), implying the varied dominant frequency of FC in ASD. However, the difference of the dominant frequency of FC between ASD and healthy controls (HCs) remains unclear. In the present study, the dominant frequency of FC was measured by FC optimal frequency, which was defined as the intermediate of the frequency bin at which the FC strength could reach the maximum. A multivariate pattern analysis was conducted to determine whether the FC optimal frequency in ASD differs from that in HCs. Partial least squares regression (PLSR) and enrichment analyses were conducted to determine the relationship between the FC optimal frequency difference of ASD/HCs and cortical gene expression. PLSR analyses were also performed to explore the relationship between FC optimal frequency and the clinical symptoms of ASD. Results showed a significant difference of FC optimal frequency between ASD and HCs. Some genes whose cortical expression patterns are related to the FC optimal frequency difference of ASD/HCs were enriched for social communication problems. Meanwhile, the FC optimal frequency in ASD was significantly related to social communication symptoms. These results may help us understand the neuro-mechanism of the social communication deficits in ASD.
Collapse
Affiliation(s)
- Jinjin Long
- School of MedicineGuizhou UniversityGuiyangChina,Guiyang Hospital of StomatologyGuiyangChina
| | - Fengmei Lu
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | | | | | - Xue Chen
- School of MedicineGuizhou UniversityGuiyangChina
| | - Yajing Pang
- School of Electrical EngineeringZhengzhou UniversityZhengzhouChina
| | - Min Wang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big HealthGuizhou Medical UniversityChina
| | - Bifang He
- School of MedicineGuizhou UniversityGuiyangChina
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical UniversityMedical Imaging Center of Guizhou ProvinceZunyiChina
| | - Xujun Duan
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shaobing Ye
- The People's Hospital of Kaizhou DistrictChongqingChina
| | - Heng Chen
- School of MedicineGuizhou UniversityGuiyangChina,Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
178
|
Totty MS, Maren S. Neural Oscillations in Aversively Motivated Behavior. Front Behav Neurosci 2022; 16:936036. [PMID: 35846784 PMCID: PMC9284508 DOI: 10.3389/fnbeh.2022.936036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Fear and anxiety-based disorders are highly debilitating and among the most prevalent psychiatric disorders. These disorders are associated with abnormal network oscillations in the brain, yet a comprehensive understanding of the role of network oscillations in the regulation of aversively motivated behavior is lacking. In this review, we examine the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the theta and gamma-range. First, we describe neural oscillations and their link to neural function by detailing the role of well-studied theta and gamma rhythms to spatial and memory functions of the hippocampus. We then describe how theta and gamma oscillations act to synchronize brain structures to guide adaptive fear and anxiety-like behavior. In short, that hippocampal network oscillations act to integrate spatial information with motivationally salient information from the amygdala during states of anxiety before routing this information via theta oscillations to appropriate target regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop in the amygdala and neocortical areas during the encoding of fear memories, and interregional synchronization reflects the retrieval of both recent and remotely encoded fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic extinction memories in the hippocampus.
Collapse
|
179
|
Guo D, Zhan C, Liu J, Wang Z, Cui M, Zhang X, Su X, Pan L, Deng M, Zhao L, Liu J, Song Y. Alternations in neural oscillation related to attention network reveal influence of indoor toluene on cognition at low concentration. INDOOR AIR 2022; 32:e13067. [PMID: 35904384 DOI: 10.1111/ina.13067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Despite accumulative literature reporting negative impacts of high-concentration toluene, cognitive effects of toluene at low concentration are still unclear. Twenty-two healthy college students were exposed in a closed environmental chamber to investigate the influence of indoor toluene on cognitive performance and brain activity. During each toluene exposure condition (0 ppb, 17.5 ppb, 35 ppb, and 70 ppb), attention network test and electroencephalogram (EEG) recording were synchronously performed after 4-hour toluene exposure. Characteristic neural oscillation patterns in three attention networks were compared between four groups. The statistical analyses indicated that short-term exposure to toluene had no significant impact on behavioral performance of attention network. However, there was a significant increase in the power of theta and alpha band of executive network and orienting network in the whole brain, especially in frontal region when exposed to toluene. Besides, no significant difference was observed in alerting network. The alternations in neural oscillation demonstrated that more effort was required to accomplish the same tasks when exposed to toluene. The present study revealed that short-term exposure to toluene affected brain activity of attention network even at low concentration, which provided a theoretical basis for the development of safer evaluation methods and standards in the future.
Collapse
Affiliation(s)
- Dandan Guo
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Changqing Zhan
- Department of Neurology, Wuhu No.2 People's Hospital, Wuhu, China
| | - Jie Liu
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Zukun Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Mingrui Cui
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Xin Zhang
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Xiao Su
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Liping Pan
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Meili Deng
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Lei Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junjie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yijun Song
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| |
Collapse
|
180
|
Lum JAG, Clark GM, Bigelow FJ, Enticott PG. Resting state electroencephalography (EEG) correlates with children's language skills: Evidence from sentence repetition. BRAIN AND LANGUAGE 2022; 230:105137. [PMID: 35576738 DOI: 10.1016/j.bandl.2022.105137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Spontaneous neural oscillatory activity reflects the brain's functional architecture and has previously been shown to correlate with perceptual, motor and executive skills. The current study used resting state electroencephalography to examine the relationship between spontaneous neural oscillatory activity and children's language skills. Participants in the study were 52 English-speaking children aged around 10-years. Language was assessed using a sentence repetition task. The main analysis revealed resting state theta power negatively correlated with this task. No significant correlations were found in the other studied frequency bands (delta, alpha, beta, gamma). As part of typical brain development, spontaneous theta power declines across childhood and adolescence. The negative correlation observed in this study may therefore be indicating children's language skills are related to the maturation of theta oscillations. More generally, the study provides further evidence that oscillatory activity in the developing brain, even at rest, is reliably associated with children's language skills.
