151
|
Ho BK, Thomas A, Brasseur R. Revisiting the Ramachandran plot: hard-sphere repulsion, electrostatics, and H-bonding in the alpha-helix. Protein Sci 2004; 12:2508-22. [PMID: 14573863 PMCID: PMC2366959 DOI: 10.1110/ps.03235203] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
What determines the shape of the allowed regions in the Ramachandran plot? Although Ramachandran explained these regions in terms of 1-4 hard-sphere repulsions, there are discrepancies with the data where, in particular, the alphaR, alphaL, and beta-strand regions are diagonal. The alphaR-region also varies along the alpha-helix where it is constrained at the center and the amino terminus but diffuse at the carboxyl terminus. By analyzing a high-resolution database of protein structures, we find that certain 1-4 hard-sphere repulsions in the standard steric map of Ramachandran do not affect the statistical distributions. By ignoring these steric clashes (NH(i+1) and O(i-1)C), we identify a revised set of steric clashes (CbetaO, O(i-1)N(i+1), CbetaN(i+1), O(i-1)Cbeta, and O(i-1)O) that produce a better match with the data. We also find that the strictly forbidden region in the Ramachandran plot is excluded by multiple steric clashes, whereas the outlier region is excluded by only one significant steric clash. However, steric clashes alone do not account for the diagonal regions. Using electrostatics to analyze the conformational dependence of specific interatomic interactions, we find that the diagonal shape of the alphaR and alphaL-regions also depends on the optimization of the NH(i+1) and O(i-1)C interactions, and the diagonal beta-strand region is due to the alignment of the CO and NH dipoles. Finally, we reproduce the variation of the Ramachandran plot along the alpha-helix in a simple model that uses only H-bonding constraints. This allows us to rationalize the difference between the amino terminus and the carboxyl terminus of the alpha-helix in terms of backbone entropy.
Collapse
Affiliation(s)
- Bosco K Ho
- Centre de Biophysique Moléculaire Numérique (CBMN), B-5030 Gembloux, Belgium.
| | | | | |
Collapse
|
152
|
Gautier R, Camproux AC, Tufféry P. SCit: web tools for protein side chain conformation analysis. Nucleic Acids Res 2004; 32:W508-11. [PMID: 15215438 PMCID: PMC441526 DOI: 10.1093/nar/gkh388] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.
Collapse
Affiliation(s)
- R Gautier
- Equipe de Bioinformatique Génomique et Moléculaire, INSERM E346, Université Paris 7, case 7113, 2, place Jussieu, 75251 Paris cedex 05, France
| | | | | |
Collapse
|
153
|
Tramontano A, Morea V. Exploiting evolutionary relationships for predicting protein structures. Biotechnol Bioeng 2004; 84:756-62. [PMID: 14708116 DOI: 10.1002/bit.10850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the last few years there have been many developments in computational biology, particularly with regard to novel, imaginative exploitation of genomic data. Disappointingly, there has been a lack of progress in the methodology for prediction of protein structures. In the last several years, however, promising new methods have finally begun to emerge. These methods are increasing the power and scope of the methodology, but, most importantly, they are generating new areas of investigation that we believe will accelerate progress in the field. In this review we describe recent developments and highlight the implications of their success as well as areas where efforts should be focused.
Collapse
Affiliation(s)
- Anna Tramontano
- Department of Biochemical Sciences A. Rossi Fanelli, University La Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy.
| | | |
Collapse
|
154
|
Dasgupta B, Pal L, Basu G, Chakrabarti P. Expanded turn conformations: characterization and sequence-structure correspondence in alpha-turns with implications in helix folding. Proteins 2004; 55:305-15. [PMID: 15048823 DOI: 10.1002/prot.20064] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Like the beta-turns, which are characterized by a limiting distance between residues two positions apart (i, i+3), a distance criterion (involving residues at positions i and i+4) is used here to identify alpha-turns from a database of known protein structures. At least 15 classes of alpha-turns have been enumerated based on the location in the phi,psi space of the three central residues (i+1 to i+3)-one of the major being the class AAA, where the residues occupy the conventional helical backbone torsion angles. However, moving towards the C-terminal end of the turn, there is a shift in the phi,psi angles towards more negative phi, such that the electrostatic repulsion between two consecutive carbonyl oxygen atoms is reduced. Except for the last position (i+4), there is not much similarity in residue composition at different positions of hydrogen and non-hydrogen bonded AAA turns. The presence or absence of Pro at i+1 position of alpha- and beta-turns has a bearing on whether the turn is hydrogen-bonded or without a hydrogen bond. In the tertiary structure, alpha-turns are more likely to be found in beta-hairpin loops. The residue composition at the beginning of the hydrogen bonded AAA alpha-turn has similarity with type I beta-turn and N-terminal positions of helices, but the last position matches with the C-terminal capping position of helices, suggesting that the existence of a "helix cap signal" at i+4 position prevents alpha-turns from growing into helices. Our results also provide new insights into alpha-helix nucleation and folding.
Collapse
|
155
|
Ramya Bhargavi G, Sheik SS, Velmurugan D, Sekar K. Side-chain conformation angles of amino acids: effect of temperature factor cut-off. J Struct Biol 2004; 143:181-4. [PMID: 14572473 DOI: 10.1016/j.jsb.2003.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The paper presents the analysis of the side-chain conformation angles of amino acids in 90% non-identical protein structures. The analysis has been carried out using 113,699 residues, which is higher compared to the previous studies. In the present study, one more quality check, namely, temperature factor cut-off, has been introduced in addition to resolution and R-factor cut-offs. Due to this, the present calculation reveals the approximate values for the minimum and the maximum of the three-rotameric states of chi1. In addition, the conformation angles chi2 and chi3 have been addressed with the improved data set. The results reported here could be of use in protein modeling.
Collapse
Affiliation(s)
- G Ramya Bhargavi
- Bioinformatics Centre, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
156
|
Manikandan K, Ramakumar S. The occurrence of CH…O hydrogen bonds in α-helices and helix termini in globular proteins. Proteins 2004; 56:768-81. [PMID: 15281129 DOI: 10.1002/prot.20152] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A comprehensive database analysis of C--H...O hydrogen bonds in 3124 alpha-helices and their corresponding helix termini has been carried out from a nonredundant data set of high-resolution globular protein structures resolved at better than 2.0 A in order to investigate their role in the helix, the important protein secondary structural element. The possible occurrence of 5 --> 1 C--H...O hydrogen bond between the ith residue CH group and (i - 4)th residue C==O with C...O < or = 3.8 A is studied, considering as potential donors the main-chain Calpha and the side-chain carbon atoms Cbeta, Cgamma, Cdelta and Cepsilon. Similar analysis has been carried out for 4 --> 1 C--H...O hydrogen bonds, since the C--H...O hydrogen bonds found in helices are predominantly of type 5 --> 1 or 4 --> 1. A total of 17,367 (9310 of type 5 --> 1 and 8057 of type 4 --> 1) C--H...O hydrogen bonds are found to satisfy the selected criteria. The average stereochemical parameters for the data set suggest that the observed C--H...O hydrogen bonds are attractive interactions. Our analysis reveals that the Cgamma and Cbeta hydrogen atom(s) are frequently involved in such hydrogen bonds. A marked preference is noticed for aliphatic beta-branched residue Ile to participate in 5 --> 1 C--H...O hydrogen bonds involving methylene Cgamma 1 atom as donor in alpha-helices. This may be an enthalpic compensation for the greater loss of side-chain conformational entropy for beta-branched amino acids due to the constraint on side-chain torsion angle, namely, chi1, when they occur in helices. The preference of amino acids for 4 --> 1 C--H...O hydrogen bonds is found to be more for Asp, Cys, and for aromatic residues Trp, Phe, and His. Interestingly, overall propensity for C--H...O hydrogen bonds shows that a majority of the helix favoring residues such as Met, Glu, Arg, Lys, Leu, and Gln, which also have large side-chains, prefer to be involved in such types of weak attractive interactions in helices. The amino acid side-chains that participate in C--H...O interactions are found to shield the acceptor carbonyl oxygen atom from the solvent. In addition, C--H...O hydrogen bonds are present along with helix stabilizing salt bridges. A novel helix terminating interaction motif, X-Gly with Gly at C(cap) position having 5 --> 1 Calpha--H...O, and a chain reversal structural motif having 1 --> 5 Calpha-H...O have been identified and discussed. Our analysis highlights that a multitude of local C--H...O hydrogen bonds formed by a variety of amino acid side-chains and Calpha hydrogen atoms occur in helices and more so at the helix termini. It may be surmised that the main-chain Calpha and the side-chain CH that participate in C--H...O hydrogen bonds collectively augment the cohesive energy and thereby contribute together with the classical N--H...O hydrogen bonds and other interactions to the overall stability of helix and therefore of proteins.