Collapse
Affiliation(s)
- Jarrad A G Lum
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Geelong, Australia.
| | - Gillian M Clark
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Geelong, Australia
| | - Felicity J Bigelow
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Geelong, Australia
| | - Peter G Enticott
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Geelong, Australia
| |
Collapse
|
181
|
Cole ER, Grogan DP, Laxpati NG, Fernandez AM, Skelton HM, Isbaine F, Gutekunst CA, Gross RE. Evidence supporting deep brain stimulation of the medial septum in the treatment of temporal lobe epilepsy. Epilepsia 2022; 63:2192-2213. [PMID: 35698897 DOI: 10.1111/epi.17326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/28/2022]
Abstract
Electrical brain stimulation has become an essential treatment option for more than one third of epilepsy patients who are resistant to pharmacological therapy and are not candidates for surgical resection. However, currently approved stimulation paradigms achieve only moderate success, on average providing approximately 75% reduction in seizure frequency and extended periods of seizure freedom in nearly 20% of patients. Outcomes from electrical stimulation may be improved through the identification of novel anatomical targets, particularly those with significant anatomical and functional connectivity to the epileptogenic zone. Multiple studies have investigated the medial septal nucleus (i.e., medial septum) as such a target for the treatment of mesial temporal lobe epilepsy. The medial septum is a small midline nucleus that provides a critical functional role in modulating the hippocampal theta rhythm, a 4-7-Hz electrophysiological oscillation mechanistically associated with memory and higher order cognition in both rodents and humans. Elevated theta oscillations are thought to represent a seizure-resistant network activity state, suggesting that electrical neuromodulation of the medial septum and restoration of theta-rhythmic physiology may not only reduce seizure frequency, but also restore cognitive comorbidities associated with mesial temporal lobe epilepsy. Here, we review the anatomical and physiological function of the septohippocampal network, evidence for seizure-resistant effects of the theta rhythm, and the results of stimulation experiments across both rodent and human studies, to argue that deep brain stimulation of the medial septum holds potential to provide an effective neuromodulation treatment for mesial temporal lobe epilepsy. We conclude by discussing the considerations necessary for further evaluating this treatment paradigm with a clinical trial.
Collapse
Affiliation(s)
- Eric R Cole
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | - Nealen G Laxpati
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alejandra M Fernandez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Henry M Skelton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Faical Isbaine
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert E Gross
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
182
|
Capilla A, Arana L, García-Huéscar M, Melcón M, Gross J, Campo P. The natural frequencies of the resting human brain: An MEG-based atlas. Neuroimage 2022; 258:119373. [PMID: 35700947 DOI: 10.1016/j.neuroimage.2022.119373] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022] Open
Abstract
Brain oscillations are considered to play a pivotal role in neural communication. However, detailed information regarding the typical oscillatory patterns of individual brain regions is surprisingly scarce. In this study we applied a multivariate data-driven approach to create an atlas of the natural frequencies of the resting human brain on a voxel-by-voxel basis. We analysed resting-state magnetoencephalography (MEG) data from 128 healthy adult volunteers obtained from the Open MEG Archive (OMEGA). Spectral power was computed in source space in 500 ms steps for 82 frequency bins logarithmically spaced from 1.7 to 99.5 Hz. We then applied k-means clustering to detect characteristic spectral profiles and to eventually identify the natural frequency of each voxel. Our results provided empirical confirmation of the canonical frequency bands and revealed a region-specific organisation of intrinsic oscillatory activity, following both a medial-to-lateral and a posterior-to-anterior gradient of increasing frequency. In particular, medial fronto-temporal regions were characterised by slow rhythms (delta/theta). Posterior regions presented natural frequencies in the alpha band, although with differentiated generators in the precuneus and in sensory-specific cortices (i.e., visual and auditory). Somatomotor regions were distinguished by the mu rhythm, while the lateral prefrontal cortex was characterised by oscillations in the high beta range (>20 Hz). Importantly, the brain map of natural frequencies was highly replicable in two independent subsamples of individuals. To the best of our knowledge, this is the most comprehensive atlas of ongoing oscillatory activity performed to date. Critically, the identification of natural frequencies is a fundamental step towards a better understanding of the functional architecture of the human brain.