Collapse
Affiliation(s)
- K Manikandan
- Department of Physics, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
157
|
Kapp EA, Schütz F, Reid GE, Eddes JS, Moritz RL, O'Hair RAJ, Speed TP, Simpson RJ. Mining a tandem mass spectrometry database to determine the trends and global factors influencing peptide fragmentation. Anal Chem 2004; 75:6251-64. [PMID: 14616009 DOI: 10.1021/ac034616t] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A database of 5500 unique peptide tandem mass spectra acquired in an ion trap mass spectrometer was assembled for peptides derived from proteins digested with trypsin. Peptides were identified initially from their tandem mass spectra by the SEQUEST algorithm and subsequently validated manually. Two different statistical methods were used to identify sequence-dependent fragmentation patterns that could be used to improve fragmentation models incorporated into current peptide sequencing and database search algorithms. The currently accepted "mobile proton" model was expanded to derive a new classification scheme for peptide mass spectra, the "relative proton mobility" scale, which considers peptide ion charge state and amino acid composition to categorize peptide mass spectra into peptide ions containing "nonmobile", "partially mobile", or "mobile" protons. Quantitation of amide bond fragmentation, both N- and C-terminal to any given amino acid, as well as the positional effect of an amino acid in a peptide and peptide length on such fragmentation, has been determined. Peptide bond cleavage propensities, both positive (i.e., enhanced) and negative (i.e., suppressed), were determined and ranked in order of their cleavage preferences as primary, secondary, or tertiary cleavage effects. For example, primary positive cleavage effects were observed for Xaa-Pro and Asp-Xaa bond cleavage for mobile and nonmobile peptide ion categories, respectively. We also report specific pairwise interactions (e.g., Asn-Gly) that result in enhanced amide bond cleavages analogous to those observed in solution-phase chemistry. Peptides classified as nonmobile gave low or insignificant scores, below reported MS/MS score thresholds (cutoff filters), indicating that incorporation of the relative proton mobility scale classification would lead to improvements in current MS/MS scoring functions.
Collapse
Affiliation(s)
- Eugene A Kapp
- Joint ProteomicS Laboratory, Ludwig Institute for Cancer Research and The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Hildebrand PW, Preissner R, Frömmel C. Structural features of transmembrane helices. FEBS Lett 2004; 559:145-51. [PMID: 14960323 DOI: 10.1016/s0014-5793(04)00061-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 01/12/2004] [Accepted: 01/14/2004] [Indexed: 11/20/2022]
Abstract
A total of 160 transmembrane helices of 15 non-homologous high-resolution X-ray protein structures have been analyzed in respect of their structural features. The dihedral angles and hydrogen bonds of the helical sections that span the hydrophobic interior of the lipid bilayer have been investigated. The Ramachandran plot of protein channels and solute transporters exhibit a significant shift Delta (phi- and psi-angles) of Delta mean (+4.5 degrees and -5.4 degrees ), compared to a reference group of 151 alpha-helices of the same average length derived from water-soluble globular proteins. At the C-termini of transmembrane helices structural motifs equivalent to the Gly-caps of helices in globular proteins have been found, with two third of the transmembrane Gly-caps taking up a primary structure that is typically not found at helix termini exposed to a polar solvent. The structural particularities reported here are relevant for the three-dimensional modelling of membrane protein structures.
Collapse
Affiliation(s)
- Peter Werner Hildebrand
- Institute of Biochemistry Charité, Medical Faculty of the Humboldt University, Monbijoustrasse 2a, 10117 Berlin, Germany.
| | | | | |
Collapse
|
159
|
Rossmeisl J, Kristensen I, Gregersen M, Jacobsen KW, Nørskov JK. Beta-sheet preferences from first principles. J Am Chem Soc 2004; 125:16383-6. [PMID: 14692780 DOI: 10.1021/ja0359658] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The natural amino acids have different preferences of occurring in specific types of secondary protein structure. Simulations are performed on periodic model beta-sheets of 14 different amino acids, at the level of density functional theory, employing the generalized gradient approximation. We find that the statistically observed beta-sheet propensities correlate very well with the calculated binding energies. Analysis of the calculations shows that the beta-sheet propensities are determined by the local flexibility of the individual polypeptide strands.