Collapse
Affiliation(s)
- Almudena Capilla
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - Lydia Arana
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Marta García-Huéscar
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - María Melcón
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Pablo Campo
- Departamento de Psicología Básica, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
183
|
Wang JW, Liu J, Wang ZL, Gao F, Yang J, Wang XC, Guo Y, Wang Y, Ma BR, Wang HS, Hu YW, Zhang YM, Hui YP, Zhang L. Activation and blockade of 5-HT 4 receptors in the dorsal hippocampus enhance working and hippocampus-dependent memories in the unilateral 6-hydroxydopamine lesioned rats. Behav Brain Res 2022; 431:113952. [PMID: 35688293 DOI: 10.1016/j.bbr.2022.113952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 11/02/2022]
Abstract
Cognitive dysfunction is a common symptom in Parkinson's disease (PD). Serotonin4 (5-HT4) receptors are richly expressed in the dorsal hippocampus (dHIPP) and play an important role in cognitive activities. However, the mechanism underlying the role of dHIPP 5-HT4 receptors in PD-related cognitive dysfunction remains unclear. Here we found that unilateral 6-hydroxydopamine lesions of the medial forebrain bundle increased the protein expression of 5-HT4 receptors in the dHIPP, decreased hippocampal theta rhythm, and impaired working memory and hippocampus-dependent memory in the T-maze and hole-board test, respectively. Both activation and blockade of dHIPP 5-HT4 receptors (agonist BIMU8 and antagonist GR113808) improved working memory and hippocampus-dependent memory in the lesioned rats, but not in sham rats. Activation of dHIPP 5-HT4 receptors increased hippocampal theta rhythm in the lesioned rats. The neurochemical studies showed that injection of BIMU8, GR113808 or GR113808/BIMU8 in the dHIPP increased the levels of dopamine in the medial prefrontal cortex (mPFC), dHIPP and amygdala, and the level of 5-HT in the amygdala in the lesioned rats, but not in sham rats. Injection of GR113808 or GR113808/BIMU8 into the dHIPP also increased the levels of noradrenaline in the mPFC, dHIPP and amygdala only in the lesioned rats. These results suggest that activation or blockade of dHIPP 5-HT4 receptors may improve the cognitive impairments in parkinsonian rats, which may be due to the increase of hippocampal theta rhythm, up-regulated expressions of 5-HT4 receptors in the dHIPP and the changes in the levels of monoamines in the relative brain areas.
Collapse
Affiliation(s)
- Jia-Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhao-Long Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Feng Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiao-Chen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bo-Rui Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hui-Sheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yi-Wei Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yu-Ming Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Yan-Ping Hui
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
184
|
Anterior Cingulate Cortex Signals the Need to Control Intrusive Thoughts during Motivated Forgetting. J Neurosci 2022; 42:4342-4359. [PMID: 35437275 PMCID: PMC9145231 DOI: 10.1523/jneurosci.1711-21.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/07/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
How do people limit awareness of unwanted memories? When such memories intrude, a control process engages the right DLPFC (rDLPFC) to inhibit hippocampal activity and stop retrieval. It remains unknown how the need for control is detected, and whether control operates proactively to prevent unwelcome memories from being retrieved, or responds reactively, to counteract intrusions. We hypothesized that dorsal ACC (dACC) detects the emergence of an unwanted trace in awareness and transmits the need for inhibitory control to rDLPFC. During a memory suppression task, we measured in humans (both sexes) trial-by-trial variations in the theta power and N2 amplitude of dACC, two EEG markers that are thought to reflect the need for control. With simultaneous EEG-fMRI recordings, we tracked interactions among dACC, rDLPFC, and hippocampus during suppression. We found a clear role of dACC in detecting the need for memory control and upregulating prefrontal inhibition. Importantly, we identified distinct early (300-450 ms) and late (500-700 ms) dACC contributions, suggesting both proactive control before recollection and reactive control in response to intrusions. Stronger early activity was associated with reduced hippocampal activity and diminished BOLD signal in dACC and rDLPFC, suggesting that preempting retrieval reduced overall control demands. In the later window, dACC activity was larger, and effective connectivity analyses revealed robust communication from dACC to rDLPFC and from rDLPFC to hippocampus, which are tied to successful forgetting. Together, our findings support a model in which dACC detects the emergence of unwanted content, triggering top-down inhibitory control, and in which rDLPFC countermands intruding thoughts that penetrate awareness.SIGNIFICANCE STATEMENT Preventing unwanted memories from coming to mind is an adaptive ability of humans. This ability relies on inhibitory control processes in the prefrontal cortex to modulate hippocampal retrieval processes. How and when reminders to unwelcome memories come to trigger prefrontal control mechanisms remains unknown. Here we acquired neuroimaging data with both high spatial and temporal resolution as participants suppressed specific memories. We found that the anterior cingulate cortex detects the need for memory control, responding both proactively to early warning signals about unwelcome content and reactively to intrusive thoughts themselves. When unwanted traces emerge in awareness, anterior cingulate communicates with prefrontal cortex and triggers top-down inhibitory control over the hippocampus through specific neural oscillatory networks.
Collapse
|
185
|
Tang Z, Liu X, Huo H, Tang M, Liu T, Wu Z, Qiao X, Chen D, An R, Dong Y, Fan L, Wang J, Du X, Fan Y. The role of low-frequency oscillations in three-dimensional perception with depth cues in virtual reality. Neuroimage 2022; 257:119328. [PMID: 35605766 DOI: 10.1016/j.neuroimage.2022.119328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022] Open
Abstract
Currently, vision-related neuroscience studies are undergoing a trend from simplified image stimuli toward more naturalistic stimuli. Virtual reality (VR), as an emerging technology for visual immersion, provides more depth cues for three-dimensional (3D) presentation than two-dimensional (2D) image. It is still unclear whether the depth cues used to create 3D visual perception modulate specific cortical activation. Here, we constructed two visual stimuli presented by stereoscopic vision in VR and graphical projection with 2D image, respectively, and used electroencephalography to examine neural oscillations and their functional connectivity during 3D perception. We find that neural oscillations are specific to delta and theta bands in stereoscopic vision and the functional connectivity in the both bands increase in cortical areas related to visual pathways. These findings indicate that low-frequency oscillations play an important role in 3D perception with depth cues.