Collapse
Affiliation(s)
- Jan Rossmeisl
- Center for Atomic-scale Materials Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
160
|
Rainey JK, Goh MC. Statistically Based Reduced Representation of Amino Acid Side Chains. ACTA ACUST UNITED AC 2004; 44:817-30. [PMID: 15154746 DOI: 10.1021/ci034177z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Preferred conformations of amino acid side chains have been well established through statistically obtained rotamer libraries. Typically, these provide bond torsion angles allowing a side chain to be traced atom by atom. In cases where it is desirable to reduce the complexity of a protein representation or prediction, fixing all side-chain atoms may prove unwieldy. Therefore, we introduce a general parametrization to allow positions of representative atoms (in the present study, these are terminal atoms) to be predicted directly given backbone atom coordinates. Using a large, culled data set of amino acid residues from high-resolution protein crystal structures, anywhere from 1 to 7 preferred conformations were observed for each terminal atom of the non-glycine residues. Side-chain length from the backbone C(alpha) is one of the parameters determined for each conformation, which should itself be useful. Prediction of terminal atoms was then carried out for a second, nonredundant set of protein structures to validate the data set. Using four simple probabilistic approaches, the Monte Carlo style prediction of terminal atom locations given only backbone coordinates produced an average root mean-square deviation (RMSD) of approximately 3 A from the experimentally determined terminal atom positions. With prediction using conditional probabilities based on the side-chain chi(1) rotamer, this average RMSD was improved to 1.74 A. The observed terminal atom conformations therefore provide reasonable and potentially highly accurate representations of side-chain conformation, offering a viable alternative to existing all-atom rotamers for any case where reduction in protein model complexity, or in the amount of data to be handled, is desired. One application of this representation with strong potential is the prediction of charge density in proteins. This would likely be especially valuable on protein surfaces, where side chains are much less likely to be fixed in single rotamers. Prediction of ensembles of structures provides a method to determine the probability density of charge and atom location; such a prediction is demonstrated graphically.
Collapse
Affiliation(s)
- Jan K Rainey
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | |
Collapse
|
161
|
Casanovas J, Jiménez AI, Cativiela C, Pérez JJ, Alemán C. N-acetyl-N'-methylamide derivative of (2S,3S)-1-amino-2,3-diphenylcyclopropanecarboxylic acid: theoretical analysis of the conformational impact produced by the incorporation of the second phenyl group to the cyclopropane analogue of phenylalanine. J Org Chem 2003; 68:7088-91. [PMID: 12946154 DOI: 10.1021/jo034720a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intrinsic conformational preferences of (2S,3S)-1-amino-2,3-diphenylcyclopropanecarboxylic acid, a phenylalanine cyclopropane analogue bearing two phenyl substituents, have been examined theoretically. For this purpose, its N-acetyl-N'-methylamide derivative, Ac-(2S,3S)c(3)diPhe-NHMe, has been investigated by using ab initio HF and DFT methods. Results have been compared with those previously reported for other cyclopropane analogues of phenylalanine, and with experimental data available for c(3)diPhe-containing peptides.
Collapse
Affiliation(s)
- Jordi Casanovas
- Departament de Química, Escola Universitària Politècnica, Universitat de Lleida, c/Jaume II No. 69, 25001 Lleida, Spain.
| | | | | | | | | |
Collapse
|
162
|
Bhattacharyya R, Chakrabarti P. Stereospecific interactions of proline residues in protein structures and complexes. J Mol Biol 2003; 331:925-40. [PMID: 12909019 DOI: 10.1016/s0022-2836(03)00759-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The constrained backbone torsion angle of a proline (Pro) residue has usually been invoked to explain its three-dimensional context in proteins. Here we show that specific interactions involving the pyrrolidine ring atoms also contribute to its location in a given secondary structure and its binding to another molecule. It is adept at participating in two rather non-conventional interactions, C-H...pi and C-H...O. The geometry of interaction between the pyrrolidine and aromatic rings, vis-à-vis the occurrence of the C-H...pi interactions has been elucidated. Some of the secondary structural elements stabilized by Pro-aromatic interactions are beta-turns, where a Pro can interact with an adjacent aromatic residue, and in antiparallel beta-sheet, where a Pro in an edge strand can interact with an aromatic residue in the adjacent strand at a non-hydrogen-bonded site. The C-H groups at the Calpha and Cdelta positions can form strong C-H...O interactions (as seen from the clustering of points) and such interactions involving a Pro residue at C' position relative to an alpha-helix can cap the hydrogen bond forming potentials of the free carbonyl groups at the helix C terminus. Functionally important Pro residues occurring at the binding site of a protein almost invariably engage aromatic residues (with one of them being held by C-H...pi interaction) from the partner molecule in the complex, and such aromatic residues are highly conserved during evolution.
Collapse
Affiliation(s)
- Rajasri Bhattacharyya
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054, India
| | | |
Collapse
|
163
|
Aravinda S, Shamala N, Das C, Sriranjini A, Karle IL, Balaram P. Aromatic-aromatic interactions in crystal structures of helical peptide scaffolds containing projecting phenylalanine residues. J Am Chem Soc 2003; 125:5308-15. [PMID: 12720442 DOI: 10.1021/ja0341283] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatic-aromatic interactions between phenylalanine side chains in peptides have been probed by the structure determination in crystals of three peptides: Boc-Val-Ala-Phe-Aib-Val-Ala-Phe-Aib-OMe, I; Boc-Val-Ala-Phe-Aib-Val-Ala-Phe-Aib-Val-Ala-Phe-Aib-OMe, II; Boc-Aib-Ala-Phe-Aib-Phe-Ala-Val-Aib-OMe, III. X-ray diffraction studies reveal that all three peptides adopt helical conformations in the solid state with the Phe side chains projecting outward. Interhelix association in the crystals is promoted by Phe-Phe interactions. A total of 15 unique aromatic pairs have been characterized in the three independent crystal structures. In peptides I and II, the aromatic side chains lie on the same face of the helix at i/i + 4 positions resulting in both intrahelix and interhelix aromatic interactions. In peptide III, the Phe side chains are placed on the opposite faces of the helix, resulting in exclusive intermolecular aromatic interactions. The distances between the centroids of aromatic pair ranges from 5.11 to 6.86 A, while the distance of closest approach of ring carbon atoms ranges from 3.27 to 4.59 A. Examples of T-shaped and parallel-displaced arrangements of aromatic pairs are observed, in addition to several examples of inclined arrangements. The results support the view that the interaction potential for a pair of aromatic rings is relatively broad and rugged with several minima of similar energies, separated by small activation barriers.
Collapse
Affiliation(s)
- Subrayashastry Aravinda
- Department of Physics, Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560 012, India
| | | | | | | | | | | |
Collapse
|
164
|
Bhattacharyya R, Saha RP, Samanta U, Chakrabarti P. Geometry of interaction of the histidine ring with other planar and basic residues. J Proteome Res 2003; 2:255-63. [PMID: 12814265 DOI: 10.1021/pr025584d] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among the aromatic residues in protein structures, histidine (His) is unique, as it can exist in the neutral or positively charged form at the physiological pH. As such, it can interact with other aromatic residues as well as form hydrogen bonds with polar and charged (both negative and positive) residues. We have analyzed the geometry of interaction of His residues with nine other planar side chains containing aromatic (residues Phe, Tyr, Trp, and His), carboxylate (Asp and Glu), carboxamide (Asn and Gln) and guanidinium (Arg) groups in 432 polypeptide chains. With the exception of the aspartic (Asp) and glutamic (Glu) acid side-chains, all other residues prefer to interact in a face-to-face or offset-face-stacked orientation with the His ring. Such a geometry is different from the edge-to-face relative orientation normally associated with the aromatic-aromatic interaction. His-His pair prefers to interact in a face-to-face orientation; however, when both the residues bind the same metal ion, the interplanar angle is close to 90 degrees. The occurrence of different interactions (including the nonconventional N-H...pi and C-H...pi hydrogen bonds) have been correlated with the relative orientations between the interacting residues. Several structural motifs, mostly involved in binding metal ions, have been identified by considering the cases where His residues are in contact with four other planar moieties. About 10% of His residues used here are also found in sequence patterns in PROSITE database. There are examples of the amino end of the Lys side chain interacting with His residues in such a way that it is located on an arc around a ring nitrogen atom.