Collapse
Affiliation(s)
- Zhili Tang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyu Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China.
| | - Hongqiang Huo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Min Tang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Tao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhixin Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaofeng Qiao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Duo Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ran An
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ying Dong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Linyuan Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jinghui Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xin Du
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Beijing Advanced Innovation Center for Biomedical Engineering; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Medical Science and Engineering Medicine, Beihang University, Beijing 100083, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China.
| |
Collapse
|
186
|
Alterations in Cortical Activation among Soccer Athletes with Chronic Ankle Instability during Drop-Jump Landing: A Preliminary Study. Brain Sci 2022; 12:brainsci12050664. [PMID: 35625050 PMCID: PMC9139920 DOI: 10.3390/brainsci12050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Chronic ankle instability (CAI) is a common peripheral joint injury and there is still no consensus on the mechanisms. It is necessary to investigate electrocortical parameters to provide clinical insight into the functional alterations of brain activity after an ankle sprain, which would greatly affect the implementation of rehabilitation plans. The purpose of this study was to assess cortical activation characteristics during drop-jump landing among soccer athletes with CAI. Methods: A total of 24 participants performed the drop-jump landing task on a force platform while wearing a 64-channel EEG system. The differences of power spectral density (PSD) in theta and alpha (alpha-1 and alpha-2) bands were analyzed between two groups (CAI vs. CON) and between two limbs (injured vs. healthy). Results: CAI participants demonstrated significantly higher theta power at the frontal electrode than that in healthy control individuals (F(1,22) = 7.726, p = 0.011, η2p = 0.260). No difference in parietal alpha-1 and alpha-2 power was found between groups (alpha-1: F(1,22) = 0.297, p = 0.591, η2p = 0.013; alpha-2: F(1,22) = 0.118, p = 0.734, η2p = 0.005). No limb differences were presented for any frequency band in selected cortical areas (alpha-1: F(1,22) = 0.149, p = 0.703, η2p = 0.007; alpha-2: F(1,22) = 0.166, p = 0.688, η2p = 0.007; theta: F(1,22) = 2.256, p = 0.147, η2p = 0.093). Conclusions: Theta power at the frontal cortex was higher in soccer athletes with CAI during drop-jump landing. Differences in cortical activation provided evidence for an altered neural mechanism of postural control among soccer athletes with CAI.
Collapse
|
187
|
Li S, Zhou Q, Liu E, Du H, Yu N, Yu H, Wang W, Li M, Weng Y, Gao Y, Pi G, Wang X, Ke D, Wang J. Alzheimer-like tau accumulation in dentate gyrus mossy cells induces spatial cognitive deficits by disrupting multiple memory-related signaling and inhibiting local neural circuit. Aging Cell 2022; 21:e13600. [PMID: 35355405 PMCID: PMC9124302 DOI: 10.1111/acel.13600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Abnormal tau accumulation and spatial memory loss constitute characteristic pathology and symptoms of Alzheimer disease (AD). Yet, the intrinsic connections and the mechanism between them are not fully understood. In the current study, we observed a prominent accumulation of the AD-like hyperphosphorylated and truncated tau (hTau N368) proteins in hippocampal dentate gyrus (DG) mossy cells of 3xTg-AD mice. Further investigation demonstrated that the ventral DG (vDG) mossy cell-specific overexpressing hTau for 3 months induced spatial cognitive deficits, while expressing hTau N368 for only 1 month caused remarkable spatial cognitive impairment with more prominent tau pathologies. By in vivo electrophysiological and optic fiber recording, we observed that the vDG mossy cell-specific overexpression of hTau N368 disrupted theta oscillations with local neural network inactivation in the dorsal DG subset, suggesting impairment of the ventral to dorsal neural circuit. The mossy cell-specific transcriptomic data revealed that multiple AD-associated signaling pathways were disrupted by hTau N368, including reduction of synapse-associated proteins, inhibition of AKT and activation of glycogen synthase kinase-3β. Importantly, chemogenetic activating mossy cells efficiently attenuated the hTau N368-induced spatial cognitive deficits. Together, our findings indicate that the mossy cell pathological tau accumulation could induce the AD-like spatial memory deficit by inhibiting the local neural network activity, which not only reveals new pathogenesis underlying the mossy cell-related spatial memory loss but also provides a mouse model of Mossy cell-specific hTau accumulation for drug development in AD and the related tauopathies.
Collapse
Affiliation(s)
- Shihong Li
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiuzhi Zhou
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Enjie Liu
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Huiyun Du
- Department of PhysiologySchool of Basic Medicine and Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Nana Yu
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haitao Yu
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weijin Wang
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengzhu Li
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Weng
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Gao
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guilin Pi
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Wang
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Ke
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jian‐Zhi Wang
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
188
|
Wainio-Theberge S, Wolff A, Gomez-Pilar J, Zhang J, Northoff G. Variability and task-responsiveness of electrophysiological dynamics: scale-free stability and oscillatory flexibility. Neuroimage 2022; 256:119245. [PMID: 35477021 DOI: 10.1016/j.neuroimage.2022.119245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Cortical oscillations and scale-free neural activity are thought to influence a variety of cognitive functions, but their differential relationships to neural stability and flexibility has never been investigated. Based on the existing literature, we hypothesize that scale-free and oscillatory processes in the brain exhibit different trade-offs between stability and flexibility; specifically, cortical oscillations may reflect variable, task-responsive aspects of brain activity, while scale-free activity is proposed to reflect a more stable and task-unresponsive aspect. We test this hypothesis using data from two large-scale MEG studies (HCP: n = 89; CamCAN: n = 195), operationalizing stability and flexibility by task-responsiveness and spontaneous intra-subject variability in resting state. We demonstrate that the power-law exponent of scale-free activity is a highly stable parameter, which responds little to external cognitive demands and shows minimal spontaneous fluctuations over time. In contrast, oscillatory power, particularly in the alpha range (8-13 Hz), responds strongly to tasks and exhibits comparatively large spontaneous fluctuations over time. In sum, our data support differential roles for oscillatory and scale-free activity in the brain with respect to neural stability and flexibility. This result carries implications for criticality-based theories of scale-free activity, state-trait models of variability, and homeostatic views of the brain with regulated variables vs. effectors.