Collapse
Affiliation(s)
- Rajasri Bhattacharyya
- Department of Biochemistry and Bioinformatics Centre, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054, India
| | | | | | | |
Collapse
|
165
|
Jiménez AI, Marraud M, Cativiela C. Cyclopropane analogue of valine: influence of side chain orientation on peptide folding. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)00514-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
166
|
Abstract
Residual dipolar couplings provide information on the orientation of individual bond vectors with respect to a unique set of molecular axes. We report that short peptides from 2 to 15 amino acids in length of arbitrary sequence exhibit a modest range of residual dipolar couplings when aligned in either strained polyacrylamide gels or alkyl-PEG bicelles. The absence of significant line broadening in gels suggests peptides align predominantly through steric interactions with the polyacrylamide matrix. However, broadening of NMR lines for a subset of residues aligned in bicelles indicates some peptides bind weakly to these lipid disks, yet a weak negative correlation between the couplings measured in gels and bicelles is consistent with steric hindrance playing a role in both media. The observation of dipolar couplings for peptides of length 10-15 suggests the statistical segment lengths of polypeptide chains must often be >10-15 residues, with data from denatured proteins indicating even larger values. Presumably, local side-chain backbone interactions severely restrict chain flexibility, with the cumulative effect of many such restrictions giving rise to biases in chain direction that may persist for the entire length of a protein chain. Comparison of experimental dipolar couplings for peptides with couplings calculated for ensembles of conformations generated by molecular dynamics should permit evaluation of the accuracy of molecular mechanics potentials in reproducing sequence-specific preferences for phi and psi angles.
Collapse
Affiliation(s)
- Satoshi Ohnishi
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
167
|
Zanuy D, Ma B, Nussinov R. Short peptide amyloid organization: stabilities and conformations of the islet amyloid peptide NFGAIL. Biophys J 2003; 84:1884-94. [PMID: 12609890 PMCID: PMC1302757 DOI: 10.1016/s0006-3495(03)74996-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Experimentally, short peptides have been shown to form amyloids similar to those of their parent proteins. Consequently, they present useful systems for studies of amyloid conformation. Here we simulate extensively the NFGAIL peptide, derived from the human islet amyloid polypeptide (residues 22-27). We simulate different possible strand/sheet organizations, from dimers to nonamers. Our simulations indicate that the most stable conformation is an antiparallel strand orientation within the sheets and parallel between sheets. Consistent with the alanine mutagenesis, we find that the driving force is the hydrophobic effect. Whereas the NFGAIL forms stable oligomers, the NAGAIL oligomer is unstable, and disintegrates very quickly after the beginning of the simulation. The simulations further identify a minimal seed size. Combined with our previous simulations of the prion-derived AGAAAAGA peptide, AAAAAAAA, and the Alzheimer Abeta fragments 16-22, 24-36, 16-35, and 10-35, and the solid-state NMR data for Abeta fragments 16-22, 10-35, and 1-40, some insight into the length and the sequence matching effects may be obtained.
Collapse
Affiliation(s)
- David Zanuy
- Laboratory of Experimental and Computational Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
168
|
Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 2003; 50:437-50. [PMID: 12557186 DOI: 10.1002/prot.10286] [Citation(s) in RCA: 3745] [Impact Index Per Article: 170.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Geometrical validation around the Calpha is described, with a new Cbeta measure and updated Ramachandran plot. Deviation of the observed Cbeta atom from ideal position provides a single measure encapsulating the major structure-validation information contained in bond angle distortions. Cbeta deviation is sensitive to incompatibilities between sidechain and backbone caused by misfit conformations or inappropriate refinement restraints. A new phi,psi plot using density-dependent smoothing for 81,234 non-Gly, non-Pro, and non-prePro residues with B < 30 from 500 high-resolution proteins shows sharp boundaries at critical edges and clear delineation between large empty areas and regions that are allowed but disfavored. One such region is the gamma-turn conformation near +75 degrees,-60 degrees, counted as forbidden by common structure-validation programs; however, it occurs in well-ordered parts of good structures, it is overrepresented near functional sites, and strain is partly compensated by the gamma-turn H-bond. Favored and allowed phi,psi regions are also defined for Pro, pre-Pro, and Gly (important because Gly phi,psi angles are more permissive but less accurately determined). Details of these accurate empirical distributions are poorly predicted by previous theoretical calculations, including a region left of alpha-helix, which rates as favorable in energy yet rarely occurs. A proposed factor explaining this discrepancy is that crowding of the two-peptide NHs permits donating only a single H-bond. New calculations by Hu et al. [Proteins 2002 (this issue)] for Ala and Gly dipeptides, using mixed quantum mechanics and molecular mechanics, fit our nonrepetitive data in excellent detail. To run our geometrical evaluations on a user-uploaded file, see MOLPROBITY (http://kinemage.biochem.duke.edu) or RAMPAGE (http://www-cryst.bioc.cam.ac.uk/rampage).
Collapse
Affiliation(s)
- Simon C Lovell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Pal L, Chakrabarti P, Basu G. Sequence and structure patterns in proteins from an analysis of the shortest helices: implications for helix nucleation. J Mol Biol 2003; 326:273-91. [PMID: 12547209 DOI: 10.1016/s0022-2836(02)01338-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The shortest helices (three-length 3(10) and four-length alpha), most abundant among helices of different lengths, have been analyzed from a database of protein structures. A characteristic feature of three-length 3(10)-helices is the shifted backbone conformation for the C-terminal residue (phi,psi angles: -95 degrees,0 degrees ), compared to the rest of the helix (-62 degrees,-24 degrees ). The deviation can be attributed to the release of electrostatic repulsion between the carbonyl oxygen atoms at the two C-terminal residues and further stabilization (due to a more linear geometry) of an intrahelical hydrogen bond. A consequence of this non-canonical C-terminal backbone conformation can be a potential origin of helix kinks when a 3(10)-helix is sequence-contiguous at the alpha-helix N-terminal. An analysis of hydrogen bonding, as well as hydrophobic interactions in the shortest helices shows that capping interactions, some of them not observed for longer helices, dominate at the N termini. Further, consideration of the distribution of amino acid residues indicates that the shortest helices resemble the N-terminal end of alpha-helices rather than the C terminus, implying that the folding of helices may be initiated at the N-terminal end, which does not get propagated in the case of the shortest helices. Finally, pairwise comparison of beta-turns and the shortest helices, based on correlation matrices of site-specific amino acid composition, and the relative abundance of these short secondary structural elements, leads to a helix nucleation scheme that considers the formation of an isolated beta-turn (and not an alpha-turn) as the helix nucleation step, with shortest 3(10)-helices as intermediates between the shortest alpha-helix and the beta-turn. Our results ascribe an important role played by shortest 3(10)-helices in proteins with important structural and folding implications.
Collapse
Affiliation(s)
- Lipika Pal
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, 700 054, Calcutta, India
| | | | | |
Collapse
|
170
|
Sheik SS, Ananthalakshmi P, Bhargavi GR, Sekar K. CADB: Conformation Angles DataBase of proteins. Nucleic Acids Res 2003; 31:448-51. [PMID: 12520049 PMCID: PMC165531 DOI: 10.1093/nar/gkg084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Conformation Angles DataBase (CADB) provides an online resource to access data on conformation angles (both main-chain and side-chain) of protein structures in two data sets corresponding to 25% and 90% sequence identity between any two proteins, available in the Protein Data Bank. In addition, the database contains the necessary crystallographic parameters. The package has several flexible options and display facilities to visualize the main-chain and side-chain conformation angles for a particular amino acid residue. The package can also be used to study the interrelationship between the main-chain and side-chain conformation angles. A web based JAVA graphics interface has been deployed to display the user interested information on the client machine. The database is being updated at regular intervals and can be accessed over the World Wide Web interface at the following URL: http://144.16.71.148/cadb/.
Collapse
Affiliation(s)
- S S Sheik
- Bioinformatics Centre, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
171
|
Pal D, Sühnel J, Weiss MS. New principles of protein structure: nests, eggs--and what next? Angew Chem Int Ed Engl 2002; 41:4663-5. [PMID: 12481319 DOI: 10.1002/anie.200290009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Debnath Pal
- Institut für Molekulare Biotechnologie, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | |
Collapse
|
172
|
|
173
|
Abstract
An analysis of the shortest 3(10)-helices, containing three helical residues and two flanking capping residues that participate in two consecutive i + 3 --> i hydrogen bonds, shows that not all helices belong to the classic 3(10)-helix, where the three central residues adopt the right-handed helical conformation (alpha(R)). Three variants identified are: 3L10-helix with all residues in the left-handed helical region (alpha(L)), 3EL10-helix where the first residue is in the extended region followed by two residues in the alpha(L) conformation, and its mirror-image, the 3E'R10-helix. In the context of these helices, as well as the equivalent variants of alpha-helices, the length dependence of the handedness of secondary structures in protein structure is discussed. There are considerable differences in the amino acid preferences at different positions in the various types of 3(10)-helices. Each type of 3(10)-helix can be thought to be made up of an extension of a particular type of beta-turn (made up of residues i to i + 3) such that the (i + 3)th residue assumes the same conformation as the preceding residue. Distinct residue preferences at i and i + 3 positions seem to decide whether a particular stretch of four residues will be a beta-turn or a 3(10)-helix in the folded structure.