Collapse
Affiliation(s)
- Soren Wainio-Theberge
- Mind, Brain Imaging, and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.
| | - Annemarie Wolff
- Mind, Brain Imaging, and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, Valladolid 47011, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Valladolid, Spain
| | - Jianfeng Zhang
- Mental Health Centre/7th Hospital, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou, Zhejiang 310013, China; College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Georg Northoff
- Mind, Brain Imaging, and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada; Mental Health Centre/7th Hospital, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou, Zhejiang 310013, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
189
|
Bjekić J, Živanović M, Paunović D, Vulić K, Konstantinović U, Filipović SR. Personalized Frequency Modulated Transcranial Electrical Stimulation for Associative Memory Enhancement. Brain Sci 2022; 12:472. [PMID: 35448003 PMCID: PMC9025454 DOI: 10.3390/brainsci12040472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Associative memory (AM) is the ability to remember the relationship between previously unrelated items. AM is significantly affected by normal aging and neurodegenerative conditions, thus there is a growing interest in applying non-invasive brain stimulation (NIBS) techniques for AM enhancement. A growing body of studies identifies posterior parietal cortex (PPC) as the most promising cortical target for both transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) to modulate a cortico-hippocampal network that underlines AM. In that sense, theta frequency oscillatory tES protocols, targeted towards the hallmark oscillatory activity within the cortico-hippocampal network, are increasingly coming to prominence. To increase precision and effectiveness, the need for EEG guided individualization of the tES protocols is proposed. Here, we present the study protocol in which two types of personalized oscillatory tES-transcranial alternating current stimulation (tACS) and oscillatory transcranial direct current stimulation (otDCS), both frequency-modulated to the individual theta-band frequency (ITF), are compared to the non-oscillatory transcranial direct current stimulation (tDCS) and to the sham stimulation. The study has cross-over design with four tES conditions (tACS, otDCS, tDCS, sham), and the comprehensive set of neurophysiological (resting state EEG and AM-evoked EEG) and behavioral outcomes, including AM tasks (short-term associative memory, face-word, face-object, object-location), as well as measures of other cognitive functions (cognitive control, verbal fluency, and working memory).
Collapse
Affiliation(s)
- Jovana Bjekić
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (D.P.); (K.V.); (U.K.); (S.R.F.)
| | - Marko Živanović
- Institute of Psychology and Laboratory for Research of Individual Differences, Department of Psychology, Faculty of Philosophy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dunja Paunović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (D.P.); (K.V.); (U.K.); (S.R.F.)
| | - Katarina Vulić
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (D.P.); (K.V.); (U.K.); (S.R.F.)
| | - Uroš Konstantinović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (D.P.); (K.V.); (U.K.); (S.R.F.)
| | - Saša R. Filipović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (D.P.); (K.V.); (U.K.); (S.R.F.)
| |
Collapse
|
190
|
Dini H, Simonetti A, Bigne E, Bruni LE. EEG theta and N400 responses to congruent versus incongruent brand logos. Sci Rep 2022; 12:4490. [PMID: 35296710 PMCID: PMC8927156 DOI: 10.1038/s41598-022-08363-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/04/2022] [Indexed: 11/14/2022] Open
Abstract
Neuroimaging and behavioral studies have shown that brands convey meaning to consumers. To investigate the immediate reactions of the brain to brand logos, followed either by congruent or incongruent pictorial brand-related cues, can deepen understanding of the semantic processing of brands, and perhaps how consolidated the logo is in consumers’ minds. Participants were exposed to different brand-related image sets, that were either congruent (a match between brand-related images and brand logo) or incongruent (a mismatch between brand-related images and brand logo) while having their brain signals recorded. Event-related potential and EEG time–frequency domain features were extracted from the signals of the target image (brand logo). The results showed significantly larger N400 peak and relative theta power increase for incongruent compared to congruent logos, which could be attributed to an error-monitoring process. Thus, we argue that brands are encoded deeply in consumers’ minds, and cognitive processing of mismatched (vs matched) brand logos is more difficult, leading to greater error monitoring. The results were mostly consistent with previous studies investigating semantic incongruences in the linguistic field. Therefore, the error-monitoring process could be extended beyond linguistic forms, for example to images and brands.
Collapse
Affiliation(s)
- Hossein Dini
- The Augmented Cognition Lab, Aalborg University, 2450, Copenhagen, Denmark
| | - Aline Simonetti
- Department of Marketing and Market Research, University of Valencia, 46022, Valencia, Spain
| | - Enrique Bigne
- Department of Marketing and Market Research, University of Valencia, 46022, Valencia, Spain.
| | - Luis Emilio Bruni
- The Augmented Cognition Lab, Aalborg University, 2450, Copenhagen, Denmark
| |
Collapse
|
191
|
Behavior of olfactory-related frontal lobe oscillations in Alzheimer's disease and MCI: A pilot study. Int J Psychophysiol 2022; 175:43-53. [PMID: 35217110 DOI: 10.1016/j.ijpsycho.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022]
Abstract
Slow-gamma (35-45 Hz) phase synchronization and the coupling between slow-gamma and low-frequency theta oscillations (4-8 Hz) are closely related to memory retrieval and cognitive functions. In this pilot study, we assess the Phase Amplitude Coupling (PAC) between theta and slow-gamma oscillatory bands and the quality of synchronization in slow-gamma oscillations using Phase Locking Value (PLV) on EEG data from healthy individuals and patients diagnosed with amnestic Mild Cognitive Impairment (aMCI) and Alzheimer's Disease (AD) during an oddball olfactory task. Our study indicates noticeable differences between the PLV and PAC values corresponding to olfactory stimulation in the three groups of participants. These differences can help explain the underlying processes involved in these cognitive disorders and the differences between aMCI and AD patients in performing cognitive tasks. Our study also proposes a diagnosis method for aMCI through comparing the brain's response characteristics during olfactory stimulation and rest. Early diagnosis of aMCI can potentially lead to its timely treatment and prevention from progression to AD.
Collapse
|
192
|
Duan Y, Lv J, Zhang Z, Chen Z, Wu H, Chen J, Chen Z, Yang J, Wang D, Liu Y, Chen F, Tian Y, Cao X. Exogenous Aβ 1-42 monomers improve synaptic and cognitive function in Alzheimer's disease model mice. Neuropharmacology 2022; 209:109002. [PMID: 35196539 DOI: 10.1016/j.neuropharm.2022.109002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 01/16/2023]
Abstract
Growing evidence has suggested the poor correlation between brain amyloid plaque and Alzheimer's disease (AD). Presenilin1 (PS1) and presenilin2 (PS2) conditional double knockout (cDKO) mice exhibited the reduced 42-amino acid amyloid-β peptide (Aβ1-42) level and AD-like symptoms, indicating a different pathological mechanism from the amyloid cascade hypothesis for AD. Here we found that exogenous synthetic Aβ1-42 monomers could improve the impaired memory not only in cDKO mice without Aβ1-42 deposition but also in the APP/PS1/Tau triple transgenic 3 × Tg-AD mice with Aβ1-42 deposition, which were mediated by α7-nAChR. Our findings demonstrate for the first time that reduced soluble Aβ1-42 level is the main cause of cognitive dysfunction in cDKO mice, and support the opinions that low soluble Aβ1-42 level due to Aβ1-42 deposition may also cause cognitive deficits in 3 × Tg-AD mice. Therefore, "loss-of-function" of Aβ1-42 should be avoided when designing therapies aimed at reducing Aβ1-42 burden in AD.
Collapse
Affiliation(s)
- Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Junyan Lv
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhonghui Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhenzhen Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Hao Wu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Jinnan Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhidong Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Jiarun Yang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Dasheng Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Yamei Liu
- School of Life Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai, 200444, PR China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai, 200444, PR China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China.
| |
Collapse
|
193
|
Mirjalili S, Powell P, Strunk J, James T, Duarte A. Evaluation of classification approaches for distinguishing brain states predictive of episodic memory performance from electroencephalography: Abbreviated Title: Evaluating methods of classifying memory states from EEG. Neuroimage 2022; 247:118851. [PMID: 34954026 PMCID: PMC8824531 DOI: 10.1016/j.neuroimage.2021.118851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
Previous studies have attempted to separate single trial neural responses for events a person is likely to remember from those they are likely to forget using machine learning classification methods. Successful single trial classification holds potential for translation into the clinical realm for real-time detection of memory and other cognitive states to provide real-time interventions (i.e., brain-computer interfaces). However, most of these studies-and classification analyses in general- do not make clear if the chosen methodology is optimally suited for the classification of memory-related brain states. To address this problem, we systematically compared different methods for every step of classification (i.e., feature extraction, feature selection, classifier selection) to investigate which methods work best for decoding episodic memory brain states-the first analysis of its kind. Using an adult lifespan sample EEG dataset collected during performance of an episodic context encoding and retrieval task, we found that no specific feature type (including Common Spatial Pattern (CSP)-based features, mean, variance, correlation, features based on AR model, entropy, phase, and phase synchronization) outperformed others consistently in distinguishing different memory classes. However, extracting all of these feature types consistently outperformed extracting only one type of feature. Additionally, the combination of filtering and sequential forward selection was the optimal method to select the effective features compared to filtering alone or performing no feature selection at all. Moreover, although all classifiers performed at a fairly similar level, LASSO was consistently the highest performing classifier compared to other commonly used options (i.e., naïve Bayes, SVM, and logistic regression) while naïve Bayes was the fastest classifier. Lastly, for multiclass classification (i.e., levels of context memory confidence and context feature perception), generalizing the binary classification using the binary decision tree performed better than the voting or one versus rest method. These methods were shown to outperform alternative approaches for three orthogonal datasets (i.e., EEG working memory, EEG motor imagery, and MEG working memory), supporting their generalizability. Our results provide an optimized methodological process for classifying single-trial neural data and provide important insight and recommendations for a cognitive neuroscientist's ability to make informed choices at all stages of the classification process for predicting memory and other cognitive states.