Collapse
Affiliation(s)
- Lipika Pal
- Department of Biochemistry, Bose Institute, Calcutta, India
| | | | | |
Collapse
|
174
|
Abstract
Rotamer libraries are widely used in protein structure prediction, protein design, and structure refinement. As the size of the structure data base has increased rapidly in recent years, it has become possible to derive well-refined rotamer libraries using strict criteria for data inclusion and for studying dependence of rotamer populations and dihedral angles on local structural features.
Collapse
Affiliation(s)
- Roland L Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia PA 19111, USA.
| |
Collapse
|
175
|
Abstract
An analysis of the occurrence of nonglycyl residues in conformations disallowed in the Ramachandran plot is presented. Ser, Asn, Thr, and Cys have the highest propensities to exhibit such conformations, and the branched aliphatic residues the lowest. Residues cluster in five regions and there are some trends in the types of residues and their side-chain conformations (chi(1)) occupying these. Majority of the residues are found at the edge of helices and strands and in short loops, and are involved in different types of weak, stabilizing interactions. A structural motif has been identified where a residue in disallowed conformation occurs as the first residue of a short 3(10)-helix. On the basis of the types of neighboring residues, the location in the three-dimensional structure and accessibility, there are similarities with the occurrence of cis peptide bonds in protein structures.
Collapse
Affiliation(s)
- Debnath Pal
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054, India
| | | |
Collapse
|
176
|
Bhattacharyya R, Samanta U, Chakrabarti P. Aromatic-aromatic interactions in and around alpha-helices. Protein Eng Des Sel 2002; 15:91-100. [PMID: 11917145 DOI: 10.1093/protein/15.2.91] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To understand the role of aromatic-aromatic interactions in imparting specificity to the folding process, the geometries of four aromatic residues with different sequence spacing, located in alpha-helices or five residues from helical ends, interacting with each other have been elucidated. The geometry is found to depend on the sequence difference. Specific interactions (C-H...pi and N-H...pi) which result from this geometry may cause a given pair of residues (such as Phe-His) with a particular sequence difference to occur more than expected. The most conspicuous residue in an aromatic pair in the context of helix stability is His, which is found at the last (C1) position or the two positions (Ncap and Ccap) immediately flanking the helix. An alpha-helix and a contiguous 3(10)-helix or two helices separated by a non-helical residue can have interacting aromatic pairs, the geometry of interaction and the relative orientation between the helices being rather fixed. Short helices can also have interacting residues from either side.
Collapse
Affiliation(s)
- Rajasri Bhattacharyya
- Department of Biochemistry, Bose Institute,P-1/12 CIT Scheme VIIM, Calcutta 700 054, India
| | | | | |
Collapse
|
177
|
Watson JD, Milner-White EJ. The conformations of polypeptide chains where the main-chain parts of successive residues are enantiomeric. Their occurrence in cation and anion-binding regions of proteins. J Mol Biol 2002; 315:183-91. [PMID: 11779238 DOI: 10.1006/jmbi.2001.5228] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the shapes of polypeptides where successive residues have main-chain phi,psi conformations of opposite hand. A graph not unlike a Ramachandran plot is presented illustrating the various possible conformations. All are ring-shaped or extended. Some of these conformations occur in native proteins, the commonest approximating to a feature we propose calling a nest, described in the accompanying paper, where the main-chain NH groups point inwards relative to the ring and give rise to an anion-binding site. Another conformation is related but more extended and is found uniquely in the four stretches of polypeptide that line the tetrameric K(+) channel; their CO groups bind the K ions in the channel. In a different ring-shaped conformation that we propose calling a catgrip, the main-chain CO groups point into the ring; this is employed for specific Ca ion binding in the annexin, phospholipase A2 and subtilisin loops, and the regularly arranged beta-roll loops of the serralysin protease family.
Collapse
Affiliation(s)
- James D Watson
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|