Collapse
Affiliation(s)
| | | | | | - Taylor James
- School of Psychology, Georgia Institute of Technology; Department of Neurology, Emory University, Atlanta, GA, USA.
| | - Audrey Duarte
- Department of Psychology, University of Texas at Austin.
| |
Collapse
|
194
|
Papasavvas C, Taylor PN, Wang Y. Long-term changes in functional connectivity improve prediction of responses to intracranial stimulation of the human brain. J Neural Eng 2022; 19. [PMID: 35168208 DOI: 10.1088/1741-2552/ac5568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Targeted electrical stimulation of the brain perturbs neural networks and modulates their rhythmic activity both at the site of stimulation and at remote brain regions. Understanding, or even predicting, this neuromodulatory effect is crucial for any therapeutic use of brain stimulation. The objective of this study was to investigate if brain network properties prior to stimulation sessions hold associative and predictive value in understanding the neuromodulatory effect of electrical stimulation in a clinical context. APPROACH We analysed the stimulation responses in 131 stimulation sessions across 66 patients with focal epilepsy recorded through intracranial electroencephalogram (iEEG). We considered functional and structural connectivity features as predictors of the response at every iEEG contact. Taking advantage of multiple recordings over days, we also investigated how slow changes in interictal functional connectivity (FC) ahead of the stimulation, representing the long-term variability of FC, relate to stimulation responses. MAIN RESULTS The long-term variability of FC exhibits strong association with the stimulation-induced increases in delta and theta band power. Furthermore, we show through cross-validation that long-term variability of FC improves prediction of responses above the performance of spatial predictors alone. SIGNIFICANCE This study highlights the importance of the slow dynamics of functional connectivity in the prediction of brain stimulation responses. Furthermore, these findings can enhance the patient-specific design of effective neuromodulatory protocols for therapeutic interventions.
Collapse
Affiliation(s)
- Christoforos Papasavvas
- School of Computing, Newcastle University, Science Square, Newcastle upon Tyne, NE1 7RU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Peter Neal Taylor
- School of Computing, Newcastle University, Science Square, Newcastle upon Tyne, NE1 7RU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yujiang Wang
- School of Computing, Newcastle University, Science Square, Newcastle upon Tyne, NE1 7RU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
195
|
Johnson EL, Yin Q, O'Hara NB, Tang L, Jeong JW, Asano E, Ofen N. Dissociable oscillatory theta signatures of memory formation in the developing brain. Curr Biol 2022; 32:1457-1469.e4. [PMID: 35172128 PMCID: PMC9007830 DOI: 10.1016/j.cub.2022.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Understanding complex human brain functions is critically informed by studying such functions during development. Here, we addressed a major gap in models of human memory by leveraging rare direct electrophysiological recordings from children and adolescents. Specifically, memory relies on interactions between the medial temporal lobe (MTL) and prefrontal cortex (PFC), and the maturation of these interactions is posited to play a key role in supporting memory development. To understand the nature of MTL-PFC interactions, we examined subdural recordings from MTL and PFC in 21 neurosurgical patients aged 5.9-20.5 years as they performed an established scene memory task. We determined signatures of memory formation by comparing the study of subsequently recognized to forgotten scenes in single trials. Results establish that MTL and PFC interact via two distinct theta mechanisms, an ∼3-Hz oscillation that supports amplitude coupling and slows down with age and an ∼7-Hz oscillation that supports phase coupling and speeds up with age. Slow and fast theta interactions immediately preceding scene onset further explained age-related differences in recognition performance. Last, with additional diffusion imaging data, we linked both functional mechanisms to the structural maturation of the cingulum tract. Our findings establish system-level dynamics of memory formation and suggest that MTL and PFC interact via increasingly dissociable mechanisms as memory improves across development.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL 60611, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Qin Yin
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Nolan B O'Hara
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Lingfei Tang
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Jeong-Won Jeong
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA; Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA; Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
196
|
Coherent theta oscillations in the cerebellum and supplementary motor area mediate visuomotor adaptation. Neuroimage 2022; 251:118985. [PMID: 35149228 DOI: 10.1016/j.neuroimage.2022.118985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The cerebellum and its interaction with cortical areas play a key role in our ability to flexibly adapt a motor program in response to sensory input. Current knowledge about specific neural mechanisms underlying the process of visuomotor adaptation is however lacking. Using a novel placement of EEG electrodes to record electric activity from the cerebellum, we studied local cerebellar activity, as well as its coupling with neocortical activity to obtain direct neurophysiological markers of visuomotor adaptation in humans. We found increased theta (4-8Hz) power in "cerebellar" as well as cortical electrodes, when subjects first encountered a visual manipulation. Theta power decreased as subjects adapted to the perturbation, and rebounded when the manipulation was suddenly removed. This effect was observed in two distinct locations: a cerebellar cluster and a central cluster, which were localized in left cerebellar crus I (lCB) and right supplementary motor area (rSMA) using linear constrained minimum variance beamforming. Importantly, we found that better adaptation was associated with increased theta power in left cerebellar electrodes and a right sensorimotor cortex electrode. Finally, increased rSMA -> lCB connectivity was significantly decreased with adaptation. These results demonstrate that: (1) cerebellar theta power is markedly modulated over the course of visuomotor adaptation and (2) theta oscillations could serve as a key mechanism for communication within a cortico-cerebellar loop.
Collapse
|
197
|
Scalp recorded theta activity is modulated by reward, direction, and speed during virtual navigation in freely moving humans. Sci Rep 2022; 12:2041. [PMID: 35132101 PMCID: PMC8821620 DOI: 10.1038/s41598-022-05955-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Theta oscillations (~ 4–12 Hz) are dynamically modulated by speed and direction in freely moving animals. However, due to the paucity of electrophysiological recordings of freely moving humans, this mechanism remains poorly understood. Here, we combined mobile-EEG with fully immersive virtual-reality to investigate theta dynamics in 22 healthy adults (aged 18–29 years old) freely navigating a T-maze to find rewards. Our results revealed three dynamic periods of theta modulation: (1) theta power increases coincided with the participants’ decision-making period; (2) theta power increased for fast and leftward trials as subjects approached the goal location; and (3) feedback onset evoked two phase-locked theta bursts over the right temporal and frontal-midline channels. These results suggest that recording scalp EEG in freely moving humans navigating a simple virtual T-maze can be utilized as a powerful translational model by which to map theta dynamics during “real-life” goal-directed behavior in both health and disease.
Collapse
|
198
|
Katerman BS, Li Y, Pazdera JK, Keane C, Kahana MJ. EEG biomarkers of free recall. Neuroimage 2022; 246:118748. [PMID: 34863960 PMCID: PMC9070361 DOI: 10.1016/j.neuroimage.2021.118748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/28/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022] Open
Abstract
Brain activity in the moments leading up to spontaneous verbal recall provide a window into the cognitive processes underlying memory retrieval. But these same recordings also subsume neural signals unrelated to mnemonic retrieval, such as response-related motor activity. Here we examined spectral EEG biomarkers of memory retrieval under an extreme manipulation of mnemonic demands: subjects either recalled items after a few seconds or after several days. This manipulation helped to isolate EEG components specifically related to long-term memory retrieval. In the moments immediately preceding recall we observed increased theta (4-8 Hz) power (+T), decreased alpha (8-20 Hz) power (-A), and increased gamma (40-128 Hz) power (+G), with this spectral pattern (+T-A + G) distinguishing the long-delay and immediate recall conditions. As subjects vocalized the same set of studied words in both conditions, we interpret the spectral +T-A + G as a biomarker of episodic memory retrieval.
Collapse
Affiliation(s)
| | - Y Li
- University of Pennsylvania, United States
| | | | - C Keane
- University of Pennsylvania, United States
| | - M J Kahana
- University of Pennsylvania, United States.
| |
Collapse
|
199
|
Bramão I, Jiang J, Wagner AD, Johansson M. Encoding contexts are incidentally reinstated during competitive retrieval and track the temporal dynamics of memory interference. Cereb Cortex 2022; 32:5020-5035. [PMID: 35106538 PMCID: PMC9667177 DOI: 10.1093/cercor/bhab529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/27/2022] Open
Abstract
The ability to remember an episode from our past is often hindered by competition from similar events. For example, if we want to remember the article a colleague recommended during the last lab meeting, we may need to resolve interference from other article recommendations from the same colleague. This study investigates if the contextual features specifying the encoding episodes are incidentally reinstated during competitive memory retrieval. Competition between memories was created through the AB/AC interference paradigm. Individual word-pairs were presented embedded in a slowly drifting real-word-like context. Multivariate pattern analysis (MVPA) of high temporal-resolution electroencephalographic (EEG) data was used to investigate context reactivation during memory retrieval. Behaviorally, we observed proactive (but not retroactive) interference; that is, performance for AC competitive retrieval was worse compared with a control DE noncompetitive retrieval, whereas AB retrieval did not suffer from competition. Neurally, proactive interference was accompanied by an early reinstatement of the competitor context and interference resolution was associated with the ensuing reinstatement of the target context. Together, these findings provide novel evidence showing that the encoding contexts of competing discrete events are incidentally reinstated during competitive retrieval and that such reinstatement tracks retrieval competition and subsequent interference resolution.
Collapse
Affiliation(s)
- Inês Bramão
- Address correspondence to Inês Bramão, Department of Psychology, Lund University, Box 213, Lund SE-221 00, Sweden.
| | - Jiefeng Jiang
- Department of Psychological and Brain Sciences, University of Iowa, Iowa 52242-1407, USA
| | - Anthony D Wagner
- Department of Psychology, Stanford University, CA 94305, USA,Department of Psychology, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Mikael Johansson
- Department of Psychology, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|
200
|
Kragel JE, Voss JL. Looking for the neural basis of memory. Trends Cogn Sci 2022; 26:53-65. [PMID: 34836769 PMCID: PMC8678329 DOI: 10.1016/j.tics.2021.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Memory neuroscientists often measure neural activity during task trials designed to recruit specific memory processes. Behavior is championed as crucial for deciphering brain-memory linkages but is impoverished in typical experiments that rely on summary judgments. We criticize this approach as being blind to the multiple cognitive, neural, and behavioral processes that occur rapidly within a trial to support memory. Instead, time-resolved behaviors such as eye movements occur at the speed of cognition and neural activity. We highlight successes using eye-movement tracking with in vivo electrophysiology to link rapid hippocampal oscillations to encoding and retrieval processes that interact over hundreds of milliseconds. This approach will improve research on the neural basis of memory because it pinpoints discrete moments of brain-behavior-cognition correspondence.
Collapse
Affiliation(s)
- James E Kragel
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | - Joel L Voss
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|